Supplementary Materials of "Efficacy of Localized Lockdowns in the SARS-CoV-2 Pandemic"

Yige Li,^{1,2} Eduardo A. Undurraga,^{3,4} José R. Zubizarreta^{1,2,5,*}

¹Department of Health Care Policy, Harvard Medical School, 180A Longwood Avenue, Boston, MA 02115, USA

²Department of Biostatistics, Harvard T. H. Chan School of Public Health, 677 Huntington Avenue, Boston, MA 02115, USA

³Escuela de Gobierno, Pontificia Universidad Católica de Chile, Vicuña Mackenna 4860, Macul, Santiago 7820436, Chile,

⁴Millennium Initiative for Collaborative Research in Bacterial Resistance (MICROB-R), Chile ⁵Department of Statistics, Harvard Faculty of Arts and Sciences, 1 Oxford Street Cambridge, MA 02138, USA

*Corresponding Author; E-mail: zubizarreta@hcp.med.harvard.edu.

Materials and Methods

Notation: interventions and potential outcomes

We base our analysis on the potential outcomes framework for causal inference (29, 24, 23) under interference (19, 20, 30). Let $L_{ij,i}$ denote the lockdown indicator for municipality i=1,...,I in cluster $j_i=1,...,J_i$ at time t=1,...,T, with $L_{ij,t}=1$ if the municipality is under lockdown at time t, and $L_{ij,t}=0$ otherwise. In our analysis, since the cluster of municipality i is defined as the union of i and its adjacent municipalities, we can omit the index j_i for simplicity in the notation, but our approach is more general. Write \underline{L}_{it} for the lockdown history of municipality i until time t. Analogously, define $P_{(i)t}$ as the proportion of the population in the cluster of municipality i under lockdown at time t, excluding municipality i, and $\underline{P}_{(i)t}$ as the corresponding history until time t. Following the frameworks for causal inference under interference by (19) and (20), we put $R_{it}(\underline{L}_{it}=\underline{l}_{it},\underline{P}_{(i)t}=\underline{p}_{(i)t})$ for the potential effective reproduction number for municipality i in its cluster at time t under lockdown histories \underline{l}_{it} and $\underline{p}_{(i)t}$ for the municipality and its neighbors until time t, respectively. Finally, designate \underline{l}_{it} ($\underline{L}_{it-1}(*)$, $R_{it}(\underline{L}_{it}=\underline{l}_{it},\underline{P}_{(i)t}=\underline{p}_{(i)t})$) as the potential incidence in municipality i at time i, which is a function of its potential incidence history $\underline{L}_{it-1}(*)$ and potential effective reproduction number $R_{it}(\underline{L}_{it}=\underline{l}_{it},\underline{P}_{(i)t}=\underline{p}_{(i)t})$.

Estimands: direct, indirect, and total effects of lockdowns

For any given municipality i, we want to estimate the individual effect of lockdowns on the effective reproduction number R_{it} when intervening both on the duration of the lockdown \underline{L}_{it} and on the proportion of the population under lockdown in the neighboring municipalities $\underline{P}_{(i)t}$. In particular, we are interested in the municipality-level direct, indirect, and total effects of

¹In this framework, l_{it} can also denote the proportion of the population under lockdown in municipality i, beyond whether or not the municipality is under lockdown.

lockdowns across time (20).

Let \underline{l}_{it}^a and \underline{l}_{it}^b denote two alternative lockdown interventions on municipality i at time t, and $\underline{p}_{(i)t}^c$ and $\underline{p}_{(i)t}^d$ be two different interventions on the neighboring municipalities also at time t. To fix ideas, in Table S1 we provide a simple example. In the table, \underline{l}_{it}^a denotes reopening the municipality in t=22 (week 4) after two weeks of lockdown (t=8,...,21), whereas \underline{l}_{it}^b denotes maintaining the municipality closed during t=22,...,28 after the same lockdown history until t=21. In the table, $p_{(i)t}^c$ refers to reducing the population under lockdown in the neighboring municipalities to 25% from t=22 after two weeks at 50%, whereas \underline{p}_{it}^d refers to maintaining the neighboring population under lockdown at 50% after the same lockdown history.

Table S1: Example alternative lockdown interventions at the level of the municipality and its neighbors over a time horizon of 4 weeks.

Intervention	Time				
Intervention	t = 1,, 7	t = 8,, 14	t = 15,, 21	t = 22,, 28	
On municipality i					
$ar{l}_{it}^a$	0	1	1	0	
$rac{ar{l}_{it}^a}{ar{l}_{it}^b}$	0	1	1	1	
On the neighbors of municipality i					
$\underline{p}_{(i)t}^c$	0	0.5	0.5	0.25	
$\underline{p}_{(i)t}^{d^{\prime\prime}}$	0	0.5	0.5	0.5	

Using this notation, for each municipality i, we are interested in the following causal contrasts on R_{it} and I_{it} :

• Direct effects

$$\begin{aligned} \mathbf{D}\mathbf{E}_{it}^{R} &= R_{it}(\underline{L}_{it} = \underline{l}_{it}^{b}, \underline{P}_{(i)t} = \underline{p}_{(i)t}^{c}) - R_{it}(\underline{L}_{it} = \underline{l}_{it}^{a}, \underline{P}_{(i)t} = \underline{p}_{(i)t}^{c}), \\ \mathbf{D}\mathbf{E}_{it}^{I} &= I_{it}\left(\underline{I}_{it-1}(*), R_{it}(\underline{L}_{it} = \underline{l}_{it}^{b}, \underline{P}_{(i)t} = \underline{p}_{(i)t}^{c})\right) - I_{it}\left(\underline{I}_{it-1}(*), R_{it}(\underline{L}_{it} = \underline{l}_{it}^{a}, \underline{P}_{(i)t} = \underline{p}_{(i)t}^{c})\right); \end{aligned}$$

• Total effects

$$\begin{aligned} \text{TE}^R_{it} &= R_{it}(\underline{L}_{it} = \underline{l}^b_{it}, \underline{P}_{(i)t} = \underline{p}^d_{(i)t}) - R_{ijt}(\underline{L}_{it} = \underline{l}^a_{it}, \underline{P}_{(i)t} = \underline{p}^c_{(i)t}), \\ \\ \text{TE}^I_{it} &= I_{it}\left(\underline{I}_{it-1}(*), R_{it}(\underline{L}_{it} = \underline{l}^b_{it}, \underline{P}_{(i)t} = \underline{p}^d_{(i)t})\right) - I_{it}\left(\underline{I}_{it-1}(*), R_{it}(\underline{L}_{it} = \underline{l}^a_{it}, \underline{P}_{(i)t} = \underline{p}^c_{(i)t})\right); \end{aligned}$$
 and

Indirect effects

$$\begin{split} \mathbf{IE}_{it}^R &= \mathbf{TE}_{it}^R - \mathbf{DE}_{it}^R \\ &= R_{it}(\underline{L}_{it} = \underline{l}_{it}^b, \underline{P}_{(i)t} = \underline{p}_{(i)t}^d) - R_{it}(\underline{L}_{it} = \underline{l}_{it}^b, \underline{P}_{(i)t} = \underline{p}_{(i)t}^c), \end{split}$$

$$\begin{split} \mathbf{IE}_{it}^{I} &= \mathbf{TE}_{it}^{I} - \mathbf{DE}_{it}^{I} \\ &= I_{it} \left(\underline{I}_{it-1}(*), R_{it}(\underline{L}_{it} = \underline{l}_{it}^{b}, \underline{P}_{(i)t} = \underline{p}_{(i)t}^{d}) \right) - I_{it} \left(\underline{I}_{it-1}(*), R_{it}(\underline{L}_{it} = \underline{l}_{it}^{b}, \underline{P}_{(i)t} = \underline{p}_{(i)t}^{c}) \right). \end{split}$$

For a group of municipalities \mathcal{I} , we are interested in the total effect

$$TE_{\mathcal{I}t}^{I} = \sum_{i \in \mathcal{I}} \left[I_{it} \left(\underline{I}_{it-1}(*), R_{it}(\underline{L}_{it} = \underline{l}_{it}^{a}, \underline{P}_{(i)t} = \underline{p}_{(i)t}^{c}) \right) - I_{it} \left(\underline{I}_{it-1}(*), R_{it}(\underline{L}_{it} = \underline{l}_{it}^{b}, \underline{P}_{(i)t} = \underline{p}_{(i)t}^{d}) \right) \right].$$

In both the direct and total effects, one of the two potential outcomes is observed and the other one needs to be estimated.

