SUPPLEMENTARY MATERIALS

Table S1. Model comparison using the leave-one-out (LOO) cross-validation method. We compared the full SIR model with other model variants, including SIR models with a different number of change points (Fig. S1-S2), without the weekend modulation (Fig. S3), and models from a sensitivity analysis with wider priors for the delay (Fig. 4), change points (Fig. S5) and change durations (Fig. S6). Lower LOO-score indicate better fit between model and data.

Model	Change points	LOO-score	pLOO
SIR main	0	598.9 ± 13.4	9.32
SIR main	1	597.2 ± 12.9	8.14
SIR main	2	595.5 ± 12.5	9.04
SIR main	3	592.3 ± 13	9.88
SIR without weekend modulation	3	603.6 ± 13.5	7.87
SIR with wider delay prior	3	601.8 ± 12.9	13.21
SIR with wider change points prior	3	698.0 ± 10.6	41.27
SIR with wider transient length prior	3	597.9 ± 13.6	12.09

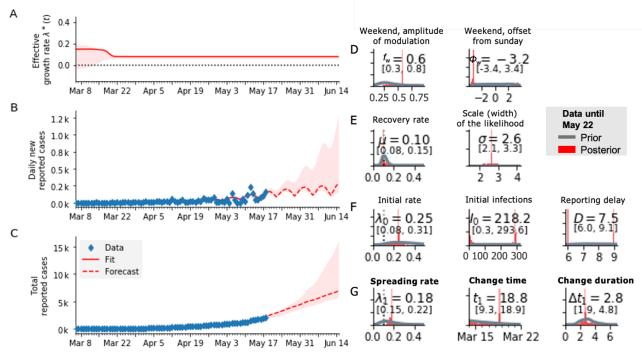


Figure S1. Full SIR model with **one change point** and weekly reporting modulation. All parameters and priors are the same as in the main text model (Fig.3), except number of change points. A: Estimate of the effective spreading rate; B: Daily new reported cases (blue diamonds) and the model (red solid line for median fit with 95% credible intervals). Red dashed line is the median forecast with 95% CI. C: Total reported cases and the model (color representation same as in B). D-F: Inference of central epidemiological parameters: prior (gray) and posterior distributions (red), inset values indicate the median and 95% CI of posteriors. G: Spreading rate, change time and change duration for the one change point, respectively.

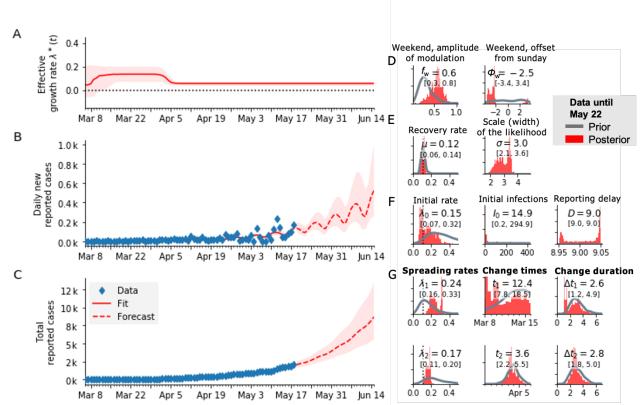


Figure S2. Full SIR model with **two change points** and weekly reporting modulation. All parameters and priors are the same as in the main text model (Fig.3), except number of change points. A: Estimate of the effective spreading rate; B: Daily new reported cases (blue diamonds) and the model (red solid line for median fit with 95% credible intervals). Red dashed line is the median forecast with 95% CI. C: Total reported cases and the model (color representation same as in B). D-F: Inference of central epidemiological parameters: prior (gray) and posterior distributions (red), inset values indicate the median and 95% CI of posteriors. G: Spreading rates, change times and change duration for the two change points, respectively.

