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Supplementary Information 

Participants 
To study the relationship between common genetic variation and DNA methylation (DNAm) 
we focused on studies of European ancestry with genotype data imputed to the 1000 
Genomes reference panel1 and DNAm profiles quantified from bisulfite-converted genomic 
whole blood DNA using the Infinium HumanMethylation BeadChip (HumanMethylation450 or 
EPIC arrays). Details of the studies for discovery and replication are provided in 
Supplemental Note 1 and Table S1.  

Study design mQTL analyses 
Initially, 38 independent studies were recruited to contribute data towards a (DNA 
methylation-quantitative trait loci) mQTL meta-analysis of which 36 studies (Table S1, 
Supplemental Note 1) passed our stringent quality criteria described below. Conventional 
genome wide association studies (GWAS) meta-analyses involve performing complete 
GWAS in each study, sharing the summary data and meta-analysing every tested SNP. As a 
mQTL analysis involves ~450,000 GWAS analyses, it is difficult to store and share the 
complete summary data from 38 studies. To circumvent this problem, each study performed 
a genome-wide analysis but provided only the associations that surpass a relaxed 
significance threshold (p < 1e-5) in their study. Due to sampling variation the exact mQTL 
associations reported would differ between studies, meaning that the number of studies 
contributing to the meta-analysis would be highly variable and could be as low as two 
studies. This would introduce two problems. First, publication bias arises if it is in fact a null 
association because the studies demonstrating null effects would not contribute to 
counteract the inflated effects from those that do happen to surpass the threshold. Second, 
the precision of the effect estimate is limited by the number of studies that happen to 
contribute data on that association. To mitigate both problems the analysis in this study has 
been performed in two phases.  
 
In Phase 1 of our study we performed mQTL analyses of 420,509 high quality DNAm sites2 
using data from 22 independent European studies to identify putative associations (Table 
S1, Figure 1A) at a threshold of p< 1e-5. We used two approaches to exclude DNAm sites 
from our analyses. First we excluded 50,186 DNAm sites that were masked by Zhou et al.2 
which includes probes with potential cross reaction and probes that could not be mapped to 
genome. Secondly, we removed an additional 14,882 probes including multi-mapping probes 
(bisulfite converted sequences allowing two mismatches at any position mapped to the hg19 
primary assembly) and probes with variants (MAF >5%, UK10K) at the CpG dinucleotide or 
the extension base (for type I probes).  
All candidate mQTL associations at p<1e-5 were combined to create a unique ‘candidate list’ 
of mQTL associations. In total we identified 102,965,711 candidate mQTL associations in cis 
(p < 1e-5, +/- 1 Mb from DNAm site) and 710,638,230 candidate mQTL associations in trans 
(>1Mb from DNAm site) in at least one dataset. 59% of the candidate mQTL associations in 
cis (n=61,103,065) and 2.4% of the associations in trans (n=17,246,702) were found in at 
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least two datasets (Figure S1). To reduce the computational burden, we included cis 
associations found in at least one dataset and trans associations in at least two datasets. 
The candidate list (n=120,212,413) was then sent back to all studies, and the association 
estimates were obtained for every mQTL association on the candidate list. In Phase 2 of our 
study we performed association tests for each of the candidate mQTL associations in 20 
studies from Phase 1 and 16 additional studies with European ancestry (total n = 27,750) 
(Table S1). The estimates for the candidate list are meta-analysed to obtain the final results 
(Figure 1A). 
This two-phase approach has a single objective: to minimise the computational burdens of 
storing summary data from the complete analysis from every study. However, we have 
effectively performed a complete search of all candidate mQTL associations, though with 
likely loss of coverage. The significant results obtained from the meta-analysis are identical 
to what would have been identified had we performed a meta-analysis on every candidate 
mQTL association. The only difference between a complete scan and our scan is that we will 
have missed some associations that were not at p<1e-5 in any study but when combined 
across all studies would have surpassed an experiment wide multiple testing correction. 

Data preparation 

The Genetics of DNA Methylation Consortium (GoDMC) pipeline 
To facilitate the harmonization of the large volume of data we developed a GoDMC pipeline 
that was split into several modules, each focusing on the separate tasks of data checking, 
genotype preparation, phenotype and covariate preparation, DNAm data preparation, and 
subsequent analyses. In the first module the data format of the genotype data, DNAm and 
covariate data was checked. In addition, the number of individuals with DNAm and genotype 
data (requirement of n>100), the number of SNPs, the number of sites, covariates including 
cell counts, genotype build and strand, and the number of DNAm outliers were recorded. We 
also generated matrices with mean and standard deviation (SD) by DNAm site and study 
descriptives. The entire pipeline can be viewed at https://github.com/MRCIEU/godmc, and 
the following text describes the procedures that were used. 

Genotype data 
Each study performed quality control on genotype data for all autosomes and chromosome 
X (if available) and imputed to 1000G phase 1 or above using hg19/build37. Dosages were 
converted to bestguess data without a probability cut-off.  
SNPs that failed Hardy Weinberg equilibrium (p<1e-6), had a minor allele frequency (MAF) 
<0.01, an info score <0.8 or missingness in more than 5% of the participants were removed. 
We recoded SNPs to CHR:POS:{SNP/INDEL} format and removed duplicate SNPs. We then 
harmonized the recoded SNPs to the 1000G reference using easyQC3. This harmonization 
script removed SNPs with mismatched alleles and recoded INDEL alleles to I and D.  
 
We performed a gender check to remove participants with discordant gender to the covariate 
file. We extracted and pruned a set of common HapMap3 SNPs (MAF>0.2, without long-
range linkage disequilibrium (LD) regions) before we calculated the first 20 PCs on LD 
pruned SNPs and excluding regions of high LD from the analysis. We used PLINK.2.04 for 
unrelated participants and GENESIS5 for related participants to identify ethnic outliers. 
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Ethnic outliers that deviated 7 SDs from the mean were removed. After outlier removal we 
recalculated genetic PCs for use in subsequent analyses. To identify relatedness in 
unrelated datasets, we pruned the genotype data to a set of independent HapMap 3 SNPs 
with MAF>0.01 and calculated genome-wide average identity by state (IBS) using PLINK2.0. 
Participants with IBS > 0.125 were removed.  

DNAm data normalisation and quality control 
DNAm was measured in whole blood or cord blood using HumanMethylation450 or EPIC 
arrays in at least 100 European individuals. Each study performed normalization and quality 
control on the DNAm data independently, with most studies using functional normalisation 
through the R package meffil (see Table S1)6. Briefly, meffil has been designed to 
preprocess raw idat files to a normalization matrix for large sample sizes without large 
computational memory requirements and to perform quality control in an automated way 
where the analyst can adjust default parameters easily. Sample quality control included 
removal of participants where more than 10% of the DNAm sites failed the detection p-value 
of 0.1 and/or threshold of 3 beads. In addition, mismatched samples were identified by 
comparing the 65 SNPs on the DNAm array to the genotype array and a gender check. 
Additional DNAm quality was checked by the methylated versus unmethylated ratio, dye bias 
using the normalisation control probes and bisulphate control probes. Protocols can be 
found here: https://github.com/perishky/meffil/wiki. For each DNAm site, we replaced outliers 
that were 10 SDs from the mean (3 iterations) with the DNAm site mean.  