Our estimates will be valid causal estimates under the following assumptions. First, the potential effective reproduction number $R_{it}(*)$ is subject to two types of interference, direct interference and allocational interference (30).² In regards to direct interference, the effective reproduction number can be approximated by the product of the time-varying transmission rate

²Under direct interference, one unit's exposure directly affects another unit's outcome, without being mediated by the first unit's outcome. Under allocational interference, one unit's outcome is affected by the units allocated to the same exposure group, either through the exposure or the outcomes of the other units in the same group (30).

and a constant mean infectious period (31). The transmission rate can be considered as a function of population under lockdown and certain characteristics of the municipality. Therefore, the effects of the intervention of one municipality on the effective reproduction numbers of its neighbors are not mediated by the effective reproduction number in that municipality. In regards to allocational interference, we assume that the effective reproduction number of one municipality cannot be affected by interventions in non-adjacent neighbors. Second, we assume that the intervention assignment is ignorable given the observed baseline covariates (32, 23) and the factor loadings (25) of the potential outcomes. Third, the decrements in the proportion of the susceptible population are negligible during our studied period. Therefore, the estimation of $R_t(*)$ does not differ by the calendar time.

Estimator: a synthetic control approach for duration and spillover effects

We use the augmented synthetic control method (25, 26) to estimate the potential effective reproduction number $R_{it}(*)$ and calculate potential incidence $I_{it}(*)$ from $R_{it}(*)$. See Equation (2) in (25) and the following subsection for details. The intuition behind this method is, for a given lockdown intervention in municipality i, to build a synthetic control municipality with very similar covariate, intervention and outcome histories until the time of the intervention by weighting appropriately in time control municipalities.

For each municipality i that is intervened at time t, we construct a set of candidate controls \mathcal{C} described in the next subsection. Let \tilde{t} denote the last day of lockdown. To estimate the potential $R_{it}(*)$ during the extended lockdown, $t = \tilde{t} + 1, \dots, \tilde{t} + \Delta_D$, where Δ_D represents the extension of the lockdown in days, we balance the baseline covariates, intervention and outcome histories with length h of the control set \mathcal{C} relative to those of municipality i. Starting from $\tilde{t}+1$, we estimate the potential $R_{i\tilde{t}+1}(*)$ by balancing $R_{\mathcal{C}[1,h]}:=(R_{\mathcal{C}1},\dots,R_{\mathcal{C}h})$ relative to $R_{i[\tilde{t}-h,\tilde{t}]}:=(R_{i\tilde{t}-h},\dots,R_{i\tilde{t}})$ and linearly weighting $R_{\mathcal{C}h+1}$. After adding the estimated potential

 $R_{i\tilde{t}+1}(*)$ to and dropping $R_{i\tilde{t}-h}$ from the history of potential $R_{i\tilde{t}+2}(*)$, we also move one day forward in the control set by balancing $R_{\mathcal{C}[2,h+1]}$ to $R_{i[\tilde{t}-h+1,\tilde{t}+1]}(*)$. In this way, we estimate all the potential outcomes $R_{i[\tilde{t}+1,\tilde{t}+\Delta_D]}(*):=\left(R_{i\tilde{t}+1}(*),R_{i\tilde{t}+2}(*),\ldots,R_{i\tilde{t}+\Delta_D}(*)\right)$. Along with the lagged outcomes, the other lagged variables are adjusted similarly.

The balancing weights at time t can be found by first solving a convex optimization of the form

$$\min_{\eta_{0},\eta_{x},\eta_{r},\eta_{l},\eta_{p}} \frac{1}{2} \sum_{c \in \mathcal{C}} (R_{ct_{h}} - (\eta_{0} + X_{c}\eta_{xt} + R_{c[t_{h}-h,t_{h}-1]}\eta_{rt} + L_{c[t_{h}-h,t_{h}-1]}\eta_{lt} + P_{(c)[t_{h}-h,t_{h}-1]}\eta_{pt}))^{2}
+ \lambda_{xt} \|\eta_{xt}\|_{2}^{2} + \lambda_{rt} \|\eta_{rt}\|_{2}^{2} + \lambda_{lt} \|\eta_{lt}\|_{2}^{2} + \lambda_{pt} \|\eta_{pt}\|_{2}^{2},$$

where $t_h = t - \tilde{t} - h$, η_0 , η_x , η_r , η_l and η_p are the intercept and vectors of regression coefficients associated with the pre-intervention baseline covariates X_c , time-varying reproduction numbers history $R_{c[t_h-h,t_h-1]}$ and lockdown histories $L_{c[t_h-h,t_h-1]}$ and $P_{(c)[t_h-h,t_h-1]}$, respectively; and λ_{xt} , λ_{rt} , λ_{lt} , and λ_{pt} are ridge regression tuning parameters that control the degree of regularization and that are selected by cross-validation.

Let $\hat{\eta}_{xt}$, $\hat{\eta}_{rt}$, $\hat{\eta}_{lt}$ and $\hat{\eta}_{pt}$ be the estimated regression coefficients under $\lambda_{xt}=0$. Let $\hat{\gamma}_{ct}$ be the implied synthetic control weights of unit c at time t. Let $\hat{\gamma}_{\mathcal{C}t}$ define the vector of control weights $\hat{\gamma}_{ct}$. Let $R_{\mathcal{C}[t_h-h,t_h-1]}$, $L_{\mathcal{C}[t_h-h,t_h-1]}$, and $P_{\mathcal{C}[t_h-h,t_h-1]}$ denote, respectively, the matrices of $R_{c[t_h-h,t_h-1]}$, $L_{c[t_h-h,t_h-1]}$, and $P_{(c)[t_h-h,t_h-1]}$ with $|\mathcal{C}|$ rows and h columns. $X_{\mathcal{C}}$ represents the matrix of baseline covariates. The augmented synthetic control weights are given by

$$\hat{\gamma}_{ct}^{\text{cov}} = \hat{\gamma}_{ct} + (\tilde{R}_{i[t-h,t-1]}(*) - \hat{\gamma}_{\mathcal{C}t}^{\top} \tilde{R}_{\mathcal{C}[t_h-h,t_h-1]}) (\tilde{R}_{\mathcal{C}[t_h-h,t_h-1]}^{\top} \tilde{R}_{\mathcal{C}[t_h-h,t_h-1]} + \lambda_{rt} I_h)^{-1} \tilde{R}_{c[t_h-h,t_h-1]}^{\top} \\
+ (X_i - \hat{\gamma}_{\mathcal{C}t}^{\top} X_{\mathcal{C}})^{\top} (X_{\mathcal{C}}^{\top} X_{\mathcal{C}})^{-1} X_{c}^{\top} \\
+ (\tilde{l}_{i[t-h,t-1]} - \hat{\gamma}_{\mathcal{C}t}^{\top} \tilde{L}_{\mathcal{C}[t_h-h,t_h-1]}) (\tilde{L}_{\mathcal{C}[t_h-h,t_h-1]}^{\top} \tilde{L}_{\mathcal{C}[t_h-h,t_h-1]} + \lambda_{lt} I_h)^{-1} \tilde{L}_{c[t_h-h,t_h-1]}^{\top} \\
+ (\tilde{p}_{(i)[t-h,t-1]} - \hat{\gamma}_{\mathcal{C}t}^{\top} \tilde{P}_{\mathcal{C}[t_h-h,t_h-1]}) (\tilde{P}_{\mathcal{C}[t_h-h,t_h-1]}^{\top} \tilde{P}_{\mathcal{C}[t_h-h,t_h-1]} + \lambda_{pt} I_h)^{-1} \tilde{P}_{(c)[t_h-h,t_h-1]}^{\top},$$

