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1 Contents

In this SI Appendix, we give an extensive working paper version of the 8-pages
version of the paper. In section 2, we present an exhaustive literature about
climate/Covid-19 relationships based on both lab experiments and statistical
studies. In section 3, we develop our assumptions about how climatic factors
may impact the Covid-19 outcomes and we outline some stylised facts. Section
4 gives details about data and methods by giving details about data sources
and econometric methods. Section 5 outlines the main results by extending the
results from Tables 1-3 of the paper by supplementary specifications. Section
6 presents many robustness checks: increasing lags, endogeneity issues (System
GMM estimates), endogeneity issues by introducing the testing variable, time
span changes, sample bias, week-end effects are considered.

2 Climatic factors and Covid-19 patterns

2.1 Lab experiments: the role of temperature and humid-
ity

Though studies about survival times of the Covid-19 virus are still under inves-
tigation, some lab experiments works suggest that high levels of temperature
and humidity can reduce the persistence and activation of the Covid-19. In
line with many other respiratory pathogens showing seasonality, the Sars-Cov-2
might be sensible to environmental factors, especially absolute humidity condi-
tions. Kampf et al. (2020) show that human coronaviruses can remain infectious
on inanimate surfaces at room temperature for up to 9 days, but the duration
of persistence is shorter at a temperature of 30C or more. A higher temperature
such as 30C or 40 C reduced the duration of persistence of highly pathogenic
MERS-CoV, TGEV and MHV. Few comparative data obtained with SARS-
CoV indicate that persistence was longer with higher inocula. In addition, it
was shown at room temperature that HCoV-229E persists better at 50% com-
pared to 30% relative humidity. In the same vein, Van Doremalen et al. (2020)
demonstrate that the stability of HCoV-19 and SARS-CoV-1 under the exper-
imental circumstances tested is similar. Their results indicate that aerosol and
fomite transmission of HCoV-19 are plausible, as the virus can remain viable
in aerosols for multiple hours and on surfaces up to days. Chan et al. (2011)
have confirmed for the previous SARS coronavirus that the virus viability was
rapidly lost at higher temperatures and relative humidity levels, also leading to
different epidemic curves in countries with subtropical and tropical areas, also
considering air-conditioned environments.

Baker and Grenfell (2020) studied the dynamics of human infectious diseases
such as seasonal influenza and RSV (respiratory syncytial virus) and investi-
gated how warming climate can influence those dynamics in the coming years
(also following Baker et al., 2019). Their major result is: even if one assumes
that SARS-Cov-2 is as sensitive to climate as other seasonal viruses, summer
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heat still would not be enough right now to slow down its rapid initial spread
through the human population.

Finally, these results are in accordance with other previous lab experiments
on different viruses. Casanova et al.(2010) used gastroenterit virus and mouse
heptatit virus to determine the effects of air temperature and humidity on
pathogenic viruses such as the SARS-Cov and confirm the role of high temper-
atures (20C and more importantly at 40C) and the existence of non-monotonic
relationships. Yuan et al. (2006) studying relationships between climatic fac-
tors, urbanization, air quality and epidemics, show that cold and dry conditions
increase the transmission of the virus. These results are in line with Dalziel et
al. (2018) regarding the influenza virus.

2.2 Statistical studies: mixed results

Statistical and econometric studies have recently tried to evaluate these conclu-
sions stemming from lab experiments or epidemiological investigations. Nega-
tive effects of high levels of temperatures and humidity found in some recent
empirical studies (Xu et al., 2020, Wu et al., 2020, Qi et al., 2020, Livadiotis,
2020) seem consistent with studies about the effect of physical factors on the
virus and its survival rate conducted in experimental works. Sajadi et al. (2020)
examine the epidemic between January and early March and highlight the con-
ditions that most likely affect the risk of transmission by accounting for the
role of other factors in the course of the virus. Regions with low humidity and
average temperatures between 40 and 50 degrees Fahrenheit are likely to have a
more important spreading of the virus. Xu et al.(2020) estimate the R transmis-
sion rate across nearly 4000 locations and find that above 25 degrees, there is
a strong association between temperatures and reduced transmission rates with
the largest effect is 30 to 40 percent reduction in the rate but in most locations,
even 40 percent still leave Covid-19 climbing at an exponential rate and this
situation is only seen for very hot and humid conditions. Araujo and Naimi
(2020) develop a set of 200 ecological niche models to project monthly varia-
tions due to climatic conditions and conclude that although cases of COVID-19
are reported all over the world, most outbreaks display a pattern of clustering
in relatively cold and dry areas.

However, this positive association between climate conditions and Covid-19
is a controversial debate and the relationship may be weak (Xu et al., 2020). Ma
et al. (2020) find evidence of a positive association between daily death counts
and diurnal temperature range, Xie and Zhu (2020) a positive linear relationship
between Covid-19 cases and mean temperatures but find no clear evidence that
the counts of Covid-19 cases are reduced when the weather is warmer. Jamil
et al. (2020) do not find evidence of an association between relatively high
temperatures (up to 20C) and the spread rate of the virus. Luo et al. (2020)
are very doubtful about the existence of significant relationships. Examining
the relationship between the variability in absolute humidity and transmission
of COVID- 19 across provinces in China and other select locations, they show
that the observed patterns of COVID-19 are not completely consistent with the
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hypothesis that high absolute humidity may limit the survival and transmission
of this new virus.

Can the lack of controls included in the regressions explain these different
empirical results? If the results from some short preliminary articles should
be taken with cautious, it seems not to be the case. For example Ficetola and
Rubilini (2020) show that Covid-19 growth rates peaked in temperate regions of
the Northern Hemisphere with mean temperature of 5C, and specific humidity
of 4-6 g/m3 during the outbreak period by controlling for population size, den-
sity and health expenditure during January-March 2020. Wilson (2020) controls
for mobility and finds negative and significant effect of temperatures on Covid-
19 cases and fatalities. This effect is thus robust to omitted variable bias. In
contrast, he do not find significant relationship with precipitations and snowfall.

Finally, as recently outlined by Baker et al. (2020), the relative importance
of climate drivers on Covid-19 spread is not fully characterized. With limited
data on the ongoing epidemic, preliminary results were inevitably inconclusive
or should have been read cautiously. Since we have now more distance and
perspective about the epidemic and more available data with longer time and
cross-country dimensions, we are now able to reassess the relationship between
climatic factors and Covid-19 outbreak.

2.3 A lack of work about other climatic factors (solar ra-
diation, wind and precipitations)

Temperatures and humidity have been the most studied factors in the previous
studies. However, solar radiation, notably through ultraviolet, as well as wind
and precipitations should also be evaluated on the transmission rate of the virus.
Precipitations and wind have generally a positive impact on the transmission
rate, that could result from people spending more time indoors. Xu et al.
(2020) consider wind speed (log of Km/hour), precipitations (log of millimeters)
and ultraviolet index (25 milliwatts/m2) as well as squared ultraviolet index as
potential drivers of the Covid-19 reproduction number. They consider 3739
locations over the December 12, 2019 to April, 22, 2020 period and find a U-
shaped relationship between UV index and the transmission rate. The UV may
help more temperate countries during summer but increase risks in equatorial
regions with very high levels of UV exposure. Islam et al. (2020) find that there
was an inverse association between Covid-19 incidence and 14-day lagged UV
index (but not with the current or the 7-day lagged data). Takagi et al. (2020)
performed a random meta-regression for China confirming that UV index may
be associated at high levels with less COVID-19 prevalence.

The wind speed is likely to be an other determinant of Covid-19 spread.
Dbouka and Drikakisb (2020) found that human saliva-disease-carrier droplets
may travel up to unexpected considerable distances depending on the wind
speed. When the wind speed is approximately zero, the saliva droplets did not
travel 2 meters (m), which is within the social distancing recommendations.
However, at higher wind speeds, the saliva droplets can travel up to 6 m. Chen
et al. (2020) assume that wind speed can affect droplets stability in the en-

4



vironment or the survival of viruses, like air temperature, and as a result, the
transmission rate. Although wind speed is not an important factor if modeled
as the only explanatory variable, it represents a necessary factor in their final
model. Performing Spearman’s correlations based on four climatic factors in
Turkey, Sahin (2020) find that the 14-day lag of the average wind speed has
the highest (positive) correlation with the number of cases in line with Xu et
al. (2020). This wind speed effect is also significant in the recent study from
Xu et al. (2020) and Islam et al. (2020) but not in Oliveiros et al. (2020).
To our knowledge, there are no other studies related to the effects of wind,
precipitations or UV on Covid-19 outbreak.

3 Theoretical assumptions and stylised facts

3.1 Theoretical assumptions

The value added of our study is to consider and test both direct and indirect
factors i.e. both physical and human behaviors channels. Climate patterns are
tested by investigating the significance of coefficients associated to five climatic
factors: temperatures, humidity index, precipitations levels, wind and solar
radiation.

Expected results and assumptions are summarized in the Table 1: − de-
notes negative effect ie a decreasing number of cases or deaths and + a positive
effect ie an increasing number of cases or fatalities. We also use the ? symbol
denoting that there exist some uncertainty regarding the absence of significant
investigation about this question or mixed results. Temperatures are expected
to directly impact the virus negatively but indirect effects by increasing incen-
tives for people to go outdoors may be negative at low levels or positive at higher
levels. Precipitations have no expected direct effect but indirect impact are ex-
pected; indeed, too much rains could generate incentives to stay indoors and
increase the transmission of the virus. Humidity has been identified as a direct
negative driver in some lab experiments but its indirect effect through human
behavior is difficult to evaluate. The same observation stands for Wind. Solar
radiation is likely to reduce the durability of the virus and its indirect effects are
expected to be relatively similar to those associated with temperatures. Note
in a general manner that mobility is not related to weather in an homogeneous
manner. Activities that are done for leisure purpose are conditional to climatic
conditions whereas mobility for work purpose for instance is an incompressible
task that is de facto not sensitive to climatic conditions.

As a consequence, we expect that the net effect of climate factors on the
Covid-19 spread will be the result of two different kinds of effects: direct versus
indirect. As shown by the Table 1, signs from direct and indirect effects can
be potentially opposed. Among indirect factors, it will again depend upon the
arbitrage of different potential contrary effects. For example, the direct effect
of high precipitations is expected to be null. The associated indirect effect is
expected to be positive through higher precipitations since they will reduce the

5



Table 1: Expected direct climatic effects
Variables/Effect Direct Indirect
Temperatures - - or +
Precipitations null or ? +
Humidity - ?
Wind - or ? ?
Solar - - or +

propensity for people to go outdoors and so probably increase the virus diffusion.
Thus, the aggregate climatic effect of precipitations should be positive with a
high probability and so the global net effect will be an increasing of the number
of infected people. In contrast, high temperatures and solar radiation are likely
to have a negative direct effect. However their indirect effects are difficult to
evaluate. Low levels are incentives for people to stay indoors, that is a priori
a source of increasing diffusion of the virus. In contrast, moderate to high
levels of temperatures and sunshine are in favor of a reducing transmission of
the virus since people can go outdoors. However, it is not a guarantee that it
will reduce the virus transmission. In some cases, outdoors activities (in parks,
by doing shopping, meetings etc) could lead to a reduction of social distancing
and thus increase the transmission rate of the virus. Furthermore, at very high
temperature levels, people will prefer to stay at home and use air-conditioning
that is likely to be bad for the air quality and virus spread. As a consequence,
the indirect effects are very difficult to forecast and thus the overall effect of
temperatures and sunshine on the Covid-19 virus.

3.2 Stylised facts

Figures 1 and 2 report the scatter plot outlining the direct relationship between
the mean temperatures and the infected cases and fatality ratios respectively. In
the same vein, Figures 3 and 4 plot the relationship between solar radiation and
Covid-19 outcomes. They reveal that the relationships contemplated in some
previous studies are not self-evident. We consider 7 and 28 days respectively
concerning the transmission delay between climatic factors and Covid-19 out-
comes in our benchmark analysis. Indeed, the climatic effects on infected cases
or fatality rates are not instantaneous. This assumption is especially based on
the medical and epidemiological literature about delays of incubation (about
5-7 days) and consolidation (dynamics of the disease over the time, hospitalisa-
tion length). Note that we also check our results with more longer delays and
qualitative results are not very sensitive to the lag choice in this context.