Covariates 
We used sex, age at measurement, batch variables (slide, plate, row if available), smoking 
(if available) and recorded cell counts to adjust for possible confounding and to reduce 
residual variation. Additional confounders (genetic principal components (PCs), nongenetic 
DNAm PCs, and where necessary predicted smoking and cell counts) were calculated using 
the GoDMC pipeline. After quality control and normalization of the DNAm data, we predicted 
smoking status by using previously reported DNAm associations with smoking7. In addition, 
we predicted cell counts using the Houseman algorithm implemented in meffil8. We 
performed a PC analysis on the 20,000 most variable autosomal DNAm sites and kept all 
PCs that cumulatively explained 80% of the variance. We performed a genome wide 
association analysis on the DNAm PCs and retained the PCs that were not associated with a 
genotype (p > 1e-7). We kept a maximum of 20 nongenetic PCs for subsequent adjustment. 

DNAm data adjustment 
We attempted to minimise non-genetic variation in the DNAm data to improve power for 
mQTL detection. We adjusted datasets with predominant family structures (pedigrees, twin 
studies) and population-based studies in slightly different ways. For unrelated participants 
we regressed out age, sex, predicted cell counts, predicted smoking and genetic PCs 
(adjustment 1). For related participants we did the same except also fitting the genetic 
kinship matrix using the method described in GRAMMAR9. 
 
We took the residuals from the first adjustment forward to regress out the non-genetic DNAm 
PCs on the adjusted DNAm beta values (adjustment 2). The residuals from these analyses 
were rank transformed and centered to have mean 0 and variance 1. 
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Positive and negative controls 
Before we performed the meta-analysis, we checked the number of SNPs and INDELs, sites 
and individuals analysed and the average mean and SD for each DNAm site to identify 
possible inconsistencies. Each of the 38 studies conducted a GWAS of cg07959070. We 
chose this DNAm site as a positive control as it showed a strong cis mQTL in several 
datasets on chr22 and hasn’t been proposed to be excluded from the analyses by probe 
annotation efforts2,10,11,12. To identify possible errors, we checked the cis association on 
chromosome 22 (p<0.001) for this DNAm site. In addition, we checked quantile-quantile and 
Manhattan plots for this DNAm site. We also used this control to identify studies with 
deflated or inflated lambdas (lambda >1.1 or lambda <0.9). We noticed deflation of the 
genomic lambda after adjustment of the index cis SNP in datasets with relatedness. 
However, lambdas were around 1 when not adjusted. After inspection one study was 
removed from the analysis due to deflation and one study was removed due to a lack of the 
positive control association signal, leaving 36 studies for the final meta-analysis. 

Association analyses 

Phase 1: creating the candidate list of associations 
We performed a fast, comprehensive analysis of all cis- and trans-associations on 420,509 
reliable2 residualised DNAm sites separately in 22 studies (N=16,907) using the R package 
Matrix eQTL v2.1.013. For each DNAm site 𝑗 the residual value 𝑦!"was regressed against 
each SNP 𝑘 

𝑦!" = 𝛼!# + 𝛽!#𝑥#" + 𝑒!#" 	
where genotype values 𝑥#"were coded as allele counts {0,1,2}, 𝛼!# was the intercept term, 
and 𝛽!#was the effect estimate of each SNP 𝑘 on each residualised DNAm site 𝑗.  

Phase 2: obtaining summary data from all studies for meta-analysis 
This candidate list was sent to 36 studies (N=27,750) where effect sizes for all putative 
associations were recalculated by fitting linear models. For putative cis-mQTL we performed 
linear regression as in phase 1. To improve statistical power to estimate the trans-mQTL 
effects we recorded the top cis SNP 𝑥$, for each DNAm site (based on lowest p-value within 
that study) and fit this as a covariate in the trans-mQTL regressions 

𝑦!" = 𝛼!# + 𝛽!$𝑥$" + 𝛽!#𝑥#" + 𝑒!#" 	

Impact of two-stage design on power of study 
Though the multi-stage study design was performed out of practical necessity, we evaluated 
the impact it had on statistical power in comparison to the hypothetical situation of analysing 
all the data together in a standard one stage mQTL design. 
  
For cis mQTL associations we calculated the power of detecting an association in at least 
one of 22 studies at p < 1e-5. To do this we calculate what is the probability of missing an 
association as being the product of the probability of missing it in study 1 AND in study 2 
AND in study 3 etc. 
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where 𝑓(𝑥; 𝑘; 𝜆) is the probability density function for the non-central chi-square distribution 
with 𝑘 degrees of freedom and 𝜆 non-centrality parameter based on the postulated variance 
explained by an mQTL (𝑟%) and the study sample size 𝑛" and 19.5 denotes the chi-square 
threshold at p = 1e-5 with one degree of freedom. 

For trans mQTL associations we calculated the power to detect an association in at least two 
of 22 studies at p< 1e-5. We calculate what is the probability of missing an association as 
being the product of the probability of missing it in both study 1 and study 2 AND in study 1 
and study 3 AND in study 1 and study 4 etc. 

 

where 𝑓(𝑥; 𝑘; 𝜆)is the probability density function for the non-central chi-square distribution 
with 𝑘degrees of freedom and 𝜆 non-centrality parameter based on the postulated variance 
explained by an mQTL (𝑟%) and the study sample sizes 𝑛"and 𝑛!; and 19.5 denotes the chi-
square threshold at p = 1e-5 with one degree of freedom. 

We found that we have no loss of power (<1%) for loci that explain more than 1.2% or less 
than 0.1% of the variance. Within these bounds >80% of power is lost for cis-mQTL with r2 
0.16% to 0.38%. For trans-mQTL, power suffers slightly more because of requiring detection 
by at least two studies in the first stage (r2 0.27% to 0.64%) (Figure S48). 

Meta-analyses 
We used the SNP effect estimates and standard errors for each SNP-DNAm site pair in the 
candidate list in the meta-analyses. Inverse variance fixed effects (FE) meta-analyses of the 
36 studies was performed using METAL14. We modified METAL 
(https://github.com/explodecomputer/random-metal) to incorporate the DerSimonian and 
Laird random effect (RE) models15 and multiplicative random effects (MRE) models16. These 
results are available here: http://mqtldb.godmc.org.uk/. We also inspected the meta-analysis 
and conditional analysis (see below) logfiles and removed any SNPs that had inconsistent 
allele codes between studies, which were in almost all cases multi allelic SNPs. 
 
We inspected our results by counting the number of associations against the direction of the 
effect size (+ or -) for each study. A high number of associations was found if the direction of 
the effect sizes agreed across studies (Figure S3). In addition, the average I2 heterogeneity 
estimate for the effect size direction categories was 44% (min=0%, max 100%). For 
categories with more than 100 associations, average I2 was 49% (min=36%, max 61%) 
(Figure S3). We also explored whether the number of phase 1 studies was correlated to I2 
and tau2. We found a nonsignificant correlation (r=0.002, p=0.23, r=-0.001, p=0.32) 
indicating that mQTL associations found in a low number of phase 1 studies didn’t show 
more heterogeneity than mQTL associations found in a high number of phase 1 studies.  
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To explore heterogeneity further, we meta-analysed our SNP-DNAm pairs using FE, RE and 
MRE models and found that associations that were dropped in MRE analyses showed 
higher I2 and tau2 and smaller effect sizes and DNAm site SDs (Figure S4, Figure S5).  
Further inspection showed that trans only sites had higher I2 heterogeneity statistics than 
associations from cis only or cis+trans sites (mean I2 values of 53%, 46% and 39%, 
respectively). However, as I2 and tau2 were positively correlated to effect sizes (Figure S3D) 
we deem the use of FE meta-analysis to be appropriate for reducing false negative rates. 