where
$$\tilde{R}_{c[t_h-h,t_h-1]} = R_{c[t_h-h,t_h-1]} - X_c(X_{\mathcal{C}}^{\top}X_{\mathcal{C}})^{-1}X_{\mathcal{C}}^{\top}R_{\mathcal{C}[t_h-h,t_h-1]}, \tilde{R}_{i[t_h-h,t_h-1]}(*) = R_{i[t-h,t-1]}(*) - R_{i[t-h,t_h-1]}(*)$$

 $X_c(X_{\mathcal{C}}^{\top}X_{\mathcal{C}})^{-1}X_{\mathcal{C}}^{\top}R_{\mathcal{C}[t_h-h,t_h-1]}, \ \tilde{L}_{c[t_h-h,t_h-1]} = L_{c[t_h-h,t_h-1]} - X_c(X_{\mathcal{C}}^{\top}X_{\mathcal{C}})^{-1}X_{\mathcal{C}}^{\top}L_{\mathcal{C}[t_h-h,t_h-1]},$ $\tilde{P}_{(c)[t_h-h,t_h-1]} = P_{(c)[t_h-h,t_h-1]} - X_c(X_{\mathcal{C}}^{\top}X_{\mathcal{C}})^{-1}X_{\mathcal{C}}^{\top}P_{\mathcal{C}[t_h-h,t_h-1]}. \ l_{i[t-h,t-1]} \ \text{and} \ p_{(i)[t-h,t-1]} \ \text{are}$ intervention histories, $\tilde{l}_{i[t-h,t-1]}, \ \tilde{p}_{(i)[t-h,t-1]}$ are projected into $X_{\mathcal{C}}$ similarly. The weights $\hat{\gamma}_{ct}^{\text{cov}}$ exactly balance baseline covariates and approximately balance lagged interventions and outcomes. Point estimates are produced by linearly weighting the observed outcomes. See (25) for details.

Further details and code

In our estimations, we set h = 7 because the partial autocorrelations of the estimated R_{it} for lags over 7 days is negligible. We also assume that R_{it} is not affected by the histories of lockdown interventions and proportion of neighboring population under lockdown beyond 7 days.

For each intervention municipality i, we built a set \mathcal{C} of candidate control municipalities as follows. We considered municipalities that had at least 10 reported cases and that were under lockdown for at least 14 days by June 15. For each of these candidate control municipalities $k \neq i$, we build a subset \mathcal{C}_k of municipality-periods of 14 days from the start of its lockdown intervention. Thus, a candidate control municipality k that was under lockdown for 14 days contributes 1 municipality-period to \mathcal{C}_k , a control municipality k' that was under lockdown for 15 days contributes 2 municipality-periods to \mathcal{C}'_k , and so on. In general, a candidate control municipality k that was under lockdown for k days contributes k that was under lo

After estimating all the potential $R_{i[\tilde{t}+1,\tilde{t}+7]}(*)$ in the first week of extended lockdown, we recycle the control group for the prediction of the second week and the following weeks as well.

Assuming that the error terms of R_{ct} of all the units in the control set are independent across c and t and follow a sub-Gaussian distribution, the estimated conditional variance of each estimation from $\tilde{t} + 1$ to $\tilde{t} + \Delta_D$ given its history is obtained using the R package of (25).

The variance of estimation at each time is calculated by the law of total variance.

To estimate the variance of the average $R_{it}(*)$ from $\tilde{t}+1$ to $\tilde{t}+\Delta_D$, we first estimate the autocorrelation of the observed series in i and then estimate the variance of the sum of those correlated random variables.

We conducted all our analyses using R. The code can be found through this link: https://scholar.harvard.edu/files/zubizarreta/files/code_v1.0.zip.

Baseline covariates and lagged variables

Following (31), the effective reproduction number is proportional to the time-varying transmission rate, which is a function of certain characteristics of the municipalities. We consider both baseline (time-invariant) covariates and lagged (time-varying) variables. Both of these variables may confound the effect of the lockdown interventions, so we adjust for them. A summary of the baseline, time-invariant covariates is in Table S2. The lagged variables include: h-day history of effective reproduction number, h-day history of proportion of neighboring population under lockdown, and h-day history of lockdown interventions.

Integrated surveillance records, survey measurements, and census data

Our data sets combine information from administrative COVID-19 surveillance records, a nationally representative household survey, and census data. Specifically, we use epidemiologic surveillance records from the Department of Epidemiology of Chilean Ministry of Health (22). We utilize municipality measurements from Chile's National Socioeconomic Characterization Survey (CASEN), a nationally representative household survey of the Chilean Ministry of Social Development that collects data on education, employment, income, health, and housing (27). Finally, we employ population data from the 2017 National Census (28). All data used in this article is publicly available. We adjust the incidence series in order to correct for the

Table S2: Summary of baseline covariates in 324 municipalities with no missing values.

Variable	Mean (SD)	IQR (25%, 75%)	Description
Rural	0.37 (0.28)	0.09, 0.59	Proportion of the population
			in rural areas.
Female	0.52 (0.03)	0.50, 0.53	Proportion of female population.
Over 65	0.13 (0.03)	0.11, 0.15	Proportion of the population over 65.
Poverty	0.13 (0.08)	0.07, 0.17	Proportion of the population
roverty	0.13 (0.06)	0.07, 0.17	living with a monthly income
			per capita below the poverty line
			(about 3.9 USD per person
			per day in 2017).
Overamovvidina	0.00 (0.05)	0.06.0.12	- · ·
Overcrowding	0.09 (0.05)	0.06, 0.12	Proportion of households
			with an overcrowding condition
Doon sonitation	0.14 (0.15)	0.04.0.20	(people/rooms ≥ 2.5).
Poor sanitation	0.14 (0.15)	0.04, 0.20	Proportion of the population
			with inadequate sanitation
			(House Sanitation Index).
			Inadequate sanitation defined as a household with no access to
			drinkable water, or without a toilet
			or latrine connected to the sewer
T	205(01 44 (152000 02)	212002 25 205500 25	or septic tank.
Income	285691.44 (152089.93)	212992.25, 305508.25	Average income per capita
			in 2017 CLP (Chilean pesos;
A maa	1066 00 (4750 20)	242 75 1455 05	1 USD = 700 CLP). Area in km ² . Area is divided
Area	1966.99 (4758.30)	243.75, 1455.95	
			into small/medium/large area
			in the balancing procedure.

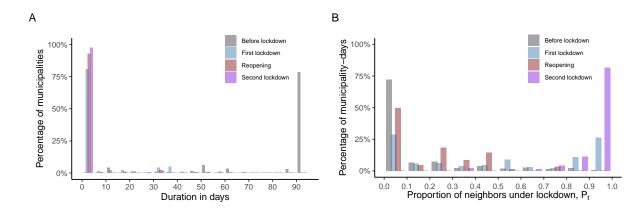
lag in reporting and some incomplete municipality level data. First, we impute the incomplete data by interpolating between the closest dates with complete data. Second, we estimate the lag in reporting using the PELT algorithm (33) and adjust the incidence series employing the implementation by (34). These adjustments took into consideration that the lag between symptom onset date and report date can vary across municipalities and over time. With the adjusted series, we estimate the effective reproduction number following (21).