In contrast, when we report the scatter plot between mobility (driving) 1

and temperatures in figure 5, we find a negative -quite nonlinear- relationship
between climate and the mobility index. Note (see more details in the data

1We both consider driving and walking mobility as percent of January 100 points basis;
note that they are highly correlated with a 0.92 correlation coefficient.
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section) that the mobility index (from Apple) takes low values when mobility is
low and people prefer stay indoors and high values when the mobility (driving or
walking) is stronger. A January basis (before the pandemic) has been considered
as a statistical benchmark scale. Thus, when the temperature (solar radiation
derives similar conclusions) increase, the mobility index tends to decrease for low
levels of temperatures. For higher levels of temperatures, the mobility increases
since people go outdoors for leisure activities for example.Using solar radiation
instead lead to similar conclusions.

As a consequence, these preliminary figures tend to suggest that the direct
effect of climate on Covid-19 spread is not completely clear: different forms of
nonlinearity should be investigated. However, indirect channels through mobil-
ity - propensity of people to move outdoors, driving, walking for example - are
probably correlated with climatic conditions. It is thus a potential channel to
consider when we want to explain the links between climate and the Covid-19
virus.

Figure 1: Infected cases and lagged 7 days temperatures (mean)
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Figure 2: Fatality rate and lagged 28 days temperatures (mean)

Figure 3: Infected cases and lagged 7 days solar radiation
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Figure 4: Fatality rate and lagged 28 days solar radiation

Figure 5: Temperature and mobility (contemporaneous values)
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4 Data and Methods

4.1 Data

We selected a set of 38 OECD countries (and add 4 European supplemen-
tary countries) over the January-May 2020 period. We obtain a panel with
42 countries and more than 4600 observations. We obtained (1) the number
of confirmed COVID-19 cases and deaths for the countries in our sample from
mulitples sources through the DELVE initiative between 1st January 2020 and
May, 27th 2020, (2) estimated population in 2019 from the World Bank’s World
Development Indicators database, and (3) daily meteorological conditions in
the selected countries for 6 months. Covid-19 data have been aggregated by
Aviskar Bhoopchand, Andrei Paleyes, Kevin Donkers, Nenad Tomasev, Ul-
rich Paquet (2020), DELVE Global COVID-19 Dataset and are available at
http://rs-delve.github.io/data /global-dataset.html.

Previous papers used sometimes infected cases, fatality rate or both. Here,
we use both indicators. One reason behind is that cases counts can be biased.
Recently, Manski and Molinari (2020) consider missing data on tests for infec-
tion issues as well as imperfect accuracy of tests and show that the infection rate
might be substantially higher or lower than reported: for instance, in Illinois,
New York, and Italy they are substantially lower than reported. In some coun-
tries, during the pandemic waves, testing has been stopped due to lack of time
concerns. Another reason to consider both infected cases and fatality rates is
that these two variables, though related, do not capture the same Covid-19 out-
comes. Infected people are generally officially considered as infected (by testing)
only few days (between 7 and 14 days) after the contamination day although
the median incubation is estimated to be 5 days (Lauer et al., 2020). Infected
cases counts thus captures a short-run effect of potential climatic or social dis-
tancing variables on the Covid-19 pandemic. However, the delay is longer for
deaths counts considering the time people can develop the disease and stay in
hospitals. As a consequence, the fatality rate captures a long-run face of the
transmission from climatic and other determinants to Covid-19 outcome.

Most selected OECD countries in our sample have encountered the first wave
of the pandemic quite in the same time (see table 32 in appendix). We take into
account the huge numbers of zero values for the infected cases and the fatality
rate (especially for this latter) in the beginning of the sample range by choosing
a restrictive sample as a benchmark: February 1st has been assumed as a start-
ing time for the pandemic (infected cases) for all countries whereas February
15th has been chosen for fatality counts. We have considered epidemiological
and also statistical (lags) arguments when we selected these particular dates.
Considering these time windows enables us to start our estimates when the first
significant number of Covid-19 cases and deaths is observed, and also to have a
sufficient number of observations in the time dimension in order to account for
relevant lags in the dynamic model. In the robustness tests part, we will relax
this assumption and consider the totality of the available data. 2 Concerning

2An alternative solution would be to build a normalized sample when time t = 1 starts
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Table 2: Summary of climatic variables
Precipitation Average daily precipitation Kg/mˆ2s (multiply by 3600 to get mm / hr)

Humidity Average daily humidity Kilograms of water vapour per kilogram of air

Solar radiation Average daily short-wave radiation Watts per square meters

Temperature Average of daily mean temperatures Celcius Degrees

Wind speed Average daily wind speed Meters per second

the climatic factors, even though there exist significant differences in meteoro-
logical conditions between our set of countries, they are all located in a relative
homogeneous North Hemisphere. We thus have all conditions to work with a
suitable panel: unobserved heterogeneity across countries is included inside a
relative homogeneity panel (see the ”to pool or not pool debate” developed by
Pesaran and co-authors, for instance Pesaran and Zhou (2018)).

Meteorological conditions are summarized in the Table 2: mean daily tem-
peratures (in Celcius degrees), total precipitation (mm / hr), mean wind speed
(mph), solar radiation (Watts per square meters) and mean relative humidity
(Kilograms of water vapour per kilogram of air). For each country , all cli-
matic observations have been weighted by the population. Note that the five
meteorological factors have been standardized for comparisons purposes and for
coefficients scale homogeneity.

Finally, we use Apple mobility reports data that are available at:
https://www.apple.com/covid19/mobility. Two main variables are used to proxy
the mobility: mobility worplaces et mobility residential. These data are in-
dexes (100 basis) and are computed as the % change in routing requests since
13th January 2020.

4.2 Econometric model

Before estimating our model, we proceed to usual panel unit root tests to eval-
uate the properties of our series. Maddala Wu (1999) and Pesaran CIPS (2007)
are thus performed and show that the dynamics of the series are driven by deter-
ministic and stationary stochastic processes. Results in favor stationarity of our
series 3 are more clear-cut in the case of Pesaran CIPS test, that is more relevant
since it takes into account cross-section dependence under the null hypothesis.

Our baseline model can be written in a dynamic panel form as follows:

yi,t = α0 + α1yi,t−1 + α2yi,t−k︸ ︷︷ ︸
pandemic dynamic effect

+ α3Ci,t−p︸ ︷︷ ︸
lagged climatic effect

+µi + δt + εi,t
(1)

Where the subscripts i and t represent country index and periods (days) re-
spectively. The dependent variable, yi,t, can be the number of infected people

when a country reports 1000 infected people for instance. Robustness checks show that the
heterogeneity of the starting dates is not a significant issue.

3Results are available upon request. See also the companion Stata code.
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(casespop) or deaths (deathpop) per capita (considering the population size) at
time t. Ci,t−p is a vector of variables depicting the effects of meteorological con-
ditions in day t− p. Country-specific fixed effect, µi, are included to control for
time-invariant omitted-variable bias and εi,t is the error term. δt is a determinis-
tic time trend that controls the deterministic dynamics of the epidemics over the
studied period and captures some unobserved information about the pandemic
common to all countries. In addition, lagged terms yi,t−k capture the stochas-
tic part of the pandemic dynamics. We assume k equal to 7 or 14 lags/days
in our baselines specifications considering incubation and confirmation periods
presented in the Covid-19 literature. Moreover, for logical reasons, since the
climatic factors do not immediately impact the Covid-19 spread, the climatic
variables are also included in our model with a lag of order p. Indeed, there are
delays between the time of potential infection corresponding to certain climatic
events and the time of official counting of a potential infected people (or fatal-
ity). Therefore, when dealing with p, 7 or 14 days are considered when casepop
is used as endogeneous variable considering the short period between transmis-
sion and infection. A benchmark 28 lags (about one month) delay is considered
when dealing with deathpop because of the more important lag lenght assumed
between the infection and the deaths related to the Covid-19 virus. More lags
have been also considered in robustness checks to take into account the dynamic
persistence of the pandemic. Again, casepop and deathpop respectively give a
short-run and medium/long-run time perspective of the dramatic outcomes of
the pandemic. Note that when yi,t is the fatality rate, we also add the ratio
of infected cases per capita in our benchmark specification in order to account
for the fact that the level of the pandemic can impact the fatality rate. The
reason behind is to control for a level effect and a kind of saturation effect of the
health system (too many infected people to manage is likely to finally increase
the fatality rate).

This baseline specification is extended to take into account different poten-
tial nonlinearities: quadratic terms for climatic variables (to capture thresholds
effects), interacted terms between climatic variables are also added in the model
due to high levels of multicollinearity. More importantly, our extended specifi-
cation incorporates mobility indexes to investigate potential indirect effects of
the meteorological factors via the impact of climate on human behaviors. Thus,
equation (1) becomes equation (2) with M a mobility index:

yi,t = α0 + α1yi,t−1 + α2yi,t−k︸ ︷︷ ︸
pandemic dynamic effect

+ α3Ci,t−p︸ ︷︷ ︸
direct lagged climatic effect

+

α4 ∗Mi,t−p + α5Ci,t−p ∗Mi,t−p︸ ︷︷ ︸
indirect lagged climatic effect via mobility

+µi + δt + εi,t
(2)

Equations (1) and (2) can be estimated by several estimators and especially
by the mean group (MG) model of Pesaran and Smith (1995) and the dynamic
fixed effect (DFE) estimator that are relevant for macro panels such as the one
used in this paper: T is equal to 4680 and is thus largely superior to N = 42.
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The Mean Group (MG) estimator has been introduced by Pesaran and Smith
(1995). It consists in estimating each regression separately for each panel mem-
ber i (country here) with a minimum of restrictions. All estimated coefficients
are heterogeneous and are subsequently averaged across countries via a sim-
ple unweighted average (Eberhardt, 2012). An intercept is included to capture
country fixed effects as well as a linear trend. Considering the minimal number
of restrictions of this estimator, large time-series dimension is needed to respect
consistency. Small N (inferior to 20) is also a problem by increasing the sensi-
tivity to outliers (see for instance Samargandi et al., 2015) but we selected 42
countries here. The high dimension of our panel allows the use of this estima-
tor in this study. On the contrary, the Dynamic Fixed Effect estimator (DFE),
more similar to the PMG estimator developed by Pesaran et al. (1999), assumes
the slope coefficients to be equal both in the long run and in the short run.

Identification issues Although we apply appropriate macro-panel estimators
to our data, several issues can nonetheless emerge. First, using dynamic models,
we are vulnerable to the Nickel (1981) bias. Here, this bias is relatively negligi-
ble, notably considering the important time length of our series. Second, panel
regressions may be exposed to an omitted variables bias. It would be possible to
include control variables such as control measures (e.g. testing, mask wearing,
travel controls) or structural determinants (e.g. population density and demo-
graphics such as the population over 65, tourists flows, GDP per capita, and
measures of health infrastructures). Considering the so-called problem of con-
trols in the climate literature, our set of explanatory variables is assumed to be
restricted to climatic variables in order to avoid an over-controlling problem (see
Dell et al., 2014). In addition, considering data availability and the fact they
are time-invariant variables, we capture these unobservables via the lagged term
yi,t−1 and above all with country fixed effects. Another identification issue is
related to the potential reverse causality bias related to our Covid-19 variables:
news about contemporaneous dynamics of the Covid-19 outbreaks and counts
can change the human behavior in real time and the social distancing. This
is why lags of dependent variables must be added in our model. Finally, per-
sistence and multicollinearity are other usual issues in panel studies. We have
controlled for both by computing autocorrelations LM tests and VIF/Tolerance
ratios after each estimated regression4. In the robustness checks section, we also
consider endogeneity issues about the mobility index variable and other tests re-
lated to the specification of our econometric model, the choice of an alternative
estimator, and several changes in the sample composition.