Clumping analysis 
To obtain a set of independent mQTL we performed clumping using 503 European 
participants from the 1000 Genomes dataset. We used an R-square threshold of 0.0001 and 
a clumping radius of 5Mb. The method was applied to each DNAm site GWA separately. For 
the follow up analyses (unless otherwise stated) we used clumped mQTL results, applying a 
cis p-value threshold of 1e-8 and a trans p-value threshold of 1e-14. 

Window size 
To compare whether the intra-chromosomal trans mQTL regions containing more trans 
mQTL associations than inter-chromosomal regions, we calculated the rate of inter and 
intrachromosomal trans mQTL associations. The rate of trans mQTL associations was 
defined as the number of trans mQTL associations divided by the number of 5Mb blocks on 
the chromosome. Intrachromosomal trans mQTL associations were either defined as >1 Mb 
or >6 Mb from the DNAm site. Due to long range associations around the HLA region, 
chromosome 6 was removed from this analysis. 

Conditional analysis 
To test for multiple independent SNPs operating within the locus of each mQTL, we used 
GCTA software to perform cojo-select analysis using an 10Mb window size17. Because only 
summary data was available we used an external LD reference panel, selecting the ALSPAC 
children dataset (n=8,092) imputed to HRC panel18. We retained SNPs that had conditional 
p-values of 1e-8 for cis effects and 1e-14 for trans effects.  
Limitations of this analysis are numerous. First, because of the two-stage design we do not 
have complete coverage of the common variants in the region of a putative mQTL. For some 
sites the SNP density is low in the region. Second, meta-analysis combines the association 
patterns from multiple studies, each with their own LD patterns. Though our analysis was 
restricted to European participants which matched the reference panel, it is likely that the 
reference panel’s LD patterns do not perfectly match the aggregated latent LD patterns 
amongst the studies contributing to the meta-analysis. As a consequence, accounting for a 
particular variant’s effect based on its LD may be unreliable. Third, a small number of sites 
analysed yielded unrealistically large numbers of conditionally independent mQTL and we 
advise caution in interpreting these results. For example, 3 sites outside the MHC region had 
more than 50 independent cis associations per site. While the median estimate of 2 
independent SNPs per site is reasonable and in line with results from other ‘omic datasets, it 
is clear that the reliability of the analysis cannot be guaranteed for any particular site 
analysed.  
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Comparing study-wide heterogeneity 
As we used studies with different designs, we investigated systematic patterns of 
heterogeneity by analysing between-study heterogeneity, by aggregating the within-study 
heterogeneity information across multiple genetic variants19. This method can dissect 
genomic heterogeneity patterns to flag underperforming studies in which the rate of 
discovery is smaller than expected given the sample size. These studies could compromise 
the power of the meta-analysis19. Following Magosi et al. 201719, to calculate M statistics for 
each study, we extracted 337 mQTL SNPs on chromosome 20 with a p < 1e-14 from each 
study and obtained the mean of the Cochran’s Q estimates across all associations (Figure 
S2). To explore the impact of technical and biological influences on the magnitude of M we 
performed random-effects meta-regression20, examining the following technical and 
biological factors as sources of systematic heterogeneity: number of SNPs, number of sites, 
sample size, relatedness yes/no, DNAm array (450k versus EPIC), normalization method, 
average MAF across all SNPs, average info score across all SNPs, lambda, cord vs 
peripheral blood, ancestry (UK vs non UK, The Netherlands vs non The Netherlands, Spain 
vs non Spain, Finland vs non Finland, northern versus southern countries), case control 
versus population-based, number of males and age. We found that some of the variability in 
average effect size was associated with the number of SNPs (p=0.0169, N=36) but not with 
other technical variables. We further observed that the M statistic was highly correlated to 
the average SD of the DNAm site. 

Out-of-sample replication of discovered mQTL 
To validate the discovery associations, we used the Generation Scotland (GS) dataset of 
5,101 participants21 (Supplementary Note 1), which was generated using an entirely 
different pipeline to the one described for the main discovery meta-analysis.  
 
The analysis model included two genomic relationship matrices, G (genomic relationship 
matrix) and K (kinship relationship matrix), and three environmental relationship matrices, F 
(environmental matrix representing nuclear-family-member relationships), S (environmental 
matrix representing full-sibling relationships) and C (environmental matrix representing 
couple relationships). These five matrices (as random effects), together with covariates (i.e., 
age, age2, gender, cell counts for granulocytes, B-lymphocytes, natural killer cells, CD4+ T-
lymphocytes and CD8+ T-lymphocytes, season of the visit, appointment time of the day, 
appointment day of the week) as fixed effects, were fitted simultaneously in a mixed linear 
model for each site. The resulting residuals were inverse rank transformed prior to GWAS 
analysis in a simple linear model using REGSCAN v0.5. 
 
Because the replication sample size is considerably smaller than the discovery, we expect 
the replication rate to be relatively low. However, our intention for using the dataset is 
instead to evaluate whether the rate of replication is in line with expectation given the 
discovery effect sizes and the replication sample size and multiple testing correction. If we 
find that it is, it gives us confidence that the discovery mQTL as obtained through our 
pipeline are en masse reliable. 
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Observed vs expected replication rate 
The summary results based on 5,101 participants in the GS dataset had been pre-calculated 
and all SNP-DNAm site pairs were stored for which p <1e-3. We filtered these pre-calculated 
SNP-DNAm site pairs and kept only biallelic SNPs across 22 autosomes with MAF>0.01 and 
info scores>0.8 and removed 5,910 DNAm sites from the dataset if: (i) they had more than 5 
participants with a bead count <3; or (ii) >= 1% participants had a detection p-value of > 
0.05. Following the methods outlined in22 for each 𝑖&' mQTL we calculated the expected 
replication rates at 𝛼-level significance as a function of the absolute effect size estimate  
assuming that it is unbiased, and the expected standard error in the replication dataset  
to be 

 
 
where ∅ is the standard normal cumulative distribution function. Therefore, the expected 
replication rate for all  mQTL associations that were tested is  
 

:𝑝(𝑟𝑒𝑝𝑙𝑖𝑐𝑎𝑡𝑖𝑜𝑛")
(
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The expected replication standard error for an mQTL 𝑖 was calculated as was calculated as 

 
where 𝑛 = 5,101 is the replication sample size, and the allele frequency of the SNP in the 
outcome is .  
 