Outcome: the instantaneous reproduction number

For ease of exposition, in this subsection we drop the index i and write the instantaneous reproduction number as R_t . This provides a real-time estimate of the effective reproduction number. Following (21), R_t can be estimated by

$$R_t = \frac{I_t}{\sum_{s=1}^t I_{t-s} w_s},$$

where I_t is the incidence at time t and w_s is the infectivity function or density of the serial interval at time s. (21) propose estimating R_t over a window of time τ as


$$R_{t} = \frac{\sum_{s=t-\tau+1}^{t} I_{s}}{\sum_{s=t-\tau+1}^{t} \sum_{r=1}^{s} I_{s-r} w_{r}}.$$

See (35) for a discussion of the method by (21) and other related approaches to estimating the effective reproduction number.

According to (36) and (10), during the SARS-CoV-2 outbreak in Wuhan, the distribution of the serial interval had a mean of 7.5 days, a standard deviation of 3.4 days, and a 95% confidence interval of [5.3, 19] days. In conformity with (21, 10), we thus assume that the serial interval has a Gamma distribution with a mean of 7.5 days and a standard deviation of 3.4 days and $\tau = 5$. Following (21), we compute $E[I_t(*)]$ from the estimated $R_t(*)$ by $E[I_t(*)|R_t(*), \{I_{t-s}(*)\}_{s=1}^t] = R_t(*) \sum_{s=1}^t I_{t-s}(*)w_s$. Therefore, $Var(E[I_t(*)]) = (\sum_{s=1}^t E[I_{t-s}(*)]w_s)^2 Var(E[R_t(*)])$.

Figures S1 to S9

Duration of the lockdowns and proportion of neighbors under lockdown

Figure S1: Background. A: Histogram of the durations of different lockdown statuses in all municipalities (before lockdown, during the first lockdown, after the reopening, during the second lockdown) in days. From March 15 to June 15, all of the lockdown interventions occur within 21.7% of the municipalities. The median duration of the first lockdown is 32 days. **B:** Histogram of the proportion of neighbors under lockdown, P_t , in municipality-days from March 15 to June 15. During the second lockdown period, 81.5% of the municipality-days showed more than 90.0% of its neighboring population under lockdown.

Covariate balance

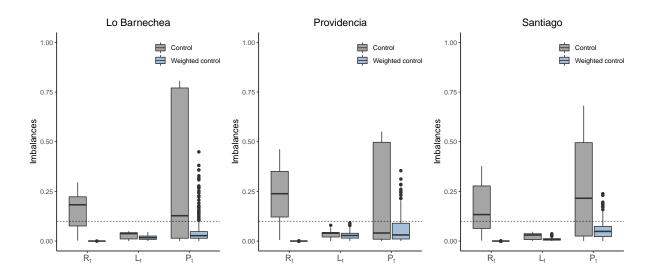
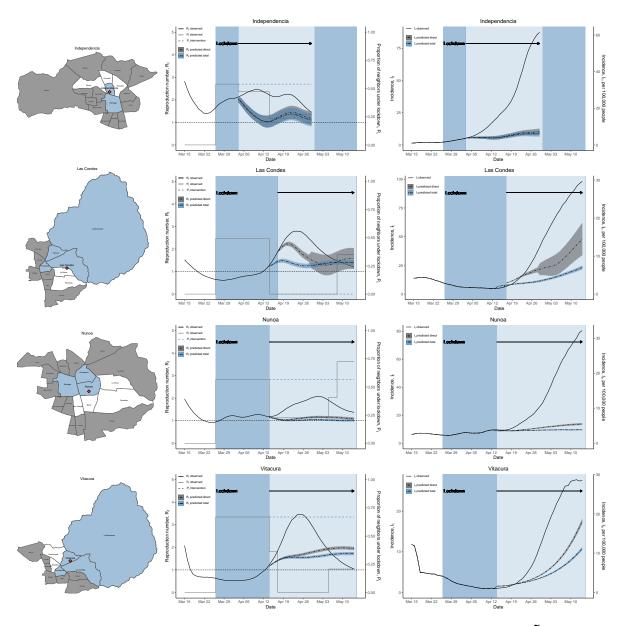



Figure S2: Covariate balance in Lo Barnechea, Providencia, and Santiago. Imbalance of all the lagged variables, including the instantaneous reproduction number R_t , the lockdown indicator L_t , and the proportion of neighboring population under lockdown P_t , in the control units before and after weighting. The dashed line at 0.1 denotes the commonly accepted balance threshold. After weighting, the imbalances of R_t is near 0, the imbalance of L_t is reduced substantially, and the third quartile of the imbalance of P_t is below 0.1.

Results for other municipalities in Greater Santiago

Figure S3: Results for extended lockdown in Independencia, Las Condes, Ñuñoa, and Vitacura. The neighbors of Las Condes reopened simultaneously three days before its own reopening. To study the total effect, we intervene on its neighbors Providencia, Vitacura, and Lo Barnechea to maintain their lockdown status rather than reopen.

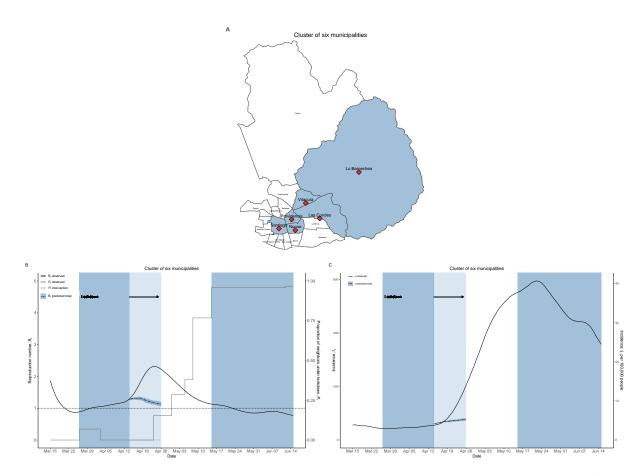
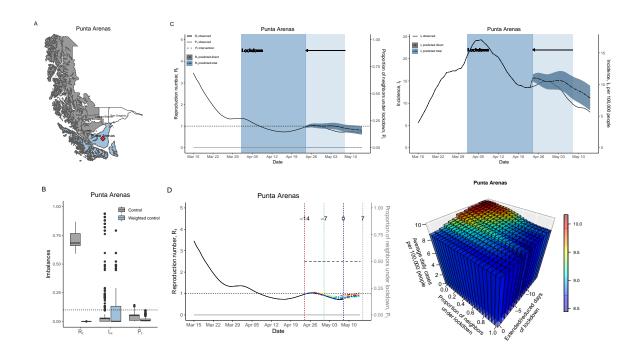



Figure S4: Results for extended lockdown in a group of municipalities in Greater Santiago. A. No neighbors of the cluster of six municipalities are under lockdown on April 13. B. The estimates of the potential R_t if the lockdown is extended from March 26 to April 26, when their neighbors remain open. C. Changes in the incidence. The second lockdown period from May 15 to June 15 is included as a comparison to the first lockdown period from March 26 to April 26.