5 Results

5.1 Baseline model and direct effects

Our baseline results are reported in Tables 3 to 7. The five meteorological factors
have been standardized (centered-reduced variables) for comparisons purposes

4Results are available upon request. See also the companion Stata code.
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and for coefficients scale homogeneity. Specifications (1) to (5) denote the dif-
ferent parsimonious specifications considered by focusing on a single specific
climatic factor (going from temperature to wind speed). For instance, (1. DFE)
denotes the model with temperatures estimated by DFE with robust SE clus-
tering and (1. MG) denotes the same specification but estimated by the Mean
Group (with a robust estimator to outliers5) estimator. We first estimate sep-
arately each climatic factor considering the high collinearity between them: for
example, it is likely that high temperatures occur at high solar radiation levels
with very low precipitations levels and low wind speed. Then, we introduce
simultaneously all climatic variables in the same model (Table 7). Although we
computed lot of different models, we only present here the most reliable results
on the basis of epidemiological concerns: indeed, we consider the 7-day lag of
climate variables for cases counts (incubation period). When dealing with the
fatality ratio, more delay in the effect of climatic variables is considered as we
include the 28-day lag of these variables. Thus, our main objective is to give
a short-run and a long-run point of view on the epidemic through these two
different outcomes variables.

Results in Tables 3 and 4 show that temperature and humidity levels - the
most studied factor in the previous literature - have a significant negative effect
on Covid-19 infected cases ratio. As a consequence, these two factors are likely
to reduce the spread of the virus through a direct effect as suggesting by a large
part of the previous literature. The same results are derived, albeit to a lesser
extent, for precipitations and wind speed. Results are robust to lags choice
and to estimator choices. Therefore, these first estimates tend to corroborate
the conclusions of a part of the previous statistical literature about a small but
significant effect of the climatic factors - mainly temperature and humidity but
not only - as a reducing driver of the Covid-19 outbreak, see for instance Xu et
al. (2020).

However, when we turn from infected cases to fatalities (Tables 5 and 6),
direct climatic effects tend to disappear. Climatic effects are thus not clear-
cut when fatalities, and thus long-run analyses, are taken into account. This
result seems more in line with Wilson (2020) who recently find very weak or
unsignificant climatic effects. We further produce some robustness checks by
increasing the lags for both cases and fatalities (see section 5.5.1). Overall,
these results tend to lower the conclusions about the significant effects of climatic
variables and show that contrasting conclusions obtained so far in the literature
could be explained by the lags chosen to study the effects of climate variables on
Covid-19 outcomes. Furthermore, the choice of the different Covid-19 outcomes
as endogeneous variables is not neutral.

When all climatic variables are simultaneously added in the model, the re-
sults are again mixed and the significant effects are not clear although tem-
peratures and solar radiation seem to be more robustly correlated with the
pandemic. Table 7 shows that we should consider interaction effects between
climate variables in order to control for potential collinearity between them.

5This estimator is indeed quite sensitive to outliers.
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Table 3: Direct climatic variables effects on Covid-19 infected cases: DFE esti-
mates

(1. DFE) (2. DFE) (3. DFE) (4. DFE) (5. DFE)
VARIABLES casepop casepop casepop casepop casepop

l1casepop 0.708*** 0.711*** 0.711*** 0.712*** 0.712***
(0.0320) (0.0326) (0.0320) (0.0334) (0.0334)

l7casepop 0.210*** 0.209*** 0.214*** 0.209*** 0.209***
(0.0231) (0.0231) (0.0240) (0.0233) (0.0235)

l7Ntemperature -0.168**
(0.0713)

l7Nhumidity -0.0944**
(0.0399)

l7Nradiation -0.111
(0.0825)

l7Nprecipitation -0.0252*
(0.0149)

l7Nwindspeed -0.0433**
(0.0192)

Time 0.00190* 0.000586 0.00171 -0.000115 -0.000303
(0.00112) (0.000692) (0.00157) (0.000556) (0.000598)

Constant 0.0146 0.122 0.0235 0.179** 0.196**
(0.109) (0.0792) (0.149) (0.0717) (0.0755)

Observations 4,680 4,680 4,680 4,680 4,680
R-squared 0.771 0.771 0.771 0.770 0.771
Number of countries 40 40 40 40 40

Robust standard errors in parentheses
*** p<0.01, ** p<0.05, * p<0.1

Although there are different patterns between the short and the long run
effects of climate variables on infected cases and fatalities, these mixed results
could be linked to multicollinearity between climatic factors.
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Table 4: Direct climatic variables effects on Covid-19 infected cases: MG esti-
mates

(1. MG) (2. MG) (3. MG) (4. MG) (5.MG)
VARIABLES casepop casepop casepop casepop casepop

l1casepop 0.634*** 0.631*** 0.639*** 0.644*** 0.645***
(0.0317) (0.0328) (0.0330) (0.0318) (0.0315)

l7casepop 0.204*** 0.197*** 0.197*** 0.198*** 0.200***
(0.0230) (0.0210) (0.0216) (0.0219) (0.0223)

l7Ntemperature -0.0769***
(0.0291)

l7Nhumidity -0.0788**
(0.0355)

l7Nradiation 0.0284
(0.0286)

l7Nprecipitation -0.0252**
(0.0122)

l7Nwindspeed -0.0243*
(0.0124)

Time 0.00204*** 0.000856 -0.000318 0.000251 -0.000151
(0.000604) (0.000593) (0.000543) (0.000476) (0.000450)

Constant 0.0272 0.0845* 0.204*** 0.103*** 0.119***
(0.0501) (0.0505) (0.0648) (0.0353) (0.0428)

Observations 4,680 4,680 4,680 4,680 4,680
Number of countries 40 40 40 40 40

Standard errors in parentheses
*** p<0.01, ** p<0.05, * p<0.1
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Table 5: Direct climatic variables effects on Covid-19 fatalities: DFE estimates
(1. DFE) (2. DFE) (3. DFE) (4. DFE) (5. DFE)

VARIABLES deathpop deathpop deathpop deathpop deathpop

l1deathpop 0.629*** 0.629*** 0.629*** 0.629*** 0.628***
(0.0757) (0.0760) (0.0755) (0.0755) (0.0760)

l14deathpop 0.0931** 0.0928** 0.0955** 0.0940** 0.0960**
(0.0401) (0.0397) (0.0399) (0.0397) (0.0402)

l14casepop 0.0104** 0.0104** 0.0104** 0.0105** 0.0105**
(0.00443) (0.00442) (0.00445) (0.00444) (0.00447)

l28Ntemperature -0.00463
(0.00473)

l28Nhumidity -0.00239
(0.00745)

l28Nradiation -0.00674
(0.00467)

l28Nprecipitation 0.00324
(0.00311)

l28Nwindspeed 0.00815**
(0.00317)

Time 0.000113 7.46e-05 0.000184* 7.19e-05 9.32e-05
(9.33e-05) (8.65e-05) (0.000108) (7.29e-05) (7.91e-05)

Constant 0.0127* 0.0167*** 0.00550 0.0169*** 0.0144**
(0.00654) (0.00517) (0.0117) (0.00578) (0.00573)

Observations 4,120 4,120 4,120 4,120 4,120
R-squared 0.560 0.560 0.560 0.560 0.561
Number of countries 40 40 40 40 40

Robust standard errors in parentheses
*** p<0.01, ** p<0.05, * p<0.1
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Table 6: Direct climatic variables effects on Covid-19 fatalities: MG estimates
(1. MG) (2. MG) (3. MG) (4. MG) (5. MG)

VARIABLES deathpop deathpop deathpop deathpop deathpop

l1deathpop 0.299*** 0.294*** 0.308*** 0.313*** 0.304***
(0.0470) (0.0471) (0.0451) (0.0455) (0.0456)

l14deathpop 0.000273 0.000182 0.00690 0.00645 0.00638
(0.0251) (0.0237) (0.0245) (0.0265) (0.0258)

l14casepop 0.0180*** 0.0180*** 0.0179*** 0.0177*** 0.0179***
(0.00293) (0.00279) (0.00293) (0.00291) (0.00288)

l28Ntemperature -0.00329
(0.00257)

l28Nhumidity -0.00219
(0.00335)

l28Nradiation 4.68e-05
(0.00233)

l28Nprecipitation -4.77e-05
(0.00108)

l28Nwindspeed 0.00118
(0.000964)

Time 0.000212*** 0.000169*** 0.000184** 0.000117** 0.000136***
(4.23e-05) (3.91e-05) (7.74e-05) (4.89e-05) (4.80e-05)

Constant -0.00837** 0.000128 -0.00882 -0.00285 -0.00608**
(0.00365) (0.00364) (0.00626) (0.00332) (0.00274)

Observations 4,120 4,120 4,120 4,120 4,120
Number of countries 40 40 40 40 40

Standard errors in parentheses
*** p<0.01, ** p<0.05, * p<0.1
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Table 7: Direct climatic variables effects on Covid-19: simultaneous effects
(1. DFE) (2. MG)

VARIABLES deathpop deathpop

l1deathpop 0.627*** 0.279***
(0.0762) (0.0451)

l14deathpop 0.0971** -0.00453
(0.0397) (0.0244)

l14casepop 0.0104** 0.0174***
(0.00450) (0.00278)

l28Ntemperature -0.00789 -0.0149**
(0.0124) (0.00689)

l28Nprecipitation -4.19e-05 -0.00261
(0.00317) (0.00175)

l28Nhumidity 0.00360 0.0137
(0.0148) (0.00856)

l28Nradiation -0.00176 0.00651***
(0.00353) (0.00214)

l28Nwindspeed 0.00815** 0.00498***
(0.00338) (0.00160)

Time 0.000191* 0.000211***
(0.000110) (6.65e-05)

Constant 0.00429 -0.00747
(0.0109) (0.00599)

Observations 4,120 4,120
R-squared 0.561
Number of countries 40 40

Robust standard errors in parentheses
*** p<0.01, ** p<0.05, * p<0.1

19



5.2 Testing for interactions between climatic variables

Previous regressions show that the effects of climatic factors can disappear when
all climatic variables are included at the same time in our model. Then, we next
turn to an extended model that consists in adding interacted climatic variables
to our benchmark model in order to explicitly test for potential interactions
between them: temperature ∗ radiation and temperature ∗ humidity. Indeed,
these variables are the most strongly correlated between them. Results in Ta-
bles 8 and 9 reveal significant interrelationships between the climatic factors. In
particular, the relationship between temperature and solar radiation is signifi-
cant and seems particularly robust in most specifications, whatever the Covid-
19 outcome considered. Nevertheless, we notice that the single direct effects
of temperatures and solar radiation partially disappear. More importantly, a
simultaneous and combinated increase of temperatures and solar radiation is
associated with a significant decrease of casepop and deathpop. The same re-
sult is derived for a combination of high temperatures and humidity but only
for infected cases in the MG estimates. Thus, these results rather confirm the
expected simultaneous direct effects of temperatures and humidity on Covid-19
cases, as assumed in some lab experiments studies.
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Table 8: Interacted direct climatic variables effects on Covid-19 cases
(1. DFE) (1. MG) (2. DFE) (2. MG)

VARIABLES casepop casepop casepop casepop

l1casepop 0.707*** 0.600*** 0.708*** 0.613***
(0.0313) (0.0341) (0.0318) (0.0337)

l7casepop 0.212*** 0.187*** 0.211*** 0.198***
(0.0238) (0.0224) (0.0240) (0.0219)

l7Ntemperature -0.101* -0.0726** -0.264* -0.0314
(0.0501) (0.0349) (0.132) (0.0831)

l7Nradiation -0.0667 0.0714*
(0.0720) (0.0381)

l7Ntemperature radiation -0.0614** -0.254***
(0.0278) (0.0550)

l7Nhumidity 0.116 0.0766
(0.0921) (0.0590)

l7Ntemperature humidity -0.0437 -0.0644**
(0.0387) (0.0315)