For the replication analysis, 169,656 SNP-DNAm pairs were present in the pre-calculated 
GS dataset (i.e. p <=1e-3, MAF>0.01, info score>0.8). An additional 18,361 SNP-DNAm 
pairs (population-wide MAF>0.01) were potentially testable in the dataset but were not 
present due to their p-value being >1e-3 or having been marked as 'NA' by REGSCAN. A 
total of 188,017 (169,656 + 18,361) has been used for multiple testing correction and 
downstream analyses. Correspondingly, we expected (based on the methods outlined 
above) 171,824 mQTL to replicate at p < 1e-3. This very strong agreement between 
expected and observed rates indicates that our discovery mQTL are, en masse, true positive 
associations. 
 
By contrast, at the stringent replication threshold of 0.05/188,017, we found 142,727 to 
replicate which was 6.7% higher than the expected 133,734. At this threshold, 76% of cis 
mQTL and 79% mQTL associations replicated. This suggests that there are some mQTL 
with small effects that are replicating at a slightly higher rate than would be expected. There 
are several possible reasons that could explain this, for example: 
 

1. SNP effects are relatively smaller in the discovery data because the replication 
dataset is correcting for more residual variance. 

2. Meta-analysis incurs heterogeneity which dilutes some effect estimates in the 
discovery data. 
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Counterbalancing these factors are other factors that could lead to the observed replication 
rate to be lower than the expected replication rate, for example 
 

1. The GS replication and GoDMC discovery used different DNAm normalization and 
adjustment pipelines, which may lead to different patterns of heterogeneity between 
the studies. This will reduce replication rates. 

2. The GS dataset is a family-based study and the GoDMC meta-analysis comprise 
family and population-based studies. We observed systematic differences in the 
mQTL yield between population and family-based studies in the discovery stage, so 
there may be systematic differences between GS and GoDMC due to this also. This 
will reduce replication rates. 

3. There will be a winner’s curse effect inflating the effect estimates of the GoDMC 
discovery data. The expected replication rates are based on the assumption that the 
effect estimates are unbiased, and the expected replication rate based on upward-
biased effect estimates will be higher than the true estimate. 

 
The processes that lead to whether or not our replication rate is in agreement with 
expectation are complex. But overall, we find that there is broad agreement between our 
expected and observed replication rates, indicating that en masse the discovery mQTL are 
likely to be true positive associations. 

Concordance of effect sign between discovery and replication 
Of the 169,656 associations for which we had effect estimates for both the discovery and 
replication datasets, there were 702 mQTL that replicated after multiple testing correction (p 
< 2.7e-7) but the effect size was in a different direction. This is a very small proportion of all 
mQTL, but we estimated that we would only expect one to replicate in the wrong direction by 
chance22. These mQTL comprised SNPs with relatively equal proportions of allele codes (i.e. 
not dominated by A-T or G-C SNPs), and had similar sample sizes. However, the average 
absolute effect size was much smaller than all other mQTL (0.22 vs 0.30), and the average 
I2 was close to double (85.2 vs 47.4). Whether these associations represent examples where 
the sign of the direction truly is variable between populations, or if they are statistical 
artefacts (e.g. due to allele coding issues) is not clear, therefore we have flagged these 
mQTL as being unreliable. 

Variance explained by mQTL 
To estimate the overall proportion of the DNAm variance explained by the discovered mQTL, 
we summed r2 estimates from the replication dataset (coefficients of determination of the 
regression of the SNP on the inverse-normal rank-transformed residual) for each DNAm site 
and divided it by the number of tested DNAm sites (n=420,509). To estimate the overall 
proportion of the estimated additive genetic variance explained by discovered mQTL, we 
divided the r2 estimates from the replication dataset by the h2 estimates from a family study23 
and a twin study24. To be conservative we disallowed any specific DNAm sites to explain 
more than 100% of the genetic variance and for DNAm sites with h2 of 0, we set r2 to 0. This 
can arise when h2 point estimates are underestimated due to large standard errors, and the 
mQTL apparently explains more genetic variance than is estimated to exist. 
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Enrichment analyses of regulatory annotations 
To assess the relative enrichment of regulatory annotations amongst mQTL SNPs, we used 
GARFIELD.25 Variants with missing scores were set to 0 and were excluded from the mQTL 
GWA files. The minimal GWA p-value for each mQTL SNP across all DNAm sites was used. 
P-values for SNPs with missing mQTL association statistics were set to 1. GARFIELD 
selects an independent set of SNPs by sequentially removing variants with r2>0.1 within 1Mb 
window from the most significantly associated mQTL variant and it annotates each variant 
with a regulatory feature if either the variant, or a correlated variant, overlaps the feature 
(defined as r2>0.8). It calculates statistical significance by using a glm model at different 
GWA p-value thresholds (p<1e-10 to p<1e-14) while variants are matched by MAF, distance 
to the nearest transcription start site (TSS), number of LD proxies, CpG and GC content. 
CpG and GC content were calculated for a region 500bp up and downstream of the variant 
using the BSgenome.Hsapiens.UCSC.hg19 R package. 
 
We assessed the relative enrichment of 25 combinatorial chromatin states amongst mQTL 
using data on genomic segmentations for 127 cell types from the Epigenome Roadmap26 
and ENCODE project27. We calculated enrichments for each of the 171 transcription factor 
binding sites (TFBS) from the ENCODE27 and CODEX projects28. We downloaded DNAm 
site to gene annotations from https://zwdzwd.github.io/InfiniumAnnotation. We used a mQTL 
pvalue threshold of 1e-14 in these analyses. To correct for multiple testing on the number of 
different annotations, GARFIELD estimates the effective number of independent annotations 
by using the eigenvalues of the correlation matrix of the binary annotation overlap matrix and 
then applies a Bonferroni correction at the 95% significance level. For the segmentation 
states, we defined a pvalue of 1.23e-3 as significant. For the TFBS, we considered a pvalue 
of 1.06e-4 as significant. 
We then used Locus Overlap Analysis (LOLA)29 to identify overlap of the mQTL sites with 
various functional and regulatory features including gene annotations, chromatin states and 
TFBS. This analysis has been performed against a background set of sites from the 
HumanMethylation450 array which was matched on CpG and CG content. LOLA uses 
Fisher’s exact test with false discovery rate (FDR) correction to assess the significance of 
overlap in each pairwise comparison. We considered an enrichment FDR pvalue of 0.001 as 
significant. To investigate the effect of the chosen window size on the results of the analysis, 
we conducted sensitivity analyses on DNAm site enrichments for chromatin state (Figure 
S20), gene annotations (Figure S50) and transcription factors (Figure S51). We defined 
trans associations as inter-chromosomal, conducted enrichment analyses and compared 
enrichment odds ratios to the original analyses where we defined trans associations as > 
1Mb. There were no differences in odds ratios for the gene annotations, transcription factors 
and 24/25 chromatin states.  

Cross-tissue and cross-cell type DNAm 
To explore the relationship between DNAm levels and tissue specificity of mQTL sites, we 
calculated the weighted mean of each DNAm level in blood across 36 studies and 
categorised a DNAm site in low (0-20%), intermediate (20-80%) or high (>80%) methylation. 
To understand whether cell type differences were underlying intermediate DNA in cis+trans 
mQTL sites, we downloaded T-cell DNAm profiles (GSE56581, N=214) and monocyte 
DNAm profiles (GSE56046, N=2,002). We extracted cis+trans blood DNAm sites from the 
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cellular subsets and plotted their mean DNAm levels across all samples within each cell type 
for each DNAm site. 
To investigate tissue specificity, we downloaded DNAm profiles on 12 different tissues from 
16 individuals (GSE78743, Supplemental Note 1). We extracted DNAm sites with a mQTL 
in blood and plotted the mean DNAm levels across all samples within each tissue type for 
each DNAm site. Heatmaps were plotted using the heatmap.2 function in the Rpackage 
ggplots (gplots_3.0.1). 