Results for other municipalities in the rest of Chile

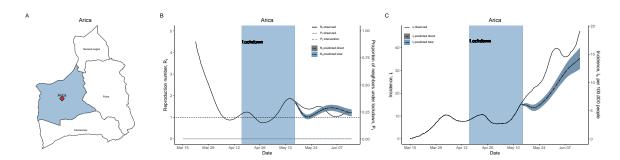
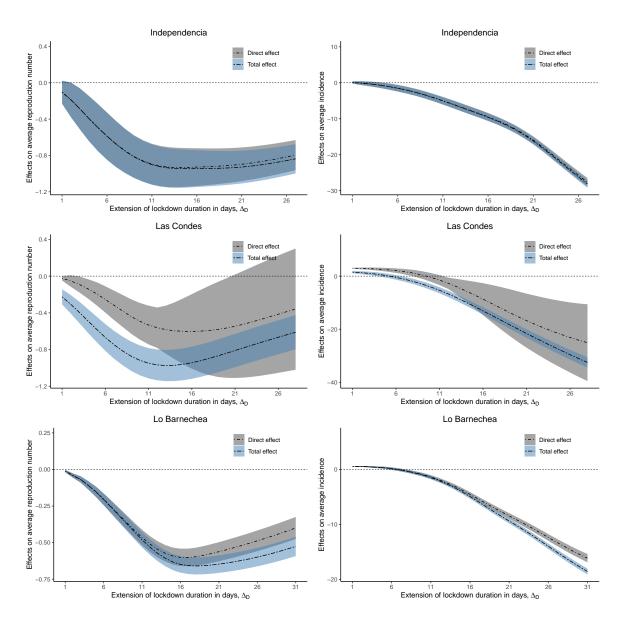

Results for Punta Arenas

Figure S5: Results for Punta Arenas. A. Punta Arenas is a relatively isolated municipality. **B.** Imbalances in the lagged variables before and after weighting. ³**C.** The initial weeks of lockdown in Punta Arenas were effective in terms of reducing the effective reproduction number and the incidence. After reopening, the reproduction number stabilized at a low level. **D.** The impact of neighboring lockdowns on Punta Arenas is relatively small.


³To estimate the impact of reducing lockdown duration, the control set is composed of candidate municipalities which were under lockdown for at least 7 days and had reopened for at least 14 days.

Results for Arica

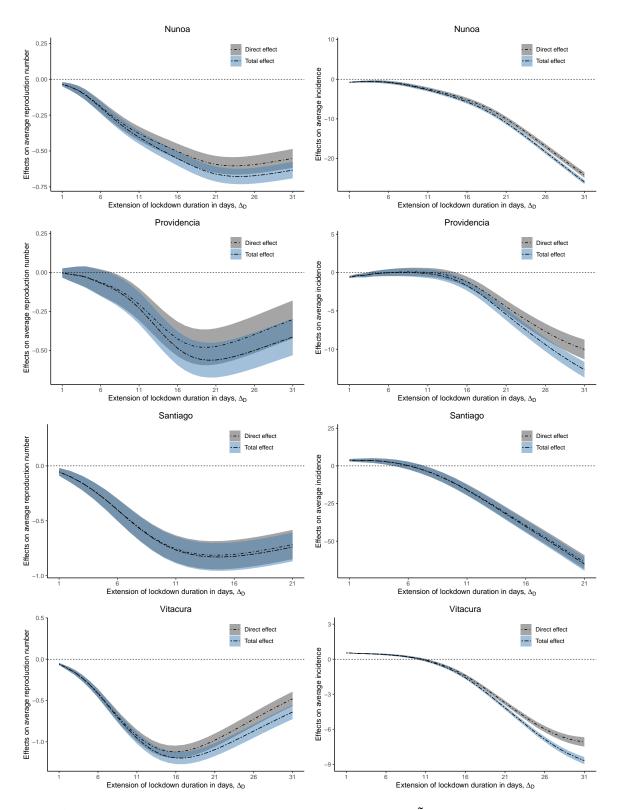


Figure S6: Results for Arica as a comparison to Punta Arenas. **A**. Arica is another relatively isolated municipality. **B**. During lockdown, the average reproduction number is above one. After reopening, both the actual reproduction numbers and the predicted ones are also above one. **C**. Both the predicted and actual series exhibit a steady increase in the incidence.

Estimated direct and total effects over time

Figure S7: Direct and total effect of extended lockdowns on average reproduction number $\operatorname{avg}(R_{[\tilde{t}+1,\tilde{t}+\Delta_D]})$ and average incidence $\operatorname{avg}(I_{[\tilde{t}+1,\tilde{t}+\Delta_D]})$ in Independencia, Las Condes, and Lo Barnechea.

Figure S8: Direct and total effects of extended lockdowns in Ñuñoa, Providencia, Santiago, and Vitacura.

Tables S3 to S14

Covariate balance

Table S3: Balance in baseline covariates and lagged variables. Balance in the municipality of Lo Barnechea and its control set at the start of the intervention $\tilde{t}+1$, before and after weighting. See also Figure S2 for a summary distribution of imbalances in all the lagged variables.

Baseline covariates	Lo Barnechea	Control Set	Synthetic Lo Barnechea
Rural	0.00	0.03	0.00
Female	0.56	0.52	0.56
Over 65	0.08	0.11	0.08
Poverty	0.03	0.07	0.03
Overcrowding	0.12	0.12	0.12
Poor sanitation	0.05	0.04	0.05
Income	714251.33	378907.93	714251.33
Area (small)	0.00	0.35	0.00
Area (medium)	1.00	0.36	1.00
Area (large)	0.00	0.29	0.00
Lagged variables	Lo Barnechea	Control Set	Synthetic Lo Barnechea
R_{t-7}	1.43	1.14	1.43
R_{t-6}	1.41	1.13	1.41
R_{t-5}	1.38	1.12	1.38
R_{t-4}	1.33	1.10	1.33
R_{t-3}	1.29	1.10	1.29
R_{t-2}	1.27	1.09	1.27
R_{t-1}	1.28	1.08	1.28
L_{t-7}	1.00	0.95	1.03
L_{t-6}	1.00	0.95	1.03
L_{t-5}	1.00	0.95	1.01
L_{t-4}	1.00	0.95	1.00
L_{t-3}	1.00	0.96	0.99
L_{t-2}	1.00	0.96	0.97
L_{t-1}	1.00	0.96	0.96
P_{t-7}	0.53	0.73	0.52
P_{t-6}	0.53	0.74	0.53
P_{t-5}	0.53	0.75	0.53
P_{t-4}	0.53	0.75	0.54
P_{t-3}	0.53	0.76	0.54
P_{t-2}	0.53	0.77	0.52
P_{t-1}	0.53	0.78	0.54

Table S4: Balance in baseline covariates and lagged variables. Balance in the municipality of Providencia and its control set at the start of the intervention $\tilde{t}+1$, before and after weighting. See also Fig. S2 for a summary distribution of imbalances in all the lagged variables.

Baseline covariates	Providencia	Control Set	Synthetic Providencia
Rural	0.00	0.03	0.00
Female	0.53	0.52	0.53
Over 65	0.16	0.11	0.16
Poverty	0.00	0.07	0.00
Overcrowding	0.01	0.12	0.01
Poor sanitation	0.01	0.04	0.01
Income	1360119.37	375505.64	1360119.37
Area (small)	1.00	0.35	1.00
Area (medium)	0.00	0.36	0.00
Area (large)	0.00	0.29	0.00
Lagged variables	Providencia	Control Set	Synthetic Providencia
R_{t-7}	1.41	1.14	1.41
R_{t-6}	1.42	1.13	1.42
R_{t-5}	1.41	1.11	1.41
R_{t-4}	1.36	1.10	1.36
R_{t-3}	1.31	1.09	1.31
R_{t-2}	1.24	1.09	1.24
R_{t-1}	1.17	1.08	1.17
L_{t-7}	1.00	0.95	1.03
L_{t-6}	1.00	0.95	1.02
L_{t-5}	1.00	0.95	1.01
L_{t-4}	1.00	0.95	1.00
L_{t-3}	1.00	0.96	0.99
L_{t-2}	1.00	0.96	0.98
L_{t-1}	1.00	0.96	0.96
P_{t-7}	0.80	0.73	0.82
P_{t-6}	0.80	0.74	0.81
P_{t-5}	0.80	0.74	0.81
P_{t-4}	0.80	0.75	0.81
P_{t-3}	0.80	0.76	0.80
P_{t-2}	0.80	0.77	0.79
P_{t-1}	0.80	0.78	0.78

Table S5: Balance in baseline covariates and lagged variables. Balance in the municipality of Santiago and its control set at the start of the intervention $\tilde{t}+1$, before and after weighting. See also Fig. S2 for a summary distribution of imbalances in all the lagged variables.