Time 0.00212 0.000341 0.00218* 0.00255***
(0.00171) (0.000823) (0.00124) (0.000610)

Constant 0.0349 0.261*** 0.0271 -0.0724
(0.153) (0.0937) (0.101) (0.0482)

Observations 4,680 4,680 4,680 4,680
R-squared 0.771 0.771
Number of countries 40 40 40 40

Robust standard errors in parentheses
*** p<0.01, ** p<0.05, * p<0.1
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Table 9: Interacted direct climatic variables effects on Covid-19 fatalities
(1. DFE) (1. MG) (2. DFE) (2.MG)

VARIABLES deathpop deathpop deathpop deathpop

l1deathpop 0.628*** 0.270*** 0.629*** 0.286***
(0.0755) (0.0443) (0.0757) (0.0465)

l14deathpop 0.0956** -0.00259 0.0953** -0.00333
(0.0395) (0.0216) (0.0397) (0.0226)

l14casepop 0.0103** 0.0179*** 0.0104** 0.0186***
(0.00441) (0.00294) (0.00443) (0.00301)

l28Ntemperature -0.00128 -0.00550** -0.00349 -0.00563
(0.00514) (0.00249) (0.00585) (0.00567)

l28Nradiation -0.00495 -0.00222 -0.00539 -0.00141
(0.00537) (0.00303) (0.00527) (0.00219)

l28Ntemperature radiation -0.00828** -0.0159***
(0.00387) (0.00300)

l28Ntemperature humidity -0.00239 -0.00269
(0.00353) (0.00208)

Time 0.000100 0.000217*** 0.000183 0.000260***
(0.000138) (6.88e-05) (0.000125) (7.09e-05)

Constant 0.0190 -0.0129 0.00744 -0.0166*
(0.0141) (0.00892) (0.0136) (0.00879)

Observations 4,120 4,120 4,120 4,120
R-squared 0.561 0.560
Number of countries 40 40 40 40

Robust standard errors in parentheses
*** p<0.01, ** p<0.05, * p<0.1
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5.3 Testing for thresholds effects in climate variables

Our baseline specifications assume that the statistical relationship between me-
teorological factors and Covid-19 outcomes is linear. In this section, we in-
vestigate the existence of thresholds effects by testing quadratic functions ie
whether the effect of climate on the number of infected cases or the fatality rate
is nonlinear. Indeed, as shown for instance by Xu et al. (2020) among others,
temperatures (when surpassing 25C for example) or ultraviolet level are likely
to exhibit nonlinear patterns.

Overall, our results reported in Table 10 (only DFE to save space) reveal
no threshold evidence except for the solar radiation variable. Concerning the
infected cases regressions, ie the short-run effects of weather, temperatures and
humidity have a significant and negative effect on the number of infected cases,
but their respective thresholds coefficients are insignificant. In addition, albeit
the solar radiation variable is not significant, we notice a significant and negative
threshold coefficient associated with this variable. This result thus outline the
existence of an inverted U-shaped pattern between solar radiation and casepop
meaning that the solar radiation would be able to reduce the number of infected
people only for high levels of radiation. Regarding the fatality rate regressions
(Table 11), solar radiation as well as temperatures exhibit significant threshold
effects. These results reveal that the solar - nonlinear - radiation effect has been
probably underestimated in previous literature. These nonlinearities might also
be explained by some others factors like the mobility of households and workers.
This is what we aim to investigate in the next section.
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Table 10: Direct climatic variables effects on Covid-19 cases: threshold estimates
(1. DFE) (2. DFE) (3. DFE) (4. DFE) (5. DFE)

VARIABLES casepop casepop casepop casepop casepop

l1casepop 0.708*** 0.704*** 0.711*** 0.712*** 0.712***
(0.0319) (0.0315) (0.0327) (0.0334) (0.0333)

l7casepop 0.210*** 0.212*** 0.209*** 0.210*** 0.210***
(0.0232) (0.0235) (0.0231) (0.0233) (0.0233)

l7Ntemperature -0.160**
(0.0698)

SQl7Ntemperature -0.0316
(0.0251)

l7Nradiation -0.0545
(0.0769)

SQl7Nradiation -0.136***
(0.0283)

l7Nhumidity -0.0927**
(0.0421)

SQl7Nhumidity -0.00295
(0.0201)

l7Nprecipitation -0.00532
(0.0254)

SQl7Nprecipitation -0.00589
(0.00687)

l7Nwindspeed -0.0260
(0.0413)

SQl7Nwindspeed -0.0120
(0.0244)

Time 0.00179 0.000798 0.000575 -0.000101 -0.000325
(0.00110) (0.00148) (0.000691) (0.000559) (0.000605)

Constant 0.0536 0.230 0.126 0.183** 0.210**
(0.101) (0.151) (0.0771) (0.0707) (0.0842)

Observations 4,680 4,680 4,680 4,680 4,680
R-squared 0.771 0.772 0.771 0.770 0.771
Number of countries 40 40 40 40 40

Robust standard errors in parentheses
*** p<0.01, ** p<0.05, * p<0.1

Note: SQ: Squared l7:lag 7
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Table 11: Direct climatic variables effects on Covid-19 fatalities: threshold es-
timates

(1. DFE) (2. DFE) (3. DFE) (4. DFE) (5. DFE)
VARIABLES deathpop deathpop deathpop deathpop deathpop

l1deathpop 0.628*** 0.625*** 0.629*** 0.627*** 0.626***
(0.0756) (0.0763) (0.0760) (0.0753) (0.0748)

l14deathpop 0.0939** 0.0946** 0.0928** 0.0934** 0.0888**
(0.0400) (0.0395) (0.0398) (0.0400) (0.0410)

l14casepop 0.0104** 0.00996** 0.0104** 0.0104** 0.0103**
(0.00441) (0.00430) (0.00441) (0.00442) (0.00435)

l28Ntemperature -0.00804
(0.00584)

SQl28Ntemperature -0.00647*
(0.00322)

l28Nradiation -0.00276
(0.00590)

SQl28Nradiation -0.0133**
(0.00538)

l28Nhumidity -0.00239
(0.00763)

SQl28Nhumidity 2.52e-05
(0.00218)

l7Nprecipitation -0.00736**
(0.00306)

SQl28Nprecipitation 0.000222
(0.000543)

l7Nwindspeed -0.0149**
(0.00702)

SQl28Nwindspeed -0.000258
(0.000655)

Time 0.000102 4.49e-05 7.47e-05 5.22e-05 -2.86e-05
(0.000101) (0.000138) (9.08e-05) (7.36e-05) (9.70e-05)

Constant 0.0193** 0.0321* 0.0166** 0.0192*** 0.0283***
(0.00766) (0.0177) (0.00691) (0.00569) (0.00671)

Observations 4,120 4,120 4,120 4,120 4,120
R-squared 0.560 0.561 0.560 0.561 0.562
Number of countries 40 40 40 40 40

Robust standard errors in parentheses
*** p<0.01, ** p<0.05, * p<0.1

Note: SQ: Squared l28:lag 28
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5.4 Indirect effects of climate through people’s mobility

In line with Wilson (2020) who assess the dynamic links between social distanc-
ing, weather and the Covid-19 spread for US counties with the local projection
method a la Jorda (2005), we think that mobility and climatic factors have to be
investigated simultaneously. As stressed by Wilson (2020), a substantial omit-
ted variable bias is likely to result. He found that mobility has a strong impact
on Covid-19 cases and deaths growth around 2-weeks ahead and outlines an
effect of weather (only temperatures, precipitations and snowfall are considered
in his study) on mobility. Some other recent studies have been interested by
the effect of mobility on the Covid-19 outbreak. Using a state panel and Google
Mobility Reports data in the vein of Wilson (2020) to forecast the dynamics of
the Covid-19 outbreak in the US, Unwin et al. (2020) estimate the impact of
mobility on the transmission rate of the virus using a Bayesian framework that
captures the impact that non-pharmaceutical interventions and other behaviour
changes have on the rate of transmission of SARS-CoV-2. Assuming a 14 lags
delay, Soucy et al. (2020) also estimated the impact of mobility on the growth
of infected people and found that a 10% decrease in mobility is associated with
a 14.6% decrease in the average daily growth rate and a -0.061 change in the in-
stantaneous reproductive number two weeks later, demonstrating that decreases
in urban mobility were predictive of declines in epidemic growth.

As shown in Tables 12-15, the mobility driving variable has a direct nega-
tive influence on Covid-19 outcomes in cases regressions but a positive or null
influence in the fatality rate regressions. Indeed, DFE estimates in Table 14
show that the mobility variable has a significant and positive correlation with
the Covid-19 fatality rate. As a consequence, an increasing mobility would
increase the fatality rate of the virus, confirming that lockdown policies have
been probably relevant to try to reduce the severity of the pandemic. Again,
this result can also be explained by the fact that the fatality rate captures a
different time horizon in comparison with the infected cases ratio. Additionally,
most countries in our sample implemented a lockdown policy: in the short-run,
the effect of this policy can be influenced by reverse causal endogeneity issues:
people were asked to reduce their mobility (driving or walking, for instance) due
to the strong diffusion of the virus. Thus, a reverse causality from the pandemic
to the mobility should be controlled for in the short-run. We control further
this potential endogeneity issue in the robustness check section (5.5.1 and 5.5.2).
In particular, our tests reveal that when the number of lags is increased (see
Tables 16 to 19), the sign of the mobility variable turns to be positive also in
the infected cases regression. In other words, increasing individual mobility is a
factor of virus spread: when more people are more mobile, the social distancing
is likely to be reduced and the transmission rate to increase.

When we look at the infected cases with a short-run 7 days delayed effect,
we find that the interaction term driving ∗ radiation is significantly positive
but other interaction terms are insignificant. In others words, during sunshine
periods, the mobility effect on the number of infected cases is strengthened by
this climatic factor within a 7 days action period. Nonetheless, these results
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are more significant when considering the fatality rate as a dependant variable
and a 28 days lagged period for the effect of climate and mobility variables.
This could be explained by the higher relevance of the fatality rate variable
in comparison to the infected cases one to capture the true dynamics of the
pandemics. We derive significant results mostly for solar radiation although
temperatures should also be considered.