Correlation of mQTL between tissues 

To assess the extent of tissue specificity in mQTL we re-analysed adipose and brain tissue 
mQTL data using the analysis approach applied here to estimate blood mQTL 
(Supplemental Note 1). For brain mQTL analysis, 170 fetal brain samples with high quality 
DNAm data and imputed SNP data were available. Using scripts from the GoDMC pipeline, 
DNAm data were adjusted for age (in weeks post conception), sex and the first five genetic 
principal components. These data were than rank normal transformed, so that the mQTL 
units would be consistent. All candidate genome-wide SNP-methylation probe pairs from the 
blood analyses were tested using the R package MatrixEQTL13 with a linear model. For 
adipose mQTL analysis, SNP-DNAm site pairs identified in this study with blood data were 
tested in adipose samples derived from 603 twins30 using scripts from the GoDMC pipeline.  

 
To assess systematic between study heterogeneity we calculated M statistics19 for each of 
the 38 studies (36 blood studies, 1 adipose study and 1 brain study) using 337 mQTL SNPs 
on chromosome 20 with a p < 1e-14 (Figure S52). 
For each mQTL category, the correlation of genetic effects between tissues (rb) were 
estimated using the rb method31 where we used the blood mQTL as reference. We set θ to 0 
as the sample overlap between the blood and brain samples was 0. The individuals who 
donated adipose samples are also included in the GoDMC blood mQTL analysis. As the 
proportion of sample overlap is very small (603/27750) and null SNPs in mQTL regions were 
not available in GoDMC, we set θ to 0. For each mQTL category we only included the 
strongest mQTL for each DNAm site. To be consistent across mQTL categories, mQTL were 
filtered on p<1e-14. Sensitivity analysis showed that a pvalue threshold of 1e-8 didn’t 
change the results. To explore the relationship between DNAm levels and tissue specificity 
of mQTL sites, we categorised the blood mQTL sites in low (0-20%), intermediate (20-80%) 
or high (>80%) methylation and re-calculated rb. 

Chromosome interaction overlaps 
We tested whether interchromosomal trans-mQTL were enriched for overlap with 
chromosomal interactions using public Hi-C data32. The pipeline used to construct the Hi-C 
contact matrices uses BWA33 to map each read end to the b37 reference genome; remove 
duplicate and near-duplicate reads; remove reads that map to the same fragment; and filters 
the remaining reads based on a mapping quality score. Filtering of abnormal alignments of 
each read pair to the genome included: removal of ambiguous chimeric read pairs (where 
"subsequences" of a read aligns to different parts of the chromosome) and unalignable read 
pairs (where at least one end cannot be successfully aligned). In addition, the reads were 
filtered for duplicates (considered duplicates if reads lie at closely corresponding positions; 
i.e. within 4bp of one another). We used Hi-C data mapped at the mapping quality score of 
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MAPQE30. This means that the chances that an alignment is erroneous is at most 1 in 1000. 
Hi-C data was normalised using Knight-Ruiz normalisation on interchromosomal 1kb 
resolution and a quality threshold of E30 using the GM12878 LCL sample as previously 
described32. Positions of the trans-mQTL sites were matched to their relevant 1kb blocks in 
the interaction data. Trans-mQTL SNP LD blocks were also matched. Interchromosomal 
trans-mQTL SNP-DNAm site pairs were confirmed as overlapping interactions when either 
the site or SNP resided in the bait and their respective SNP or site resided in the “other end”. 
In order to test enrichment, we generated 1000 permutation datasets of broken 
interchromosomal trans-mQTL SNP-DNAm site pairs. A permutation p-value was calculated 
based on how often the number of overlaps within the permutation data exceeded those of 
the real data. In addition, we performed a Fisher’s Exact Test to compare the number of 
overlaps and non-overlapping pairs in our real data with the 1000 permutations. 

Two-dimensional enrichments 
We hypothesised that SNPs that influence sites falling under a particular annotation will 
themselves have non-random annotations. In other words, the annotation of the site might 
be correlated with the annotation of the SNP in an mQTL pair. We restricted this analysis to 
trans-mQTL only, to avoid the problems of within-locus correlations. 
 
We used LOLA29 to annotate SNPs and sites to overlapping TFBS using all 615 datasets 
(171 TFBS, 20 cell types, 25 tissues, 27 treatments) in the ENCODE database.34 We 
constructed a matrix 𝑇 of all site TFBS against all SNP TFBS. Under a simple null model, we 
expect that the number of mQTL that comprise a SNP with the first SNP-annotated TFBS 𝑠) 
and a site with the first site-annotated TFBS 𝑐) will be 𝐸(𝑡*!,$!) = E𝑛*!/∑ 𝑛*"

,
"-) H I𝑛$!/

∑ 𝑛$#
.
!-) J where 𝑛 is the count of SNPs or site that have a particular TFBS annotation, 𝑆 is 

the total number of SNP TFBS and 𝐶 is the total number of site TFBS. Whether 𝑇 is 
systematically non-random can then be evaluated by comparing it against a null matrix 𝑇/011 
in which each element is the estimate of the expected value, using Fisher’s exact test. 
 
We also performed permutation analysis to identify particular elements that were deviating 
from expectation more than by chance. We took the SNP-DNAm site pairs and shuffled them 
such that the SNPs and sites were no longer matched based on genetic association, instead 
they were random matchings. We constructed 𝑝 = 1. .500 new 𝑇2	matrices that were based 
on randomly shuffled SNP-DNAm site pairings. For each element in 𝑇 we now have a 
permuted distribution . To identify those annotation pairs that are substantially over- or 
under-represented compared to chance, we need to ensure that we have accounted for a 
large number of multiple testing comparisons (𝑆 × 𝐶 = 3009 × 2478 = 7456302). To identify 
those annotation pairs that are substantially over- or under-represented compared to 
chance, we need to ensure that we have accounted for a large number of multiple testing 
comparisons (𝑆 × 𝐶 = 3009 × 2478 = 7456302). To do this we estimated how many SDs 
from the mean the most extreme values found for  were and used this as a threshold for 
significant enrichment. 
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DNAm communities 

Constructing DNAm communities 
Many of the trans-mQTL comprised SNPs that associated with other DNAm cis- and trans-
sites. We defined cis-trans DNAm site pairs (CTDPs) as those in which two DNAm sites 
shared a causal variant and trans sites as those that were more than 1 Mb apart. 
 
To identify CTDPs we did the following 

1. For a particular trans-acting SNP (p < 1e-10), search for whether it associates with 
any other SNPs in cis (p < 1e-8, 1Mb radius). 

