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This supplementary material presents: (1) additional analysis of the mobility data on a state-by-state basis, and (2)
additional mathematical analysis of the model introduced in the main text.

Mobility data correlates

We used the social, demographic, and economical variables compiled by White & Laurent Hébert-Dufresne1 to examine
potential correlates for the mobility data. We found that none of these variables strongly correlated with either percentage
decreases in visits or percent change in distance traveled (results not shown). However, increases in state-level “tightness" was
correlated with larger decreases in church visits and farther distanced traveled (Fig. S1). Tight cultures are typically defined as
those with strong social norms and little tolerance for deviance2.
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Figure S1. (a) Percent decreases in numbers of unique visitors to churches versus tightness by state. (b) Percent change in distances traveled
to churches versus tightness by state.
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Mathematical analysis of final outbreak size
The mathematical simplicity of the classic SIR model, on which our model is based, allows for a number of more detailed
analyses of the role of X and Y on the final outbreak size. In general, the final outbreak size for a given λ , X and Y in our model
is given by

R(∞) = (1−X)Ro(∞)+XRc(∞) (S1)

We assume here that tc = 0, and that So(0)≈ 1, Io(0)� 1, and Ro(0) = 0. These assumptions serve as a natural motivating
example while allowing for a less cumbersome mathematical analysis. In this case, Ro(tc) becomes 0 and so Eq. S1 simplifies
to (1−X)Ro(∞). therefore for notational convenience we simply write R and S to denote the open compartments, since closed
compartments will always be empty.

Note that after redistribution, the population sizes for open compartments are no longer normalized to 1. Therefore to help
prevent confusion we let r/s(t) be the proportion of recovered/susceptible individuals. After redistribution the population size
in open compartments is 1+ XY

1−X =: P, so s(t) = S(t)/P and r(t) = R(t)/P.
By Eq. (4) in Ma & Earn (2006)3, for open compartments we then have

r(∞) = 1− s(∞)

= 1− s(0)exp(−R0(r(∞)− r(0))
= 1− exp(−R0r(∞))), (S2)

where we have used that s(0) = 1−ε and r(0) = 0. Note the reproductive number R0 here is defined λP. This transcendental
equation can then be solved for r(∞) with respect to a particular set of parameters though numerical means or using the Lambert
W function. Following Appendix A of Ma & Earn (2006)3 and elsewhere, s(∞) =− 1

R0
W (−R0e−R0), where W is the principal

branch of the Lambert W function. Therefore we may write (S2) in closed-form, which in turn gives

R(∞) = (1−X)P
(

1+
W (−R0e−R0)

R0

)
= (1−X +XY )

(
1+

W (−R0e−R0)

R0

)
(S3)

Finding critical Y for a given λ

We first show how Eq. S2 can be used to find the value of Y past which, for any λ , any choice of X > 0 will cause a worse final
outbreak than compared to X = 0; i.e. critical Y.

Let β be the initial infectiousness λ (1+ XY
1−X ), and as above we use R to denote the open compartment. The total outbreak

size in open churches is:

R(∞) = 1− e−βR(∞) (S4)

To find critical Y as defined, we want to solve for the following stationary point:

∂

∂X

(
R(∞)(1−X)(1+

XY
1−X

)

)
|X=0 = 0 (S5)

Taking the partial derivative of S4 implicitly with respect to X yields:

∂X (R(∞)) = (∂X (β )R(∞)+β∂X (R(∞)))e−βR(∞), (S6)

which leads to the following system, which is solvable for Y given any λ .

R(∞)−1+ e−λR(∞) = 0
∂X R(∞)−R(∞)+R(∞)Y = 0

∂X R(∞)− e−λR(∞)(λY R(∞)+λ∂X R(∞)) = 0
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Figure S2. Value of X giving the minimum value of Eq. (S3), as a function of Y and λ , based on numerical simulation of the clorSIR model.
A clear transition from X = 0 (yellow) to X = 1 (blue) is seen, with no intermediary values. The solid black line corresponds to
the theoretical closed-form solution from Eq. (S7), while the dashed grey line corresponds to the rough approximation
Y > 1− e−λ past which it is best to not have any closures.

Finding Optimal Closure Percentage
We now turn to finding the value of X which minimizes (S1) for a given Y and λ ≥ 1 (when λ < 1, X = 0 is clearly as optimal
as anything else). When λ ≥ 1, one can see from Figure 4 in the main text that R(∞) as a function of X has either a single
intermediate peak higher values of Y , or is monotone decreasing for lower values of Y . This pervasive downward parabolic
shape arises from the fact that R(∞) is the product of the linearly decreasing, positive function f (X) = 1−X +XY , and the
sigmoidal, positive function g(X) = 1+(W (−R0e−R0))/R0, where dg

dX approaches 0 as X approaches 1. This guarantees that
R(∞) is maximized at one of the extreme values X = 0 or X = 1.

While Eq. (S3) is not defined at X = 1, we can obtain a right-hand limit. Using that limX→1+−R0e−R0 = 0 and W (x)≈ x
for x small, we have as X → 1 that

R(∞) = (1+ e−R0)P(1−X)

= 1−X +XY + e−R0(1−X +XY )

→ Y.

This result makes sense, since we would expect that r(∞) be equal to 1 when R0→ ∞, so plugging this into Eq. (S2) and
simplifying gives R(∞) = Y for X = 1.

This leads to the section’s main result, which is summarized in Figure S2.

argmin
X

R(∞) =

{
0 if Y >

(
1+ W (−λe−λ )

λ

)
1 otherwise.

(S7)

While this is in closed form, W cannot be expressed with elementary functions and hence poses similar interpretability
issues to practitioners as implicit solutions or numerical approximations. Thankfully, a number of useful approximations for W
exist. For example, here we can use the crude estimate W (x)< x for −1/e≤ x < 0 to obtain the bound Y > 1− e−λ , which
serves as sufficient criteria to be certain that no closure is the best option.
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