Climatic factors - solar radiation here - has always a negative direct coeffi-
cient since solar radiations are expected to physically reduce the resistance of
the virus. The interaction term between solar radiation and mobility is positive
and shows that both variables strengthen each other. Since climate is per se
purely exogenous, climate tend to strengthen the effect of the mobility on the
virus spread. The net effect from climate on Covid-19 outbreak will thus result
from its direct negative effect and from its indirect positive effect resulting from
the interaction between mobility and climate variables. Tables 12 and 13 show
that there is a direct negative effect of the mobility on the infected cases ratio
- we probably capture the lockdown period - but there is an indirect effect of
solar radiation on casepop through the interaction between solar radiation and
mobility: a highest sunshine duration is associated with a reduced number of
infected cases. A combination of increasing mobility and solar radiation will
lead to an increasing number of infected cases. Tables 14 and 15 reveal the
existence of a direct positive effect of the mobility variable on the fatality rate
(only DFE estimates) but a direct combined negative effect of temperatures
and solar radiation on the fatality rate through the mobility. As a consequence,
high levels of temperatures and sunshine are likely to reduce the fatality rate by
physical channels. However, this potential reduction is however partially com-
pensated by a significant positive effect stemming from the interaction between
climatic variables - temperatures and solar radiation - and the mobility variable,
on Covid-19 fatality rate.
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Table 12: Indirect climatic effects on Covid-19 cases via social mobility: DFE
(1. DFE) (2. DFE) (3. DFE) (4. DFE) (5. DFE)

VARIABLES casepop casepop casepop casepop casepop

l1casepop 0.696*** 0.691*** 0.698*** 0.699*** 0.699***
(0.0332) (0.0336) (0.0335) (0.0342) (0.0341)

l7casepop 0.199*** 0.203*** 0.198*** 0.199*** 0.198***
(0.0234) (0.0252) (0.0236) (0.0237) (0.0245)

l7Ntemperature -0.254**
(0.111)

l7LDdriving -0.00483** -0.00624*** -0.00494** -0.00515*** -0.00530***
(0.00194) (0.00204) (0.00184) (0.00179) (0.00186)

l7Intdriving l7Ntemperature 0.00121
(0.00130)

l7Nradiation -0.466**
(0.191)

l7Intdriving l7Nradiation 0.00429**
(0.00202)

l7Nhumidity -0.112**
(0.0551)

l7Intdriving l7Nhumidity 0.000457
(0.000811)

l7Nprecipitation -0.0738
(0.0459)

l7Intdriving l7Nprecipitation 0.000520
(0.000543)

l7Nwindspeed -0.0282
(0.113)

l7Intdriving l7Nwindspeed -0.000289
(0.00115)

Time -0.000361 -0.00130 -0.00175 -0.00246* -0.00279**
(0.00179) (0.00243) (0.00136) (0.00128) (0.00131)

Constant 0.657* 0.907** 0.770** 0.843*** 0.890***
(0.336) (0.397) (0.293) (0.282) (0.293)

Observations 4,370 4,370 4,370 4,370 4,370
R-squared 0.771 0.772 0.771 0.771 0.771
Number of countries 38 38 38 38 38

Robust standard errors in parentheses
*** p<0.01, ** p<0.05, * p<0.1
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Table 13: Indirect climatic effects on Covid-19 cases via social mobility: MG
(1. MG) (2. MG) (3. MG) (4. MG) (5. MG)

VARIABLES casepop casepop casepop casepop casepop

l1casepop 0.477*** 0.476*** 0.487*** 0.506*** 0.509***
(0.0414) (0.0394) (0.0416) (0.0405) (0.0409)

l7casepop 0.158*** 0.163*** 0.156*** 0.160*** 0.166***
(0.0233) (0.0207) (0.0218) (0.0232) (0.0227)

l7Ntemperature -0.282*
(0.150)

l7LDdriving -0.0136*** -0.0141*** -0.0113*** -0.0127*** -0.0122***
(0.00294) (0.00295) (0.00262) (0.00244) (0.00229)

l7Intdriving l7Ntemperature 0.00260
(0.00162)

l7Nradiation 0.0802
(0.109)

l7Intdriving l7Nradiation 0.000769
(0.00155)

l7Nhumidity -0.109
(0.120)

l7Intdriving l7Nhumidity 0.00191
(0.00126)

l7Nprecipitation -0.0903*
(0.0533)

l7Intdriving l7Nprecipitation 0.000677
(0.000504)

l7Nwindspeed 0.00375
(0.0477)

l7Intdriving l7Nwindspeed -0.000396
(0.000561)

Time -0.00171 -0.00354 -0.00237* -0.00223* -0.00270**
(0.00126) (0.00223) (0.00128) (0.00125) (0.00124)

Constant 1.483*** 2.044*** 1.202*** 1.538*** 1.569***
(0.327) (0.440) (0.267) (0.309) (0.297)

Observations 4,370 4,370 4,370 4,370 4,370
Number of countries 38 38 38 38 38

Standard errors in parentheses
*** p<0.01, ** p<0.05, * p<0.1
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Table 14: Indirect climatic effects on Covid-19 fatalities via social mobility:
DFE

(1. DFE) (2. DFE) (3. DFE) (4. DFE) (5. DFE)
VARIABLES deathpop deathpop deathpop deathpop deathpop

l1deathpop 0.623*** 0.621*** 0.625*** 0.626*** 0.623***
(0.0774) (0.0770) (0.0775) (0.0764) (0.0773)

l14deathpop 0.106** 0.109** 0.105** 0.108** 0.109**
(0.0420) (0.0412) (0.0416) (0.0413) (0.0421)

l14casepop 0.0109** 0.0105** 0.0111** 0.0112** 0.0111**
(0.00470) (0.00461) (0.00476) (0.00481) (0.00477)

l28Ntemperature -0.0326**
(0.0148)

l28LDdriving 0.000659** 0.000583** 0.000648** 0.000646** 0.000642**
(0.000270) (0.000255) (0.000276) (0.000273) (0.000274)

l28Intdriving l28Ntemperature 0.000255*
(0.000129)

l28Nradiation -0.0456***
(0.0148)

l28Intdriving l28Nradiation 0.000440**
(0.000166)

l28Nhumidity -0.0155
(0.0143)

l28Intdriving l28Nhumidity 0.000123
(0.000108)

l28Nprecipitation 0.00661
(0.00629)

l28Intdriving l28Nprecipitation -3.29e-05
(6.90e-05)

l28Nwindspeed 0.0239*
(0.0132)

l28Intdriving l28Nwindspeed -0.000163
(0.000122)

Time 0.000716** 0.000718*** 0.000603** 0.000580** 0.000630**
(0.000272) (0.000227) (0.000256) (0.000230) (0.000243)

Constant -0.0985** -0.0866** -0.0881* -0.0865* -0.0902*
(0.0473) (0.0413) (0.0471) (0.0447) (0.0460)

Observations 3,914 3,914 3,914 3,914 3,914
R-squared 0.563 0.564 0.563 0.563 0.564
Number of countries 38 38 38 38 38

Robust standard errors in parentheses
*** p<0.01, ** p<0.05, * p<0.1
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Table 15: Indirect climatic effects on Covid-19 fatalities via social mobility: MG
(1. MG) (2. MG) (3. MG) (4. MG) (5. MG)

VARIABLES deathpop deathpop deathpop deathpop deathpop

l1deathpop 0.244*** 0.263*** 0.253*** 0.283*** 0.274***
(0.0466) (0.0434) (0.0470) (0.0451) (0.0453)

l14deathpop 0.00701 0.0177 0.00369 0.0191 0.0170
(0.0310) (0.0288) (0.0279) (0.0289) (0.0285)

l14casepop 0.0189*** 0.0194*** 0.0192*** 0.0202*** 0.0195***
(0.00292) (0.00304) (0.00295) (0.00311) (0.00295)

l28Ntemperature -0.0224**
(0.0113)

l28LDdriving -6.00e-05 2.95e-05 -6.72e-05 -2.68e-06 -0.000102
(0.000103) (8.30e-05) (7.09e-05) (7.32e-05) (8.55e-05)

l28Intdriving l28Ntemperature 0.000197
(0.000124)

l28Nradiation -0.0273***
(0.00856)

l28Intdriving l28Nradiation 0.000352***
(0.000116)

l28Nhumidity -0.0124
(0.00876)

l28Intdriving l28Nhumidity -2.15e-05
(0.000102)

l28Nprecipitation 0.000268
(0.00522)

l28Intdriving l28Nprecipitation 1.10e-05
(6.25e-05)

l28Nwindspeed 0.0138***
(0.00524)

l28Intdriving l28Nwindspeed -6.66e-05
(4.36e-05)

Time 0.000150*** 0.000145* 0.000183*** 0.000157*** 0.000165***
(4.81e-05) (7.70e-05) (5.77e-05) (4.46e-05) (3.98e-05)

Constant -0.00692 -0.00625 -0.00235 -0.00867 0.00602
(0.0129) (0.0108) (0.0127) (0.0105) (0.00890)

Observations 3,914 3,914 3,914 3,914 3,914
Number of countries 38 38 38 38 38

Standard errors in parentheses
*** p<0.01, ** p<0.05, * p<0.1
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6 Robustness Checks

In this section, we present the main results from our robustness checks. To save
space, we only report the results associated with the key regressions in line with
our previous estimates. However, robustness checks have been performed for
all specifications (direct climatic effects, interacted climatic variables, quadratic
terms, different lags choices, and indirect climatic effects through mobility) and
can be reproduced with the associated STATA replication code attached to the
paper. In a general manner, our tests confirm the strong robustness of the key
results displayed in previous sections.

6.1 Increasing lags: incubation period and delayed effects

When we augment the number of lags, we implicitly increase the delayed effects
from climate to Covid-19 outcomes. As a consequence, we control for the dy-
namics of the epidemics and take into account the fact, especially for the fatality
rate, that the impact of climatic factors has a very delayed origin: a huge meet-
ing, concert, social event can produce some dramatic effects only three, four
weeks later or even more and might result in so-called Covid-19 clusters. In
addition, more lags allow a better consideration of count biases as we yet previ-
ously discussed. For instance, count delay has been sometimes estimated to 10
days (between real infection and official recording in some countries). Finally,
the delay between infection and potential disease is uncertain: most medical
studies report a median incubation period for COVID-19 of approximately 5
days (see for instance Lauer et al., 2020) but considering consolidation period,
14 or 28 lags are alternatives. In Tables 16 to 19, we present increasing lags re-
gressions. 28 lags have been chosen for casepop and 42 lags have been considered
for deathpop corresponding to a one and half month period between real infec-
tion and deaths recording in this case. Longer periods, until two months, have
also been considered. Although our sample has an important time dimension,
it is however difficult to go beyond this lag in order to get robust estimations.
Tables 16 to 19 outline that the mobility variable has a significantly positive
effect on the Covid-19 outcomes when a period of 28 or 42 lags is considered.
The interaction terms are still positive for both solar radiation and tempera-
tures specifications but they are more significant for MG estimates concerning
infected cases and only in MG estimates for the fatality rate estimates.

6.2 Endogeneity issues: System GMM estimates

In tables 20 to 22, we control for the potential endogeneity of lagged variables
Covid-19 variables and mobility by performing System GMM estimates. The
following Syst-GMM estimates have been implemented by assuming, for the
infected cases regression, l1casepop (one lagged term of casepop) as predeter-
mined, l7casepop, l7LDdriving and interaction terms as endogenous, lagged
climatic variables and the deterministic trend as exogenous. The same method
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Table 16: Direct climatic effects on Covid-19 cases: 28 lags delay (1)
(1. DFE) (2. DFE) (3. DFE) (4. DFE) (5. DFE)

VARIABLES casepop casepop casepop casepop casepop

l1casepop 0.640*** 0.834*** 0.834*** 0.835*** 0.835***
(0.0363) (0.0230) (0.0237) (0.0240) (0.0241)

l14casepop 0.113*** 0.0511*** 0.0521*** 0.0501*** 0.0515***
(0.0236) (0.0116) (0.0128) (0.0137) (0.0136)

l28Ntemperature -0.0841
(0.0529)

l28driving 0.00617*** 0.00574*** 0.00649*** 0.00637*** 0.00636***
(0.00188) (0.00166) (0.00150) (0.00157) (0.00148)

l28Intdriving l28Ntemperature 0.00108*
(0.000640)

l28Nradiation 0.0427
(0.113)

l28Intdriving l28Nradiation -0.00128
(0.00128)

l28Nhumidity 0.185**
(0.0844)

l28Intdriving l28Nhumidity -0.00216**
(0.00102)

l28Nprecipitation -0.0585
(0.0475)

l28Intdriving l28Nprecipitation 0.00117**
(0.000519)

l28Nwindspeed -0.0640
(0.0784)

l28Intdriving l28Nwindspeed 0.00120
(0.000811)

Time 0.00622*** 0.00511*** 0.00519*** 0.00518*** 0.00512***
(0.000835) (0.00102) (0.00107) (0.00108) (0.00107)

Constant -0.760*** -0.713*** -0.774*** -0.752*** -0.754***
(0.190) (0.187) (0.183) (0.188) (0.181)

Observations 4,622 4,622 4,622 4,622 4,622
R-squared 0.762 0.762 0.762 0.762
Number of countries 42 42 42 42 42

Standard errors in parentheses
*** p<0.01, ** p<0.05, * p<0.1
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Table 17: Direct climatic effects on Covid-19 cases: 28 lags delay (2)
(1. MG) (2. MG) (3. MG) (4. MG) (5. MG)