2. For putative pairs from (1), obtain all SNPs within a 1Mb radius that are available for 
both the cis and trans site. 

3. Perform colocalization analysis using the coloc.abf function in the R/coloc package 
with default parameters35. 

4. Retain putative pairs if the posterior probability for colocalization is >0.8. 
 
Once a list of CTDPs had been created we next removed possible duplicate representation 
due to linkage disequilibrium. To do this we used a greedy algorithm whereby for each cis-
trans chromosome pair we started by identifying the most connected (sentinel) cis-SNP and 
removed any CTDPs for which the cis and trans SNPs were within 2.5Mb of the sentinel 
CTDP. We then followed on to the next most connected cis-SNP, and so on until pruning 
was exhausted. 
 
Because one site might have shared genetic factors with several other sites, we attempted 
to create DNAm site communities. To do this we used the R/igraph package to construct an 
unweighted and directed graph of site sharing, and then used the Walktrap community 
finding algorithm with random walks of a maximum of 20 steps to identify communities36. 
Here, communities are defined as subgraphs that are connected such that random short 
walks tend to stay within that community. 
 
To test if the cis-trans site pairs arose because of cross-hybridisation, we checked if the sites 
were more likely to be found to have non-unique probe subsequences of length 25bp. We 
found that our community sites were strongly depleted for probes that were liable to cross-
hybridise (OR=0.7, p=1.0e-5), likely due to the stringent exclusion criteria used for retaining 
sites in the mQTL discovery phase. 

Community enrichment analyses 
To test whether there was enrichment for genomic annotations (TFBS, chromatin state), we 
used LOLA29. This analysis has been performed against a background set of 5,109 sites 
sharing a causal variant with at least one other site and was matched on CpG and CG 
content. We used the gometh function in missMethyl (v1.12.0)37 to calculate enrichments for 
Gene Ontology terms and Kyoto Encyclopedia of Genes and Genomes pathways. 
 
To test if a DNAm site community coordinated genomic regions that were relevant to specific 
traits or diseases, we performed enrichment analysis using GWAS summary data. Note that 
we are not specifically testing whether the SNPs that influence the DNAm sites are of 
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relevance to GWAS (there are relatively few mQTL for each community making enrichment 
analysis difficult), rather we are testing if the genomic regions marked by DNAm sites in a 
single community coordinate to have low p-values for a specific trait. We denoted each 
DNAm site in a community as a marker of a genomic location, and we wanted to test if SNPs 
in those regions within a community were enriched for low p-values more expected by 
chance. To do this, for each DNAm site community we: 
 

1. Identified a representative variant for each DNAm in the community. This was simply 
the single closest 1000 Genomes common variant to the DNAm site. 

2. We tested if the -log10 p-values of the representative SNPs for the community were 
substantially larger than the -log10 p-values of representative SNPs for all other 
communities.  

 
Hence our background SNPs are the representative regions for all other communities. We 
chose this background because it is likely to have the same ascertainment properties as 
those in the target community (higher MAF, higher LD proxies, distance to TSS, etc). 
 
To perform (2) we used a model similar to that implemented in GARFIELD, in which we 
perform logistic regression of the -log10 p-value of the representative SNPs against a binary 
variable denoting whether the representative SNP was for the community being tested (y=1) 
or the background (y=0). 
 
We also performed sensitivity analyses, evaluating if the regions of the communities were 
enriched for higher MAF, higher numbers of LD proxies, closer distance to TSS, CG content, 
and CpG density. The distribution of p-values for these enrichments were depleted for low p-
values across all communities, and also specifically for communities that indicated 
enrichments for GWAS traits, indicating that enrichments are not likely driven by 
confounding with genomic context. 

GWAS of complex traits and diseases 
The GARFIELD software (see above) was used to test for over-representation of cis and 
trans mQTL in GWAS associated variants. Publicly available GWAS results were 
downloaded from a range of sources and formatted for use as annotation categories. In total 
41 GWAS (37 traits) were tested, these were selected such that they had i) > 100,000 
variants after LD pruning, ii) > 5 significant associations and iii) > 0 overlapping GWAS 
significant variants and trans mQTL. SNPs associated with complex traits defined as those 
associated at genome-wide significance (p < 5e-8). All variants from the UK10K/1000G were 
used as the background set of genetic variants. In the enrichment, variants were matched by 
MAF, distance to the nearest TSS, number of LD proxies, CpG and GC content. We 
considered a p-value of 0.05 divided by number of traits*number of SNP categories as 
significant (p<4.5e-4).  
Next, we tested for over-representation of cis and trans mQTL in GWAS associated variants 
from 36 blood related traits38 using the same procedure as described above. 
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Colocalisation analysis with complex traits 
We hypothesised that some sites will have shared causal variants with complex traits. We 
used the MR-Base database to pull down traits that had an association with an mQTL SNP 
with p < 1e-5. For each putative DNAm site-trait pair we then performed colocalisation 
analysis using the coloc.abf function in the R/coloc package, using default parameters.35 
 
For several putative DNAm site-trait pairs in which we had identified a shared causal variant, 
those sites also had additional mQTL. We hypothesised that if the site was causal for the 
trait (giving rise to the initially detected shared causal variant), then any other SNPs 
influencing the site should also associate with the mQTL. Furthermore, we expect that the 
association should have a consistent sign, that is if the effect allele for one SNP had a 
positive effect on the site and a negative effect on the trait, then the effect allele at other 
mQTL should have opposite signs for the site and trait also. For sites that had a single extra 
independent mQTL, we compared the Wald ratio (𝛽&34"&/𝛽*"&5)39 for the original mQTL with 
the Wald ratio for the subsequent mQTL. If there were multiple additional independent mQTL 
then the Wald ratios were meta-analysed using the inverse variance weighted (IVW) 
method40. 

Mendelian randomization analysis of influences of traits on DNAm sites 
We estimated the causal effects of 116 complex trait levels41 (Table S18) on 345,109 sites. 
These sites were selected on the basis of being in the 90% most variable DNAm sites in at 
least 20 of the studies contributing to the meta-analysis. To estimate the causal effects, we 
used two-sample Mendelian randomization (2SMR)41. The procedure for 2SMR is described 
briefly here, but there has been much more extensive treatment elsewhere42,43. For a 
particular trait, genetic instruments are obtained by clumping complete GWAS summary data 
with parameters of LD r2 = 0.001 and 10 Mb LD windows, retaining only SNPs with p < 5e-8. 
For a particular trait-DNAm site association we obtain the effects of each instrument on the 
site and harmonise to ensure that the effect estimates for the trait and the site are based on 
the same effect allele. If there is only one instrumental variable, we use the Wald ratio to 
obtain an estimate of the causal effect. If there are multiple instruments we use the IVW 
estimate using modified 2nd order weights44 to avoid having to rely on the no measurement 
error in the exposure (NOME) assumption. For IVW estimates we estimate the heterogeneity 
using Cochran’s Q statistic45. We use the contribution of each SNP using modified 2nd order 
weights to the Cochran’s Q statistic, 𝑞" as an indication of being an outlier, which is chi-
square distributed with one degree of freedom. Outliers are determined by having p-values 
smaller than 0.05 divided by the number of instrumenting SNPs for that particular analysis. 