Baseline covariates	Santiago	Control Set	Synthetic Santiago
Rural	0.00	0.03	0.00
Female	0.50	0.52	0.50
Over 65	0.07	0.11	0.07
Poverty	0.04	0.07	0.04
Overcrowding	0.19	0.12	0.19
Poor sanitation	0.02	0.04	0.02
Income	593633.86	375521.94	593633.86
Area (small)	1.00	0.36	1.00
Area (medium)	0.00	0.35	0.00
Area (large)	0.00	0.30	0.00
Lagged variables	Santiago	Control Set	Synthetic Santiago
R_{t-7}	1.14	1.13	1.14
R_{t-6}	1.14	1.12	1.14
R_{t-5}	1.14	1.10	1.14
R_{t-4}	1.17	1.09	1.17
R_{t-3}	1.19	1.08	1.19
R_{t-2}	1.24	1.07	1.24
R_{t-1}	1.31	1.07	1.31
L_{t-7}	1.00	0.95	1.01
L_{t-6}	1.00	0.95	1.01
L_{t-5}	1.00	0.96	1.00
L_{t-4}	1.00	0.96	1.00
L_{t-3}	1.00	0.96	1.00
L_{t-2}	1.00	0.96	0.99
L_{t-1}	1.00	0.96	0.99
P_{t-7}	0.36	0.74	0.35
P_{t-6}	0.36	0.75	0.33
P_{t-5}	0.36	0.76	0.34
P_{t-4}	0.36	0.76	0.36
P_{t-3}	0.36	0.77	0.38
P_{t-2}	0.36	0.78	0.36
P_{t-1}	0.36	0.79	0.39

Table S6: Balance in baseline covariates and lagged variables. Balance in the municipality of Punta Arenas and its control set at the start of intervention, before and after weighting. See also Fig. S5B for a summary distribution of imbalances in all the lagged variables.

Baseline covariates	Punta Arenas	Control Set	Synthetic Punta Arenas
Rural	0.06	0.14	0.06
Female	0.52	0.53	0.52
Over 65	0.12	0.12	0.12
Poverty	0.02	0.11	0.02
Overcrowding	0.07	0.09	0.07
Poor sanitation	0.06	0.09	0.06
Income	492972.66	474566.28	492972.66
Area (small)	0.00	0.36	0.00
Area (medium)	0.00	0.38	0.00
Area (large)	1.00	0.26	1.00
Lagged variables	Punta Arenas	Control Set	Synthetic Punta Arenas
R_{t-7}	0.73	1.54	0.73
R_{t-6}	0.75	1.56	0.75
R_{t-5}	0.77	1.58	0.77
R_{t-4}	0.80	1.60	0.80
R_{t-3}	0.84	1.61	0.84
R_{t-2}	0.88	1.62	0.88
R_{t-1}	0.92	1.63	0.92
L_{t-7}	1.00	0.24	1.28
L_{t-6}	1.00	0.21	1.27
L_{t-5}	1.00	0.18	1.21
L_{t-4}	1.00	0.15	1.10
L_{t-3}	1.00	0.12	0.94
L_{t-2}	1.00	0.09	0.73
L_{t-1}	1.00	0.06	0.48
P_{t-7}	0.00	0.14	0.06
P_{t-6}	0.00	0.13	0.04
P_{t-5}	0.00	0.12	0.02
P_{t-4}	0.00	0.11	0.00
P_{t-3}	0.00	0.10	-0.02
P_{t-2}	0.00	0.09	-0.04
P_{t-1}	0.00	0.08	-0.06

Estimates

Table S7: Numeric results in Fig. 2C and Fig. S3. Observed and estimated effective reproduction numbers when the duration of the lockdown in a given municipality is extended from date \tilde{t} to $\tilde{t} + \Delta_D$, and when in addition to extending the duration of the lockdown, the proportion of the population under lockdown in the neighboring municipalities at date \tilde{t} is maintained constant until $\tilde{t} + \Delta_D$.

	Δ_D	$P_{[\tilde{t}+1,\tilde{t}+\Delta_D]}$	$R_{\tilde{t}+7}(*)$	$R_{\tilde{t}+14}(*)$	$R_{\tilde{t}+21}(*)$
Independencia	0	p^{obs}	2.45	2.13	2.14
Independencia	21	$p^{ m obs}$	1.27 [1.05, 1.48]	1.16 [0.89, 1.43]	1.44 [1.15, 1.72]
Independencia	21	54.0%	1.26 [1.05, 1.47]	1.12 [0.86, 1.39]	1.35 [1.08, 1.63]
Las Condes	0	$p^{ m obs}$	2.79	2.21	1.53
Las Condes	21	$p^{ m obs}$	2.09 [1.97, 2.22]	1.45 [1.07, 1.84]	1.38 [0.92, 1.84]
Las Condes	21	$49.5\%^{4}$	1.46 [1.36, 1.55]	1.25 [1.14, 1.35]	1.36 [1.26, 1.47]
Lo Barnechea	0	p^{obs}	1.83	2.17	1.62
Lo Barnechea	21	$p^{ m obs}$	1.26 [1.23, 1.29]	1.24 [1.20, 1.28]	1.32 [1.27, 1.36]
Lo Barnechea	21	53.0%	1.24 [1.21, 1.27]	1.12 [1.09, 1.16]	1.10 [1.06, 1.14]
Ñuñoa	0	p^{obs}	1.54	1.90	1.98
Ñuñoa	21	$p^{ m obs}$	1.04 [1.00, 1.07]	1.14 [1.09, 1.18]	1.16 [1.11, 1.21]
Ñuñoa	21	56.5%	1.01 [0.98, 1.04]	1.03 [0.99, 1.07]	1.03 [0.99, 1.08]
Providencia	0	$p^{ m obs}$	1.39	2.47	1.85
Providencia	21	$p^{ m obs}$	1.20 [1.14, 1.26]	1.51 [1.43, 1.58]	1.48 [1.40, 1.56]
Providencia	21	80.3%	1.18 [1.11, 1.24]	1.37 [1.30, 1.43]	1.31 [1.24, 1.38]
Santiago	0	p^{obs}	2.34	2.03	1.46
Santiago	21	$p^{ m obs}$	1.30 [1.23, 1.38]	1.12 [1.03, 1.20]	1.18 [1.09, 1.27]
Santiago	21	35.8%	1.29 [1.22, 1.37]	1.08 [0.99, 1.16]	1.16 [1.07, 1.24]
Vitacura	0	$p^{ m obs}$	2.76	3.33	2.01
Vitacura	21	$p^{ m obs}$	1.57 [1.51, 1.62]	1.72 [1.66, 1.78]	1.91 [1.85, 1.98]
Vitacura	21	66.9%	1.54 [1.49, 1.59]	1.55 [1.49, 1.61]	1.65 [1.58, 1.71]

 $^{^4}$ To be consistent with the rest of the municipalities in the group, p is the value of P_t on the last day before reopening in Lo Barnechea, Vitacura, Providencia, Santiago, and Ñuñoa.