VARIABLES casepop casepop casepop casepop casepop

l1casepop 0.640*** 0.637*** 0.650*** 0.665*** 0.659***
(0.0363) (0.0367) (0.0354) (0.0341) (0.0345)

l14casepop 0.113*** 0.111*** 0.110*** 0.103*** 0.106***
(0.0236) (0.0244) (0.0237) (0.0236) (0.0232)

l28Ntemperature -0.0841
(0.0529)

l28driving 0.00617*** 0.00736*** 0.00508*** 0.00600*** 0.00900***
(0.00188) (0.00162) (0.00135) (0.00145) (0.00183)

l28Intdriving l28Ntemperature 0.00108*
(0.000640)

l28Nradiation -0.263***
(0.0848)

l28Intdriving l28Nradiation 0.00283***
(0.000856)

l28Nhumidity -0.0112
(0.0565)

l28Intdriving l28Nhumidity -0.000135
(0.000601)

l28Nprecipitation 0.0562
(0.0349)

l28Intdriving l28Nprecipitation -0.000370
(0.000339)

l28Nwindspeed 0.0571
(0.0504)

l28Intdriving l28Nwindspeed -0.000273
(0.000622)

Time 0.00622*** 0.00511*** 0.00519*** 0.00518*** 0.00512***
(0.000835) (0.00102) (0.00107) (0.00108) (0.00107)

Constant -0.760*** -0.893*** -0.770*** -0.718*** -1.022***
(0.190) (0.178) (0.149) (0.154) (0.202)

Observations 4,622 4,622 4,622 4,622 4,622
Number of countries 42 42 42 42 42

Standard errors in parentheses
*** p<0.01, ** p<0.05, * p<0.1
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Table 18: Direct climatic effects on Covid-19 fatalities: 42 lags delay (1)
(1. DFE) (2. DFE) (3. DFE) (4. DFE) (5. DFE)

VARIABLES deathpop deathpop deathpop deathpop deathpop

l1deathpop 0.589*** 0.587*** 0.590*** 0.588*** 0.586***
(0.0795) (0.0794) (0.0794) (0.0789) (0.0784)

l14deathpop 0.113*** 0.116*** 0.115*** 0.115*** 0.118***
(0.0398) (0.0397) (0.0402) (0.0403) (0.0393)

l14casepop 0.00821* 0.00788* 0.00816* 0.00821* 0.00818*
(0.00441) (0.00436) (0.00446) (0.00446) (0.00451)

l42Ntemperature -0.0113
(0.0131)

l42LDdriving 0.00148*** 0.00146*** 0.00146*** 0.00147*** 0.00147***
(0.000383) (0.000371) (0.000377) (0.000373) (0.000366)

l42Intdriving l42Ntemperature 3.65e-05
(0.000154)

l42Nradiation -0.0327
(0.0206)

l42Intdriving l42Nradiation 0.000148
(0.000229)

l42Nhumidity 0.00885
(0.00808)

l42Intdriving l42Nhumidity -9.30e-05
(0.000105)

l42Nprecipitation 0.0190**
(0.00924)

l42Intdriving l42Nprecipitation -0.000127
(0.000116)

l42Nwindspeed 0.000528
(0.0129)

l42Intdriving l42Nwindspeed 0.000117
(0.000162)

Time 0.00145*** 0.00173*** 0.00138*** 0.00140*** 0.00139***
(0.000406) (0.000465) (0.000378) (0.000385) (0.000376)

Constant -0.242*** -0.269*** -0.232*** -0.234*** -0.235***
(0.0741) (0.0782) (0.0700) (0.0698) (0.0684)

Observations 3,572 3,572 3,572 3,572 3,572
R-squared 0.541 0.542 0.541 0.541 0.542
Number of countries 38 38 38 38 38

Robust standard errors in parentheses
*** p<0.01, ** p<0.05, * p<0.1
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Table 19: Direct and indirect climatic effects on Covid-19 fatalities: 42 lags
delay (2)

(1. MG) (2. MG) (3. MG) (4. MG) (5. MG)
VARIABLES deathpop deathpop deathpop deathpop deathpop

l1deathpop 0.209*** 0.206*** 0.212*** 0.229*** 0.215***
(0.0369) (0.0383) (0.0370) (0.0371) (0.0370)

l14deathpop 0.0580** 0.0516* 0.0603** 0.0596** 0.0587**
(0.0269) (0.0298) (0.0262) (0.0287) (0.0276)

l14casepop 0.0168*** 0.0174*** 0.0174*** 0.0176*** 0.0193***
(0.00332) (0.00358) (0.00337) (0.00333) (0.00372)

l42Ntemperature -0.0225***
(0.00787)

l42LDdriving 0.000993*** 0.000425*** 0.000637*** 0.000366*** 0.000515***
(0.000326) (0.000134) (0.000196) (8.05e-05) (0.000118)

l42Intdriving l42Ntemperature 0.000276***
(9.83e-05)

l42Nradiation -0.0238***
(0.00769)

l42Intdriving l42Nradiation 0.000346***
(0.000101)

l42Nhumidity -0.00261
(0.00923)

l42Intdriving l42Nhumidity 3.80e-05
(0.000110)

l42Nprecipitation 0.0128*
(0.00676)

l42Intdriving l42Nprecipitation -6.61e-05
(5.24e-05)

l42Nwindspeed 0.00342
(0.00434)

l42Intdriving l42Nwindspeed -3.18e-05
(4.47e-05)

Time 0.000499*** 0.000653*** 0.000503*** 0.000501*** 0.000449***
(0.000108) (0.000133) (0.000111) (8.43e-05) (8.30e-05)

Constant -0.103*** -0.0888*** -0.0864*** -0.0661*** -0.0845***
(0.0304) (0.0193) (0.0219) (0.0127) (0.0173)

Observations 3,572 3,572 3,572 3,572 3,572
Number of countries 38 38 38 38 38

Standard errors in parentheses
*** p<0.01, ** p<0.05, * p<0.1
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Table 20: Direct climatic effects on Covid-19 cases: System-GMM
(1) (2) (3) (4) (5)

VARIABLES casepop casepop casepop casepop casepop

l1casepop 0.726*** 0.726*** 0.727*** 0.728*** 0.728***
(0.0334) (0.0332) (0.0331) (0.0332) (0.0331)

l7casepop 0.215*** 0.216*** 0.215*** 0.216*** 0.215***
(0.0246) (0.0250) (0.0247) (0.0251) (0.0251)

l7Ntemperature -0.0441**
(0.0207)

l7Nradiation -0.0569*
(0.0332)

l7Nhumidity -0.0263*
(0.0141)

l7Nprecipitation -0.00783
(0.0118)

l7Nwindspeed -0.00503
(0.0193)

Time 0.000172 0.000486 -0.000174 -0.000391 -0.000402
(0.000548) (0.000681) (0.000525) (0.000511) (0.000521)

Constant 0.0916** 0.0685 0.118** 0.130** 0.132**
(0.0467) (0.0464) (0.0502) (0.0531) (0.0536)

Observations 4,680 4,680 4,680 4,680 4,680
Number of countries 40 40 40 40 40

Standard errors in parentheses
*** p<0.01, ** p<0.05, * p<0.1

has been applied for the fatality rate model with l28deathpop, l14casepop,
l28LDdriving and interaction terms assumed as endogenous.

We only report here the most important regressions to show that our main
results are robust to endogeneity of mobility and lagged Covid-19 outcomes
variables, but all GMM estimates (with also quadratic terms and climatic in-
teraction terms for instance) and related system GMM statistics are available
upon request with the associated STATA replication code. In most cases, clas-
sical Syst-GMM tests (AR(1), AR(2) and Hansen tests) confirm the validity of
our different sets of instruments.

It is interesting to note that System-GMM estimates outline the important
role of solar radiation in addition to temperatures; they are both direct and
indirect (through mobility) drivers of Covid-19 outcomes. Again, a simultaneous
increase of temperatures and mobility, as well as solar radiation and mobility,
lead to a significant increase in casespop and deathpop.
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Table 21: Direct and indirect climatic effects on Covid-19 cases: System-GMM
(1) (2) (3) (4) (5)

VARIABLES casepop casepop casepop casepop casepop

l1casepop 0.660*** 0.626*** 0.665*** 0.657*** 0.670***
(0.0381) (0.0509) (0.0362) (0.0365) (0.0336)

l7casepop 0.167*** 0.204*** 0.169*** 0.173*** 0.183***
(0.0352) (0.0430) (0.0373) (0.0432) (0.0391)

l7Ntemperature -1.654***
(0.512)

l7LDdriving -0.0221*** -0.0159** -0.0254*** -0.0247** -0.0258***
(0.00664) (0.00693) (0.00929) (0.0122) (0.00770)

l7Intdriving l7Ntemperature 0.0185***
(0.00555)

l7Nradiation -3.414**
(1.608)

l7Intdriving l7Nradiation 0.0407**
(0.0196)

l7Nhumidity -0.914*
(0.509)

l7Intdriving l7Nhumidity 0.0105
(0.00654)

l7Nprecipitation -3.501**
(1.479)

l7Intdriving l7Nprecipitation 0.0415**
(0.0171)

l7Nwindspeed 0.290
(0.589)

l7Intdriving l7Nwindspeed -0.00306
(0.00659)

Time -0.00861** -0.00747 -0.0124** -0.0109 -0.0138**
(0.00425) (0.00558) (0.00573) (0.00705) (0.00617)

Constant 2.997*** 2.852** 3.450*** 3.114** 3.488***
(0.905) (1.136) (1.249) (1.572) (1.091)

AR(1) p.value 0.008 0.006 0.008 0.004 0.008
AR(2) p.value 0.928 0.848 0.961 0.736 0.958
Hansen p.value 0.152 0.232 0.097 0.286 0.189

Observations 4,370 4,370 4,370 4,370 4,370
Number of countries 38 38 38 38 38

Standard errors in parentheses
*** p<0.01, ** p<0.05, * p<0.1
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Table 22: Direct and indirect climatic effects on Covid-19 fatalities: System-
GMM

(1) (2) (3) (4) (5)
VARIABLES deathpop deathpop deathpop deathpop deathpop

l1deathpop 0.408*** 0.384*** 0.431*** 0.419*** 0.406***
(0.0913) (0.0918) (0.0888) (0.0875) (0.0836)

l14deathpop 0.216*** 0.264*** 0.206*** 0.215*** 0.249***
(0.0492) (0.0504) (0.0496) (0.0474) (0.0373)

l14casepop 0.0156** 0.0136** 0.0165** 0.0167** 0.0144***
(0.00662) (0.00689) (0.00724) (0.00693) (0.00531)

l28Ntemperature -0.168*
(0.0963)

l28LDdriving 0.000458 0.000607 0.000259 0.000210 0.000502
(0.000617) (0.000873) (0.000462) (0.000444) (0.000525)

l28Intdriving l28Ntemperature 0.00195*
(0.00109)

l28Nradiation -0.248**
(0.103)

l28Intdriving l28Nradiation 0.00273**
(0.00120)

l28Nhumidity -0.0809
(0.0616)

l28Intdriving l28Nhumidity 0.00101
(0.000740)

l28Nprecipitation 0.0330
(0.0829)

l28Intdriving l28Nprecipitation -0.000361
(0.000992)

l28Nwindspeed -0.0828
(0.0724)

l28Intdriving l28Nwindspeed 0.00105
(0.000827)

Time 0.000323 0.000887* 0.000204 0.000148 0.000129
(0.000344) (0.000501) (0.000230) (0.000243) (0.000233)

Constant -0.0321 -0.0821 -0.0176 -0.0154 -0.0425
(0.0635) (0.0899) (0.0561) (0.0594) (0.0656)

AR(1) p.value 0.015 0.015 0.013 0.014 0.014
AR(2) p.value 0.416 0.382 0.482 0.450 0.378
Hansen p.value 0.156 0.612 0.202 0.379 0.553

Observations 3,914 3,914 3,914 3,914 3,914
Number of countries 38 38 38 38 38

Standard errors in parentheses
*** p<0.01, ** p<0.05, * p<0.1
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6.3 Endogeneity issues: introducing testing per 100k in-
habitants as a supplementary control

In tables 23 to 26, when we control for the potential endogeneity of the dynamics
of Covid-19 outcomes by adding in our regressions the corresponding lag of the
number of testing per 100k inhabitants (source: from the DELVE Global Covid-
19 Dataset), we find very similar results to those displayed in previous sections.
For example, the positive interaction between temperatures and solar radiations
and the positive interactions between solar radiation and mobility are confirmed
for DFE estimates (Tables 23 and 25). In addition, the testing coefficient is
significantly negative: a policy control by increasing Covid-19 testing for most
people is thus able to reduce the number of Covid-19 outcomes.