Sensitivity analyses 
Amongst the IVW analyses that had p < 1.4e-7, 81 were instrumented by SNPs only in the 
MHC region and are likely unreliable due to non-specificity of the instruments. 144 involved 
14 traits that were instrumented by both MHC and non-MHC SNPs. In order to evaluate the 
reliability of these results we compared the causal effect estimates of SNPs outside the MHC 
region with causal effect estimates from SNPs within the MHC region. The agreement of 
causal estimates from MHC and non-MHC SNPs was very high for ulcerative colitis, 
rheumatoid arthritis, juvenile idiopathic arthritis, LDL cholesterol, percent emphysema, birth 
weight, red blood cell count, multiple sclerosis and coeliac disease, all showing that over 
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85% of the causal directions were concordant. This provides confidence that DNAm levels 
are likely to be substantially causally influenced by natural variation in complex traits. The 
remaining traits had associations that were not generally consistent when comparing 
instruments from the MHC region against elsewhere. The MHC region is an obvious 
potential source of bias in MR analysis because it has known large effects on many traits 
across an extended region. But we also saw similar biases arising in MR due to other 
regions. For example, we found many associations between age of menarche and sites 
because one of the instruments for age of menarche is within the CHRNA5 locus. Observing 
these inconsistencies led us to develop the MR Sign Concordance Test (MR-SCT), which 
attempts to reduce the possibility of the weight of a single or few instruments biasing the 
IVW estimate without requiring knowledge of potentially problematic regions. The rationale 
and details of the method are outlined in the Supplementary Note 2. 
 
We developed a decision tree to prioritise significant IVW associations that were most likely 
due to causal relationships, rather than violations of assumptions in MR (Figure S39). The 
principles behind the decision tree are as follows: 
 

1. When there is a single genetic instrument for a trait it is difficult to prove that the SNP 
influences the site through the trait, rather than the SNP influencing both the trait and 
the site through independent pathways. We could not perform genetic colocalization 
analysis for these cases because we only had a single SNP within the region, rather 
than all SNPs surrounding the instrument - anything else would have been 
computationally prohibitive in a meta-analysis setting. These single instrument tests 
are filtered based on p-values for the Wald ratios, but caution is made that further 
analysis is required to investigate possible causality. 

2. If a trait has more than one independent instrument, then we can apply the logic that 
agreement across multiple instruments reduces the likelihood that horizontal 
pleiotropy is driving the overall estimate. There are tests that can be applied to 
evaluate the extent to which there is agreement amongst the methods. Cochran’s Q 
statistic tests for heterogeneity amongst the Wald ratios obtained from each 
instrument. High heterogeneity indicates that at least one instrument could be invalid 
(e.g. due to horizontal pleiotropy). In this instance, further analyses are required to 
evaluate different models of horizontal pleiotropy. We used the MR-simple-median 
method46 because it is unweighted, meaning it will not be liable to the types of 
problems seen with the MHC region disproportionately affecting estimates. If there 
was a consistent effect using the simple-median estimator, then this indicated that 
the putative association was more likely to be reliable. In conjunction with this 
approach we developed MR SCT to operate alongside the heterogeneity statistics, 
with rationale outlined in the Supplementary Note 2. 

Influences of traits on many sites 
To evaluate if a single trait has influences on many sites, we reasoned that the p-values 
across all sites would be slightly lower than expected by chance, due to the null hypothesis 
of no association being consistently false. To test this, we used the genomic inflation 
estimator of calculating the ratio between the expected and observed median chi-square 
statistics (GCin).  
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The median test statistic should not be influenced by a single region (e.g. the MHC) leading 
to apparent inflation. But to be sure of this we also performed two sensitivity analyses: 
single-chromosome analyses where we looked for consistency of the GCin estimate when 
restricting to sites only on each individual chromosome; and leave-one-chromosome-out 
analyses, where we tested across the whole genome but sequentially excluding one 
chromosome at a time, to see if the estimate shifted dramatically upon the exclusion of a 
particular chromosome. 

Selection metrics 

Enrichment analysis of selection scores 
To assess enrichment amongst mQTL SNPs, we used GARFIELD25 using a similar 
approach as described for the regulatory annotations. We generated five annotations 
reflecting different types of positive selection over different time scales (Table S24)47 
including: SDS (UK10K)48, Fst (Global Fst (CEU versus YRI versus CHB)), iHS (CEU)49, 
XPEHH (CEU versus YRI)50 and XPEHH (CEU versus CHB)50. Scores for these selection 
metrics were downloaded from: http://hsb.upf.edu/hsb_data/positive_selection_NAR2013/. 
For each annotation, variants were set to 1 if a variant had a selection score with p<0.01 and 
to 0 if a variant had a selection score with p>0.01. We removed the MHC and LCT regions 
from all our analyses. For the GWA, we used the minimal GWA p-value for each mQTL SNP 
across all DNAm sites. Variants with missing selection scores were set to 0 and were 
excluded from the mQTL GWA files. P-values for SNPs with missing mQTL association 
statistics were set to 1. We used a mQTL p-value of 1e-14 as GWA cut-off p-value and 
considered an enrichment p-value of 0.05/5 selection metrics = 0.01 as significant. In the 
enrichment, variants were matched by MAF, distance to the nearest TSS, number of LD 
proxies, CpG and GC content.  
To assess the relationship between effect size of the mQTL SNP and selection scores, we 
used a linear model to regress selection scores against the strongest absolute mQTL effect 
size accounting for the number of LD proxies, distance to TSS, CpG and GC frequency. 

Enrichment analysis of mQTL SNPs amongst complex traits 
To examine enrichment of mQTL SNPs with extreme SDS amongst complex trait GWA 
signals we generated an annotation where we set variants with a SDS score p<0.01 that 
were overlapping a cis only or a cis+trans mQTL LD region to 1 and all other variants to 0. 
We selected 42 GWA datasets (37 traits) across 11 disease/trait categories including several 
datasets with extreme anthropometric phenotypes (Table S20). Out of the 42 datasets, 19 
datasets showed an overlap with at least one cis acting SNP overlapping an extreme SDS 
score. We therefore considered a p-value of 2.6e-3 (0.05/19) traits as significant.  

Comparison of genetic variance 
For the five traits that were enriched for extreme SDS overlapping mQTL SNPs, we 
compared the genetic variance for trait associated mQTL or trait associated mQTL with 
extreme SDS against all trait associated SNPs.  
We used the formula below to estimate the genetic variance: 

𝐺𝑒𝑛𝑒𝑡𝑖𝑐	𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒	 = 2 ∗ 𝛽% ∗ 𝑓(1 − 𝑓)	
where 𝛽 is the absolute maximum effect size for each SNP and 𝑓 is the MAF. 
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Measure of genomic architecture 
Many methods (for example, BayesS51) attempt to fit a model of the form: 

𝑣𝑎𝑟(𝛽) 	= 	𝜎%[𝑓(1 − 𝑓)]6,	
to the distribution of effect sizes 𝛽(on some trait) as a function of MAF 𝑓. If 𝑆 = 0, then effect 
size is unrelated to frequency and the trait is unlikely to be under selection. If 𝑆 > 0 this is 
evidence that the trait is under negative selection, as SNPs with large effects are reduced in 
frequency. 
There are two main sources of deviation from this model that both create a form of 
“censoring”, that is, that we cannot observe the true value of 𝛽 when either 𝛽 or 𝑓 are small. 
The first is that effect sizes that are small cannot be reliably estimated for low frequency 
variants, due to power. The power to detect a variant is proportional to its total effect, i.e. 
𝜎%	𝑓(1 − 𝑓) and thus, is a function of 𝑓, creating bias. This could be modelled with 
heteroskedasticity. 
The second is an explicit censoring in the way we constructed the trait. To consider DNAm 
as a general trait, we have combined a large number of DNAm sites and considered the 
effect size of a large number of loci for each. To perform the computation, we omitted many 
of the effects. This means that the trait under question is not a particular DNAm site but is 
instead the maximum effect that each SNP has on any DNAm site. This creates a bias in the 
distribution as small values of 𝛽 cannot be observed, and the bias will be a function of MAF 
category. Further, for computational reasons we did not evaluate all possible SNPs on all 
possible DNAm sites. This cannot be simply modelled as it is taking the form of true 
censoring. 
Additionally, there may be a mixture in the effect size distribution; for example, some SNPs 
will not affect the trait, others (e.g. trans SNP effects) may have small effects and others 
(e.g. cis SNP effects) may have large effects. Modelling this appears complex. 
 