Table S8: Numeric results in Fig. 2D and Fig. S3. Observed and estimated incidences when the duration of the lockdown in a given municipality is extended from date \tilde{t} to $\tilde{t} + \Delta_D$, and when in addition to extending the duration of the lockdown, the proportion of the population under lockdown in the neighboring municipalities at date \tilde{t} is maintained constant until $\tilde{t} + \Delta_D$.

	Δ_D	$P_{[\tilde{t}+1,\tilde{t}+\Delta_D]}$	$I_{\tilde{t}+7}(*)$	$I_{ ilde{t}+14}(*)$	$I_{\tilde{t}+21}(*)$
Independencia	0	p^{obs}	10.93	25.70	58.10
Independencia	21	$p^{ m obs}$	5.66 [4.71, 6.62]	6.39 [4.88, 7.89]	9.39 [7.53, 11.25]
Independencia	21	54.0%	5.63 [4.68, 6.58]	6.13 [4.68, 7.57]	8.46 [6.74, 10.19]
Las Condes	0	p^{obs}	17.08	47.49	77.65
Las Condes	21	p^{obs}	16.35 [15.37, 17.32]	22.53 [16.52, 28.55]	30.10 [20.08, 40.12]
Las Condes	21	49.5%	9.49 [8.78, 10.20]	12.01 [11.04, 12.98]	16.87 [15.60, 18.14]
Lo Barnechea	0	p^{obs}	8.91	20.49	35.86
Lo Barnechea	21	p^{obs}	7.62 [7.43, 7.81]	9.41 [9.1, 9.71]	12.40 [11.95, 12.84]
Lo Barnechea	21	53.0%	7.54 [7.36, 7.72]	8.35 [8.08, 8.62]	9.12 [8.78, 9.45]
Ñuñoa	0	p^{obs}	11.43	21.13	46.42
Ñuñoa	21	p^{obs}	9.10 [8.81, 9.39]	10.47 [10.06, 10.88]	12.10 [11.57, 12.64]
Ñuñoa	21	56.5%	8.84 [8.57, 9.11]	9.21 [8.87, 9.55]	9.52 [9.12, 9.92]
Providencia	0	p^{obs}	6.40	13.91	33.95
Providencia	21	p^{obs}	6.75 [6.39, 7.11]	10.32 [9.83, 10.82]	15.05 [14.27, 15.82]
Providencia	21	80.3%	6.62 [6.26, 6.98]	9.10 [8.64, 9.57]	11.71 [11.07, 12.36]
Santiago	0	p^{obs}	52.37	133.64	211.34
Santiago	21	p^{obs}	37.50 [35.27, 39.73]	40.65 [37.51, 43.79]	48.47 [44.84, 52.11]
Santiago	21	35.8%	37.17 [34.97, 39.36]	38.83 [35.79, 41.87]	45.38 [41.97, 48.80]
Vitacura	0	p^{obs}	1.98	7.56	20.20
Vitacura	21	$p^{ m obs}$	2.02 [1.95, 2.09]	3.47 [3.35, 3.60]	6.70 [6.47, 6.93]
Vitacura	21	66.9%	1.98 [1.91, 2.05]	3.04 [2.93, 3.16]	5.01 [4.81, 5.20]

Table S9: Numeric results in Fig. S7 and Fig. S8. Observed and estimated average effective reproduction number and cumulative incidences when the duration of the lockdown in a given municipality is extended from date \tilde{t} to $\tilde{t} + \Delta_D$, and when in addition to extending the duration of the lockdown, the proportion of the population under lockdown in the neighboring municipalities at date \tilde{t} is maintained constant until $\tilde{t} + \Delta_D$.

	Δ_D	$P_{[\tilde{t}+1,\tilde{t}+\Delta_D]}$	$avg(R_{[\tilde{t}+1,\tilde{t}+21]}(*))$	$\operatorname{cum}(I_{[\tilde{t}+1,\tilde{t}+21]}(*))$	$\operatorname{cum}(I_{[\tilde{t}+1,\tilde{t}+21]}(*))$
Independencia	0	p^{obs}	2.27	471	331
Independencia	21	p^{obs}	1.37 [1.18, 1.55]	136 [114, 158]	96 [81, 111]
Independencia	21	54.0%	1.34 [1.16, 1.52]	131 [110, 152]	92 [78, 107]
Las Condes	0	p^{obs}	2.26	763	231
Las Condes	21	p^{obs}	1.71 [1.15, 2.27]	410 [196, 624]	124 [59, 189]
Las Condes	21	49.5%	1.44 [1.26, 1.63]	308 [275, 342]	93 [83, 103]
Lo Barnechea	0	p^{obs}	1.83	364	293
Lo Barnechea	21	p^{obs}	1.27 [1.21, 1.34]	187 [176, 197]	151 [142, 159]
Lo Barnechea	21	53.0%	1.19 [1.13, 1.25]	167 [158, 176]	135 [127, 142]
Ñuñoa	0	p^{obs}	1.71	422	168
Ñuñoa	21	p^{obs}	1.11 [1.05, 1.17]	212 [200, 223]	85 [80, 89]
Ñuñoa	21	56.5%	1.04 [0.99, 1.10]	191 [182, 201]	77 [73, 80]
Providencia	0	p^{obs}	1.82	286	181
Providencia	21	$p^{ m obs}$	1.34 [1.23, 1.46]	193 [175, 210]	122 [111, 133]
Providencia	21	80.3%	1.25 [1.14, 1.37]	171 [155, 187]	109 [98, 119]
Santiago	0	p^{obs}	1.95	2178	433
Santiago	21	$p^{ m obs}$	1.23 [1.10, 1.37]	835 [738, 933]	166 [147, 185]
Santiago	21	35.8%	1.21 [1.08, 1.34]	808 [714, 903]	161 [142, 179]
Vitacura	0	p^{obs}	2.61	145	150
Vitacura	21	$p^{ m obs}$	1.63 [1.55, 1.71]	67 [63, 71]	69 [65, 73]
Vitacura	21	66.9%	1.51 [1.43, 1.59]	58 [55, 62]	60 [57, 64]

Table S10: Numeric results in Fig. S5C. Observed and estimated effective reproduction number and incidences when the duration of the lockdown in a given municipality is reduced from date \tilde{t} to $\tilde{t} + \Delta_D$, and when in addition to reducing the duration of the lockdown, the proportion of the population under lockdown in the neighboring municipalities at date \tilde{t} is maintained constant until $\tilde{t} + 7$.

	Δ_D	$P_{(\tilde{t}+\Delta_D,\tilde{t}+7]}$	$R_{\tilde{t}-7}(*)$	$R_{ ilde{t}}(*)$	$R_{\tilde{t}+7}(*)$
Punta Arenas	0	$p^{ m obs}$	0.95	0.72	0.72
Punta Arenas	-14	$p^{ m obs}$	1.00 [0.88, 1.12]	0.93 [0.76, 1.09]	0.80 [0.60, 1.00]
Punta Arenas	-14	0.0%	1.00 [0.88, 1.12]	0.93 [0.76, 1.09]	0.80 [0.60, 1.00]
	Δ_D	$P_{(\tilde{t}+\Delta_D,\tilde{t}+7]}$	$I_{\tilde{t}-7}(*)$	$I_{ ilde{t}}(*)$	$I_{\tilde{t}+7}(*)$
Punta Arenas	0	p^{obs}	14.91	10.45	7.97
Punta Arenas	-14	$p^{ m obs}$	14.84 [13.1, 16.58]	13.87 [11.41, 16.32]	11.17 [8.40, 13.93]
Punta Arenas	-14	0.0%	14.84 [13.1, 16.58]	13.87 [11.41, 16.32]	11.17 [8.40, 13.93]

Table S11: Numeric results for the municipality of Lo Barnechea in Fig. 3. A range of hypercritical values from 0 to 1 are explored for P_t , letting the length of extended lockdown Δ_D vary from 0 to 14. The end of evaluation is 21 days after \tilde{t} . The average incidence avg $(I_{(\tilde{t},t]})$ is scaled to incidence per 100,000 people in Table S11-S14.