6.4 Time span changes

All countries did not start the epidemic wave in the same time. This is why we
previously assumed that samples start on February 1st 2020 for infected cases
and on February, 15th for the fatality rate. In this subsection, we reestimate all
regressions by considering all sample range and not only periods since Febru-
ary 1st 2020 for infected cases and from February, 15th for the fatality rate.
Thus, estimates are computed with data starting in the January 1st 2020 for all
countries. The resulting new sample is then marginally augmented. Table 27
indicates, once again, no significant differences with previous key estimates.

6.5 Considering only OECD countries

In this subsection, we consider a subset of countries and only estimate our
models with OECD countries. Tables 28 and 29 show that there is no sample
bias in our estimations and confirm the role of solar radiation as negative driver.
We only present results for preferred specifications with mobility for deathpop.

6.6 Week-end effects

In this last subsection, we assume that week-end periods could lead to different
mobility behaviours than the others five days of the week. Thus, in Tables 30 and
31, we introduce a dummy variable l28week end to take into account potential
changes in human behaviors during the week-ends. For instance, people have
more time and do not work during the week-ends in most countries of our
sample; as a result, they are likely to more spread the virus by increasing the
number of meeting with both family and friends of their network during these
periods. This can modify the robustness of our results. Results in Tables 30 and
31 seem to show no significant differences in our key results when this week-end
effect is considered.
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Table 23: Climatic effects on Covid-19 cases: introducing testing
(1 DFE) (2 DFE) (3 DFE) (4 DFE) (5 DFE)

VARIABLES casepop casepop casepop casepop casepop

l1casepop 0.629*** 0.624*** 0.632*** 0.639*** 0.637***
(0.0616) (0.0613) (0.0620) (0.0614) (0.0619)

l7casepop 0.181*** 0.186*** 0.181*** 0.183*** 0.184***
(0.0210) (0.0204) (0.0205) (0.0209) (0.0206)

l7Ntemperature -0.445***
(0.120)

l7LDdriving -0.00313 -0.00497 -0.00271 -0.00333 -0.00333
(0.00350) (0.00336) (0.00341) (0.00341) (0.00335)

l7Intdriving l7Ntemperature 0.00499***
(0.00149)

l7Nradiation -0.601***
(0.130)

l7Intdriving l7Nradiation 0.00796***
(0.00201)

l7Nhumidity -0.346***
(0.104)

l7Intdriving l7Nhumidity 0.00412***
(0.00133)

l7Nprecipitation -0.0881
(0.0709)

l7Intdriving l7Nprecipitation 0.000778
(0.00105)

l7Nwindspeed 0.0843
(0.126)

l7Intdriving l7Nwindspeed -0.00228
(0.00189)

Time 0.00820* 0.00548 0.00727* 0.00574 0.00512
(0.00445) (0.00405) (0.00398) (0.00363) (0.00373)

l7tests per100k -0.000283*** -0.000285*** -0.000273*** -0.000258*** -0.000262***
(7.31e-05) (7.94e-05) (7.06e-05) (6.48e-05) (6.97e-05)

Constant 0.306 0.746 0.326 0.451 0.537
(0.553) (0.530) (0.472) (0.420) (0.444)

Observations 2,828 2,828 2,828 2,828 2,828
R-squared 0.716 0.717 0.715 0.714 0.715
Number of countries 38 38 38 38 38

Robust standard errors in parentheses
*** p<0.01, ** p<0.05, * p<0.1
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Table 24: Climatic effects on Covid-19 cases: introducing testing (2)
(1. MG) (2. MG) (3. MG) (4. MG) (5. MG)

VARIABLES casepop casepop casepop casepop casepop

l1casepop 0.247*** 0.269*** 0.261*** 0.290*** 0.285***
(0.0426) (0.0402) (0.0413) (0.0395) (0.0405)

l7casepop 0.132*** 0.139*** 0.131*** 0.138*** 0.143***
(0.0217) (0.0206) (0.0199) (0.0217) (0.0213)

l7Ntemperature -0.406**
(0.182)

l7LDdriving -0.0116** -0.0136*** -0.0100** -0.00823*** -0.00980***
(0.00456) (0.00408) (0.00473) (0.00305) (0.00320)

l7Intdriving l7Ntemperature 0.00843***
(0.00311)

l7Nradiation -0.179
(0.128)

l7Intdriving l7Nradiation 0.00470**
(0.00196)

l7Nhumidity -0.242
(0.165)

l7Intdriving l7Nhumidity 0.00718***
(0.00248)

l7Nprecipitation -0.0951
(0.0799)

l7Intdriving l7Nprecipitation 0.000884
(0.00129)

l7Nwindspeed 0.0963
(0.103)

l7Intdriving l7Nwindspeed -0.00201*
(0.00113)

Time 0.00458 0.00319 0.00581 0.00586 8.69e-05
(0.0122) (0.0120) (0.0119) (0.0126) (0.0133)

l7tests per100k -0.000763** -0.000623** -0.000771** -0.000701** -0.000642**
(0.000368) (0.000283) (0.000351) (0.000340) (0.000299)

Constant 0.971 1.158 0.635 0.718 1.323
(1.301) (1.281) (1.162) (1.283) (1.416)

Observations 2,835 2,835 2,835 2,835 2,835
Number of countries 38 38 38 38 38

Standard errors in parentheses
*** p<0.01, ** p<0.05, * p<0.1
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Table 25: Climatic effects on Covid-19 fatalities: introducing testing
(1 DFE) (2 DFE) (3 DFE) (4 DFE) (5 DFE)

VARIABLES deathpop deathpop deathpop deathpop deathpop

l1deathpop 0.460*** 0.462*** 0.463*** 0.468*** 0.462***
(0.109) (0.109) (0.110) (0.108) (0.109)

l14deathpop 0.0493 0.0529 0.0507 0.0556 0.0579
(0.0612) (0.0598) (0.0612) (0.0601) (0.0618)

l14casepop 0.0177** 0.0174** 0.0180** 0.0186** 0.0189**
(0.00700) (0.00716) (0.00707) (0.00733) (0.00731)

l28Ntemperature -0.0566**
(0.0278)

l28LDdriving 0.000751 0.000603 0.000766 0.000598 0.000668
(0.000462) (0.000411) (0.000479) (0.000419) (0.000422)

l28Intdriving l28Ntemperature 0.000933*
(0.000473)

l28Nradiation -0.0598***
(0.0220)

l28Intdriving l28Nradiation 0.000733*
(0.000372)

l28Nhumidity -0.0453
(0.0317)

l28Intdriving l28Nhumidity 0.000838*
(0.000478)

l28Nprecipitation 0.00547
(0.00920)

l28Intdriving l28Nprecipitation -3.22e-05
(0.000222)

l28Nwindspeed 0.0274
(0.0202)

l28Intdriving l28Nwindspeed -7.47e-05
(0.000299)

Time -0.00181** -0.00174* -0.00186** -0.00201** -0.00182*
(0.000843) (0.000928) (0.000881) (0.000959) (0.000906)

l28tests per100k 1.24e-05 1.42e-05 1.49e-05 1.89e-05* 1.99e-05**
(8.85e-06) (9.17e-06) (9.09e-06) (9.95e-06) (9.68e-06)

Constant 0.234** 0.236** 0.234** 0.248** 0.221*
(0.104) (0.116) (0.108) (0.118) (0.111)

Observations 2,113 2,113 2,113 2,113 2,113
R-squared 0.344 0.343 0.343 0.340 0.343
Number of countries 38 38 38 38 38

Robust standard errors in parentheses
*** p<0.01, ** p<0.05, * p<0.1
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Table 26: Climatic effects on Covid-19 fatalities: introducing testing (2)
(1. MG) (2. MG) (3. MG) (4. MG) (5. MG)

VARIABLES deathpop deathpop deathpop l1deathpop deathpop

l1deathpop 0.0604* 0.0557** 0.0453 0.0671**
(0.0330) (0.0273) (0.0308) (0.0279)

l14deathpop 0.00308 0.0305 0.0298 -0.0319 0.0217
(0.0226) (0.0276) (0.0279) (0.0225) (0.0267)

l14casepop 0.00984*** 0.00759*** 0.00948*** 0.0119*** 0.00687***
(0.00308) (0.00274) (0.00290) (0.00281) (0.00244)

l28Ntemperature -0.00286
(0.00357)

l28Nradiation -0.000182 -0.00800
(0.00273) (0.00606)

l28Ntemperature radiation -0.00281
(0.00262)

l28LDdriving -5.88e-05 -0.000105 -7.28e-05 8.28e-05
(0.000152) (8.09e-05) (8.59e-05) (9.04e-05)

l28Intdriving l28Nradiation 0.000189*
(9.87e-05)

l28Nhumidity -0.00489
(0.00510)

l28Intdriving l28Nhumidity 0.000166*
(8.77e-05)

l28Nprecipitation -0.0107*
(0.00588)

l28Intdriving l28Nprecipitation 0.000157*
(9.29e-05)

l28Nwindspeed 0.0110**
(0.00506)

l28Intdriving l28Nwindspeed -0.000135
(9.58e-05)

Time -7.47e-05 -7.46e-05 5.70e-05 -0.000113 -7.70e-05
(0.000121) (0.000106) (0.000111) (0.000105) (8.84e-05)

l28tests per100k -2.42e-05*** -2.26e-05*** -2.56e-05*** -2.39e-05*** -2.00e-05***
(7.49e-06) (6.99e-06) (8.50e-06) (6.25e-06) (6.47e-06)

Constant 0.0819*** 0.0951*** 0.0817*** 0.0932*** 0.0857***
(0.0206) (0.0274) (0.0218) (0.0225) (0.0236)

Observations 2,747 2,631 2,631 2,631 2,631
Number of countries 42 42 42 42 42

Standard errors in parentheses
*** p<0.01, ** p<0.05, * p<0.1
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Table 27: Climatic effects on Covid-19: estimates from 1st January
(1. DFE) (2. DFE) (3. DFE) (4. DFE) (5. DFE)

VARIABLES deathpop deathpop deathpop deathpop deathpop

l1deathpop 0.248*** 0.265*** 0.256*** 0.286*** 0.279***
(0.0465) (0.0435) (0.0471) (0.0451) (0.0452)

l14deathpop 0.00657 0.0171 0.00228 0.0188 0.0130
(0.0313) (0.0293) (0.0278) (0.0297) (0.0280)

l14casepop 0.0186*** 0.0190*** 0.0193*** 0.0193*** 0.0189***
(0.00288) (0.00298) (0.00295) (0.00297) (0.00286)

l28Ntemperature -0.0218*
(0.0111)

l28LDdriving -5.58e-05 3.90e-05 -5.99e-05 -5.61e-06 -8.18e-05
(0.000107) (8.41e-05) (7.41e-05) (7.35e-05) (7.29e-05)

l28Intdriving l28Ntemperature 0.000189
(0.000119)

l28Nradiation -0.0262***
(0.00823)

l28Intdriving l28Nradiation 0.000325***
(0.000109)

l28Nhumidity -0.0123
(0.00941)

l28Intdriving l28Nhumidity -3.20e-05
(0.000105)

l28Nprecipitation 0.000769
(0.00528)

l28Intdriving l28Nprecipitation -1.26e-06
(6.21e-05)

l28Nwindspeed 0.0151***
(0.00528)

l28Intdriving l28Nwindspeed -7.00e-05*
(4.19e-05)