To solve all of these problems, we instead focus only on the upper tail of the SNP-effect 
distribution. We assume that the data contain at least some SNPs were truly generated by 
the functional form: 

𝑝(𝛽|𝑓) = 𝑁(0, 𝜎%[𝑓(1 − 𝑓)]6,)	
We then choose two thresholds, 𝑡)and 𝑡%	 > 𝑡) in terms of the number of SDs into the (two-
tailed) distribution and create a summary statistic for a dataset and parameter value set 
(𝑆, 𝜎) conditional on a set of frequency bins 𝐵	 = 	 {𝑏}! as the number of SNPs in each 
frequency category that exceed their predicted threshold frequency under the null 
distribution: 

𝑆({𝛽, 𝑓}" , 𝑆, 𝜎) = {#𝛽" > 𝑡)(𝑓"), #𝛽" > 𝑡%(𝑓")}8"9:# 	
Provided that the thresholds are chosen sufficiently large to make all frequency bins 
unaffected by censoring, then the number in each bin j that are above 𝑡%(called 𝑁%,!) should 
be simply related to the number that are above 𝑡)(called 𝑁),!):  

𝑁%,! ∼ 𝐵𝑖𝑛𝑜𝑚(𝑁),! , 𝑝)	
where 𝑝 is simply computed from the distribution function of the Normal distribution at the 
chosen thresholds: 

𝑝 = 𝑞)/𝑞%	
The difficulty in this approach lies in the fact that different data are discarded depending on 
the parameters. This makes defining a likelihood difficult, and even defining a loss is difficult 
since we do not want it to penalise parameter values that retain a high proportion of the data. 
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We resolve this by loss function defined as the average log-probability under the binomial 
model, per-accepted datapoint: 

𝐿(𝑆({𝛽, 𝑓}",𝑆, 𝜎)) 	= :𝐿𝑜𝑔 − 𝐵𝑖𝑛𝑜𝑚(𝑁%,!; 𝑁),!,𝑝)/𝑁),!

/$

!-)

	

There might be some concern about this behaving poorly when the model chooses to reject 
much of the data; however, in practice a large amount of data is needed to make 𝑁%,!/𝑁),! 
close to 𝑝, which is necessary for the contribution from a given bin to be minimised. 
Therefore, in practice this measure penalises both small retained datasets, as well as those 
that have a non-uniform assignment of effect sizes into MAF bins. 
 
For our purposes it suffices to use a grid search to find acceptable losses. We use 
resampling in order to establish an appropriate confidence interval. We formed a confidence 
interval from all values of 𝑆 that under bootstrap resampling were ever seen to have lower 
loss than the inferred value and extended this to halfway to the next point. 
 
Figure S44 illustrates this procedure. Figure S44D shows what the distribution of MAF and 
beta should look like for a well calibrated and pair, with the fitted model clearly following both 
the tail density and also the maximum observed value. Figure S44C,E show poor choices of 
𝑆. The summary statistics for these situations are shown in Figure S44F-H, again confirming 
that 𝑆=0.4 is a good choice. Figure S44A-B shows the loss function as a function of 𝑆 
(taking the best values of 𝑆 for each 𝜎). 
 
Figure S45 shows how different subsets of SNPs behave, comparing cis+trans or cis only to 
all SNPs. The inferred 𝑆 may increase slightly in these cases, which is evidence that these 
two subsets of SNPs have different distributions which are made more uniform when mixed. 
 
This process should not be considered as a full model for the data, but instead as an 
informative descriptive statistic describing the distribution. In theory, it is possible that there 
is a different “true S” for different choices of threshold, if there is a mixture of underlying true 
effects. This would occur for example if a stringent threshold included only cis effects but a 
more generous threshold included trans effects. 

Simulations of genomic architecture 
To confirm that the method we use to discover genomic architecture is accurate, we 
performed a simulation study. We simulated 𝑁 SNPs and retained the fraction 𝑟 that were 
largest in terms of variance explained; that is, we retained the 𝑁𝑟 SNPs that had the largest 
value of 𝛽𝑓(1 − 𝑓). We then repeated this simulation 10 times for a range of values of 𝑁 and 
𝑟, as shown in Figure S53. 
 

Statistical uncertainty due to power has the same shape as genetic architecture31 (Figure 
S54A) because lower minor allele frequency means lower power. To confirm that the signal 
we see is due to real effects and not power, we compared the effect size to its statistical 
uncertainty (Figure S54B). We noted that there is a factor around 16 when MAF=0.01, with 
a mean of 38 (with MAF and the ratio modelled linearly on a log-scale). This is negligible 
with respect to our model, which produces the same qualitative estimates if we instead use 
the conservative effect sizes sign(beta)*(|beta| - se(beta)) (Figure S54C-D). Similarly, we 
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are above the MAF threshold T for which different qualitative relationship between MAF and 
effect size is operating52. A lack of such threshold is visible in Figure S54A and is confirmed 
by sensitivity analysis in which we repeat our inference model for S using a MAF threshold of 
0.05 (Figure S54E-F). This again does not qualitatively change the results, though does 
widen the confidence interval significantly to include S=0.5, because the power to distinguish 
similar values of S comes in the low frequency region. 

Coverage 
Using the annotation file from https://zwdzwd.github.io/InfiniumAnnotation we selected 
331,884 DNAm sites that were annotated to 18,993 protein-coding genes. For each of the 
genes, we counted the number of probes on the 450k array and the number of cis and trans 
mQTL. Using linear regression, we calculated the relationship between the median number 
of probes by protein-coding gene on the 450k array and the median number of cis and trans 
mQTL. There was a similar linear relationship between 58,356 450k probes with 43,324 cis 
mQTL and 3,330 trans mQTL in regions that were not annotated to a protein-coding gene 
(“non-genic regions”). 

Genetic architecture 

If we know the number of mQTL with a particular 𝑟%value, and the power of detecting mQTL 
with that value as described above, then we can obtain a rough estimate of how many mQTL 
would expect to exist with that value regardless of power. Here we use the GS replication 
mQTL 𝑟%values, and estimate the expected number of mQTL for a particular 𝑟%value as 
being 

𝑛5;25$&5< =
𝑛=:*53>5<

1 − 𝑝(𝑚𝑖𝑠𝑠)
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