Lo	Barnechea	$\operatorname{avg}(R_{[\tilde{t}+1,t]}), t =$			$avg(I_{[\tilde{t}+1,t]}),t=$		
Δ_D	$P_{[\tilde{t}+1,\tilde{t}+21]}$	$\tilde{t}+7$	$\tilde{t} + 14$	$\tilde{t} + 21$	$\tilde{t}+7$	$\tilde{t} + 14$	$\tilde{t} + 21$
0	0.0%	1.49	1.49	1.34	6.71	8.29	8.68
0	25.0%	1.49	1.46	1.33	6.68	8.02	8.53
0	50.0%	1.48	1.41	1.30	6.66	7.65	8.12
0	75.0%	1.48	1.37	1.29	6.64	7.31	7.86
0	100.0%	1.47	1.34	1.31	6.60	7.13	7.93
7	0.0%	1.29	1.42	1.47	5.71	7.35	9.54
7	25.0%	1.29	1.36	1.39	5.69	6.93	8.47
7	50.0%	1.28	1.33	1.32	5.66	6.69	7.78
7	75.0%	1.28	1.31	1.28	5.63	6.56	7.38
7	100.0%	1.27	1.28	1.24	5.61	6.37	6.92
14	0.0%	1.29	1.29	1.38	5.71	6.46	8.16
14	25.0%	1.29	1.26	1.32	5.69	6.28	7.50
14	50.0%	1.28	1.23	1.27	5.66	6.11	6.98
14	75.0%	1.28	1.21	1.23	5.63	5.94	6.62
14	100.0%	1.27	1.18	1.19	5.61	5.79	6.25

Table S12: Numeric results for the municipality of Providencia in Fig. 3. A range of hypercritical values from 0 to 1 are explored for P_t , letting the length of extended lockdown Δ_D vary from 0 to 14. The end of evaluation is 21 days after \tilde{t} .

Pro	ovidencia	$\operatorname{avg}(R_{[\tilde{t}+1,t]}), t =$			$avg(I_{[\tilde{t}+1,t]}),t=$		
Δ_D	$P_{[\tilde{t}+1,\tilde{t}+21]}$	$\tilde{t}+7$	$\tilde{t} + 14$	$\tilde{t} + 21$	$\tilde{t}+7$	$\tilde{t} + 14$	$\tilde{t} + 21$
0	0.0%	1.30	1.68	1.85	4.42	7.17	12.03
0	25.0%	1.29	1.61	1.79	4.39	6.77	11.11
0	50.0%	1.28	1.55	1.75	4.37	6.42	10.41
0	75.0%	1.28	1.52	1.74	4.35	6.25	10.23
0	100.0%	1.27	1.50	1.73	4.33	6.08	10.00
7	0.0%	1.13	1.44	1.73	3.81	5.48	9.43
7	25.0%	1.13	1.38	1.63	3.79	5.21	8.31
7	50.0%	1.12	1.34	1.54	3.77	4.98	7.46
7	75.0%	1.12	1.32	1.50	3.75	4.90	7.06
7	100.0%	1.11	1.31	1.47	3.73	4.83	6.82
14	0.0%	1.13	1.30	1.47	3.81	4.83	6.78
14	25.0%	1.13	1.27	1.41	3.79	4.70	6.30
14	50.0%	1.12	1.25	1.36	3.77	4.56	5.87
14	75.0%	1.12	1.22	1.32	3.75	4.43	5.56
14	100.0%	1.11	1.19	1.29	3.73	4.31	5.31

Table S13: Numeric results for the municipality of Santiago in Fig. 3. A range of hypercritical values from 0 to 1 are explored for P_t , letting the length of extended lockdown Δ_D vary from 0 to 14. The end of evaluation is 21 days after \tilde{t} .

Santiago		$\operatorname{avg}(R_{[\tilde{t}+1,t]}), t =$			$\operatorname{avg}(I_{[\tilde{t}+1,t]}),t=$		
Δ_D	$P_{[\tilde{t}+1,\tilde{t}+21]}$	$\tilde{t}+7$	$\tilde{t} + 14$	$\tilde{t} + 21$	$\tilde{t}+7$	$\tilde{t} + 14$	$\tilde{t} + 21$
0	0.0%	1.65	2.21	2.53	8.60	17.35	40.90
0	25.0%	1.63	2.10	2.43	8.47	15.96	36.36
0	50.0%	1.61	2.00	2.35	8.35	14.82	33.03
0	75.0%	1.59	1.92	2.28	8.24	13.83	30.19
0	100.0%	1.57	1.86	2.25	8.16	13.11	28.78
7	0.0%	1.38	1.52	1.98	7.00	9.36	18.88
7	25.0%	1.37	1.45	1.85	6.98	8.80	16.27
7	50.0%	1.37	1.39	1.74	6.96	8.27	14.08
7	75.0%	1.37	1.33	1.64	6.94	7.82	12.39
7	100.0%	1.36	1.29	1.56	6.92	7.48	11.13
14	0.0%	1.38	1.28	1.41	7.00	7.44	9.54
14	25.0%	1.37	1.26	1.35	6.98	7.30	8.88
14	50.0%	1.37	1.24	1.29	6.96	7.16	8.30
14	75.0%	1.37	1.22	1.25	6.94	7.03	7.79
14	100.0%	1.36	1.21	1.21	6.92	6.89	7.39

Table S14: Numeric results for the municipality of Punta Arenas in Fig. S5D. A range of hypercritical values from 0 to 1 are explored for P_t , letting the length of extended lockdown Δ_D vary from -14 to 0. The end of evaluation is 21 days after $\tilde{t}-14$.

Punta Arenas		avg(I	$R_{(ilde{t}-14,t]}$), t =	$ \operatorname{avg}(I_{(\tilde{t}-14,t]}), t =$						
Δ_D	$P_{(\tilde{t}+\Delta_D,\tilde{t}+7]}$	$\tilde{t}-7$	$ ilde{t}$	$\tilde{t} + 7$	$\tilde{t}-7$	$ ilde{t}$	$\tilde{t} + 7$				
-14	0.0%	1.01	1.00	0.95	10.74	10.56	9.95				
-14	25.0%	0.99	0.96	0.95	10.59	10.05	9.75				
-14	50.0%	0.98	0.92	0.94	10.48	9.62	9.36				
-14	75.0%	0.98	0.87	0.91	10.39	9.06	8.72				
-14	100.0%	0.97	0.84	0.93	10.38	8.70	8.58				
-7	0.0%	1.00	0.95	0.96	10.67	10.00	9.78				
-7	25.0%	1.00	0.94	0.92	10.67	9.88	9.30				
-7	50.0%	1.00	0.93	0.90	10.67	9.82	9.04				
-7	75.0%	1.00	0.93	0.87	10.67	9.80	8.76				
-7	100.0%	1.00	0.93	0.85	10.67	9.76	8.50				
0	0.0%	1.00	0.90	0.90	10.67	9.44	8.80				
0	25.0%	1.00	0.90	0.89	10.67	9.44	8.76				
0	50.0%	1.00	0.90	0.89	10.67	9.44	8.74				
0	75.0%	1.00	0.90	0.89	10.67	9.44	8.72				
0	100.0%	1.00	0.90	0.88	10.67	9.44	8.71				