Time 0.000168*** 0.000145** 0.000160*** 0.000160*** 0.000183***
(4.34e-05) (5.80e-05) (4.09e-05) (3.70e-05) (3.65e-05)

Constant -0.00608 -0.00266 -0.000891 -0.00649 0.00665
(0.0129) (0.00912) (0.0120) (0.00909) (0.00614)

Observations 4,104 4,104 4,104 4,104 4,104
Number of countries 38 38 38 38 38

Standard errors in parentheses
*** p<0.01, ** p<0.05, * p<0.1
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Table 28: Climatic effects on Covid-19: estimates only on OECD countries
(1. DFE) (2. DFE) (3. DFE) (4. DFE) (5. DFE)

VARIABLES deathpop deathpop deathpop deathpop deathpop

l1deathpop 0.623*** 0.620*** 0.625*** 0.626*** 0.622***
(0.0776) (0.0772) (0.0777) (0.0766) (0.0776)

l14deathpop 0.107** 0.111** 0.106** 0.109** 0.111**
(0.0424) (0.0416) (0.0419) (0.0417) (0.0425)

l14casepop 0.0109** 0.0105** 0.0111** 0.0112** 0.0111**
(0.00472) (0.00463) (0.00479) (0.00485) (0.00480)

l28Ntemperature -0.0340**
(0.0162)

l28LDdriving 0.000695** 0.000626** 0.000685** 0.000693** 0.000686**
(0.000286) (0.000271) (0.000294) (0.000292) (0.000289)

l28Intdriving l28Ntemperature 0.000255*
(0.000138)

l28Nradiation -0.0517***
(0.0167)

l28Intdriving l28Nradiation 0.000485**
(0.000182)

l28Nhumidity -0.0145
(0.0153)

l28Intdriving l28Nhumidity 0.000111
(0.000114)

l28Nprecipitation 0.00779
(0.00682)

l28Intdriving l28Nprecipitation -4.33e-05
(7.42e-05)

l28Nwindspeed 0.0266*
(0.0142)

l28Intdriving l28Nwindspeed -0.000187
(0.000130)

Time 0.000745** 0.000767*** 0.000624** 0.000605** 0.000656**
(0.000284) (0.000241) (0.000266) (0.000240) (0.000255)

Constant -0.103** -0.0936** -0.0922* -0.0922* -0.0960*
(0.0500) (0.0443) (0.0497) (0.0476) (0.0487)

Observations 3,605 3,605 3,605 3,605 3,605
R-squared 0.564 0.565 0.563 0.563 0.564
Number of countries 35 35 35 35 35

Robust standard errors in parentheses
*** p<0.01, ** p<0.05, * p<0.1
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Table 29: Climatic effects on Covid-19: estimates only on OECD countries
(1. MG) (2. MG) (3. MG) (4. MG) (5. MG)

VARIABLES deathpop deathpop deathpop deathpop deathpop

l1deathpop 0.267*** 0.279*** 0.272*** 0.300*** 0.294***
(0.0487) (0.0452) (0.0491) (0.0468) (0.0470)

l14deathpop 0.00466 0.0202 0.00828 0.0260 0.0267
(0.0326) (0.0307) (0.0302) (0.0313) (0.0303)

l14casepop 0.0196*** 0.0202*** 0.0204*** 0.0210*** 0.0204***
(0.00328) (0.00339) (0.00335) (0.00344) (0.00325)

l28Ntemperature -0.0268*
(0.0141)

l28LDdriving -4.89e-05 7.06e-05 -7.03e-05 3.84e-05 -4.37e-05
(0.000124) (9.46e-05) (8.54e-05) (8.19e-05) (0.000115)

l28Intdriving l28Ntemperature 0.000204
(0.000144)

l28Nradiation -0.0313***
(0.00983)

l28Intdriving l28Nradiation 0.000400***
(0.000132)

l28Nhumidity -0.00954
(0.0107)

l28Intdriving l28Nhumidity -7.35e-05
(0.000109)

l28Nprecipitation 0.00159
(0.00588)

l28Intdriving l28Nprecipitation -5.14e-06
(7.12e-05)

l28Nwindspeed 0.0167***
(0.00582)

l28Intdriving l28Nwindspeed -0.000113**
(5.42e-05)

Time 0.000138*** 0.000151* 0.000182*** 0.000151*** 0.000160***
(5.32e-05) (8.82e-05) (6.50e-05) (5.54e-05) (4.48e-05)

Constant -0.00893 -0.0143 -0.00498 -0.0134 -0.000483
(0.0152) (0.0124) (0.0143) (0.0122) (0.0115)

Observations 3,605 3,605 3,605 3,605 3,605
Number of countries 35 35 35 35 35

Standard errors in parentheses
*** p<0.01, ** p<0.05, * p<0.1
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Table 30: Climatic effects on fatalities with week-end dummy: DFE
(1. DFE) (2. DFE) (3. DFE) (4. DFE) (5. DFE)

VARIABLES deathpop deathpop deathpop deathpop deathpop

l1deathpop 0.623*** 0.621*** 0.625*** 0.626*** 0.623***
(0.0775) (0.0772) (0.0776) (0.0765) (0.0775)

l14deathpop 0.106** 0.109** 0.105** 0.108** 0.109**
(0.0420) (0.0412) (0.0416) (0.0413) (0.0421)

l14casepop 0.0109** 0.0106** 0.0111** 0.0112** 0.0111**
(0.00470) (0.00462) (0.00476) (0.00482) (0.00477)

l28Ntemperature -0.0320**
(0.0149)

l28LDdriving 0.000656** 0.000582** 0.000644** 0.000643** 0.000639**
(0.000269) (0.000254) (0.000276) (0.000273) (0.000273)

l28Intdriving l28Ntemperature 0.000251*
(0.000129)

l28week end -0.00654 -0.00656 -0.00709 -0.00755 -0.00743
(0.00648) (0.00617) (0.00657) (0.00627) (0.00619)

l28Nradiation -0.0452***
(0.0148)

l28Intdriving l28Nradiation 0.000434**
(0.000166)

l28Nhumidity -0.0151
(0.0145)

l28Intdriving l28Nhumidity 0.000122
(0.000108)

l28Nprecipitation 0.00659
(0.00624)

l28Intdriving l28Nprecipitation -3.20e-05
(6.84e-05)

l28Nwindspeed 0.0239*
(0.0132)

l28Intdriving l28Nwindspeed -0.000162
(0.000122)

Time 0.000706** 0.000713*** 0.000594** 0.000572** 0.000622**
(0.000271) (0.000225) (0.000255) (0.000228) (0.000242)

Constant -0.0954** -0.0842** -0.0849* -0.0834* -0.0871*
(0.0466) (0.0404) (0.0463) (0.0437) (0.0450)

Observations 3,914 3,914 3,914 3,914 3,914
R-squared 0.564 0.564 0.563 0.563 0.564
Number of countries 38 38 38 38 38

Robust standard errors in parentheses
*** p<0.01, ** p<0.05, * p<0.1
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Table 31: Climatic effects on fatalities with week-end dummy: MG
(1. MG) (2. MG) (3. MG) (4. MG) (5. MG)

VARIABLES deathpop deathpop deathpop deathpop deathpop

l1deathpop 0.240*** 0.262*** 0.251*** 0.281*** 0.273***
(0.0465) (0.0434) (0.0470) (0.0452) (0.0453)

l14deathpop -0.000170 0.0112 -0.00498 0.0127 0.0116
(0.0315) (0.0297) (0.0282) (0.0295) (0.0293)

l14casepop 0.0191*** 0.0199*** 0.0199*** 0.0203*** 0.0200***
(0.00297) (0.00318) (0.00308) (0.00320) (0.00305)

l28Ntemperature -0.0234**
(0.0111)

l28LDdriving -4.40e-05 3.45e-05 -5.54e-05 -1.52e-05 -0.000112
(9.21e-05) (9.65e-05) (6.44e-05) (8.18e-05) (9.12e-05)

l28Intdriving l28Ntemperature 0.000189
(0.000120)

l28week end -0.00163 -0.00287 -0.00159 -0.00284* -0.00275**
(0.00192) (0.00186) (0.00171) (0.00149) (0.00140)

l28Nradiation -0.0209***
(0.00671)

l28Intdriving l28Nradiation 0.000325***
(0.000117)

l28Nhumidity -0.0113
(0.00894)

l28Intdriving l28Nhumidity 2.64e-05
(0.000112)

l28Nprecipitation 0.000492
(0.00499)

l28Intdriving l28Nprecipitation 9.30e-07
(6.29e-05)

l28Nwindspeed 0.0134***
(0.00512)

l28Intdriving l28Nwindspeed -8.27e-05*
(4.86e-05)

Time 0.000154*** 0.000142** 0.000141*** 0.000159*** 0.000170***
(4.82e-05) (7.23e-05) (4.65e-05) (4.13e-05) (4.05e-05)

Constant -0.0116 -0.00141 -0.00805 -0.00667 0.00733
(0.0150) (0.0109) (0.0141) (0.0105) (0.00940)

Observations 3,914 3,914 3,914 3,914 3,914
Number of countries 38 38 38 38 38

Standard errors in parentheses
*** p<0.01, ** p<0.05, * p<0.1

49



7 References

Araujo M.B., Naimi B. (2020). Spread of SARS-CoV-2 Coronavirus likely to be
constrained by climate, doi: https://doi.org/10.1101/2020.03.12.20034728

Aviskar Bhoopchand, Andrei Paleyes, Kevin Donkers, Nenad Tomasev, Ulrich
Paquet (2020). DELVE Global COVID-19 Dataset.

Bauer R., Diaz-Sanchez D., Jaspers D. (2012). Effects of air pollutants on innate
immunity: The role of toll-like receptors and nucleotide-binding oligomerization
domain-like receptors. The Journal of Allergy and Clinical Immunology, 129,
14-24.

Baker R.E., Yang W., Vecchi G.A., Metcalf C.J.E., Grenfell B. T. (2020). Sus-
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Table 32: List of countries with dates of Covid-19 outbreak take-off
Country Cases counts Deaths counts
Australia 25/01/2020 true starting period : 21/02 01-march
Austria 26-febr 13-march
Belgium 02-febr true starting period 02-march 12-march
Bulgaria 08-march 12-march
Canada 26/01/2020 true starting period 25/02 10-march
Switzerland 26-febr 06-march
Chile 04-march 23-march
Colombia 07-march 22-march
Cyprus 10-march 25-march
Czechia 02-march 23-march
Germany 28-jan true starting period 26/02 10-march
Denmark 27-febr 16-march
Spain 01-febr true starting period 25/02 05-march
Estonia 28-febr 26-march
Finland 30/01/2020 true starting period 27/02 22-march
France 25/01/2020 true starting period 26/02 15/02/2020 true starting period 27/02
United Kingdom 31/01/2020 true starting period 24/02 07-march
Greece 27-febr 12-march
Croatia 26-febr 25-march
Hungary 05-march 16-march
Ireland 01-march 12-march
Iceland 29-febr 20-march
Israel 22-febr 21-march
Italy 31/01/2020 true starting period 22/02 23-febr
Japan 15/01/2020 true starting period 24/01 13/02/2020 debut veritable 27/02
Republic of Korea 20-janv 21-febr
Lithuania 28/02/2020 true starting period 11/03 21-march
Luxembourg 01-march 14-march
Latvia 03-march 04-avr
Mexico 29-febr 21-march
Malta 07-march 09-avr
Netherlands 28-febr 07-march
Norway 27-febr 13-march
New Zealand 28-febr 29/03/2020 true starting period 10/04
Poland 04-march 13-march
Portugal 03-march 18-march
Romania 27-febr 23-march
Slovakia 07-march 07/04/2020 true starting period 16/04
Slovenia 05-march 18/03/2020 true starting period 25/03
Sweden 01/02/2020 true starting period 27/02 12-march
Turkey 12-march 19-march
United States of America 21-janv 01-march
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