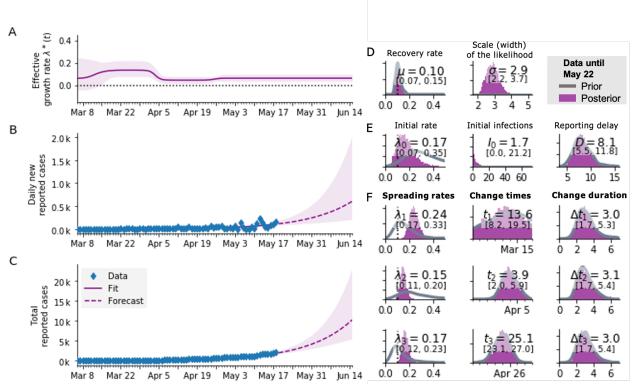


Figure S3. Full SIR model with three change points that **removes the weekly reporting modulation**. This model excludes the assumption that daily reported cases are lower during the weekend. All parameters and priors are the same as in the main text model (Fig.3). A: Estimate of the effective spreading rate; B: Daily new reported cases (blue diamonds) and the model (purple solid line for median fit with 95% credible intervals). Purple dashed line is the median forecast with 95% CI. C: Total reported cases and the model (color representation same as in B). D-F: Inference of central epidemiological parameters: prior (gray) and posterior distributions (purple), inset values indicate the median and 95% CI of posteriors. G: Spreading rates, change times and change duration for the three change points, respectively.

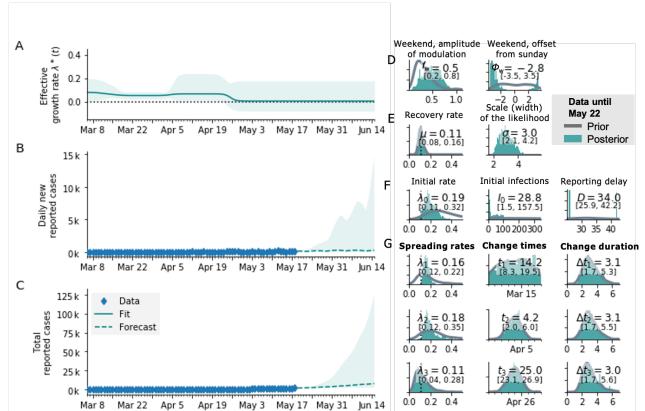


Figure S4. Sensitivity analysis. Full SIR model with three change points and weekly reporting modulation, but with a **wider prior for the reporting delay** (now 4 times wider). Other priors are the same as in the main text model (Fig.3). A: Estimate of the effective spreading rate; B: Daily new reported cases (blue diamonds) and the model (teal solid line for median fit with 95% credible intervals). Teal dashed line is the median forecast with 95% CI. C: Total reported cases and the model (color representation same as in B). D-F: Inference of central epidemiological parameters: prior (gray) and posterior distributions (teal), inset values indicate the median and 95% CI of posteriors. G: Spreading rates, change times and change duration for the three change points, respectively.

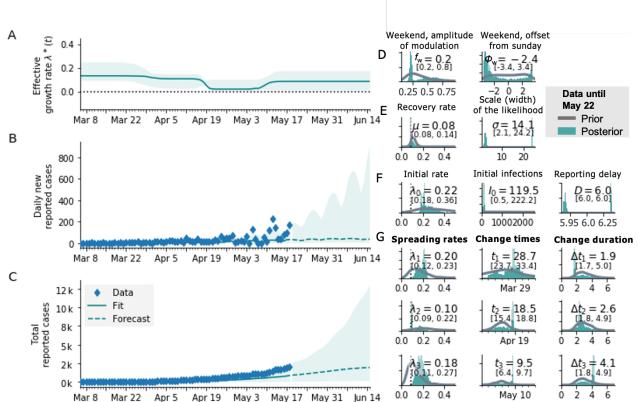


Figure S5. Sensitivity analysis. Full SIR model with three change points and weekly reporting modulation, but with a **wider prior for change points** (now 14 days instead of ~2 days). Other priors are the same as in the main text model (Fig.3). A: Estimate of the effective spreading rate; B: Daily new reported cases (blue diamonds) and the model (teal solid line for median fit with 95% credible intervals). Teal dashed line is the median forecast with 95% CI. C: Total reported cases and the model (color representation same as in B). D-F: Inference of central epidemiological parameters: prior (gray) and posterior distributions (teal), inset values indicate the median and 95% CI of posteriors. G: Spreading rates, change times and change duration for the three change points, respectively.

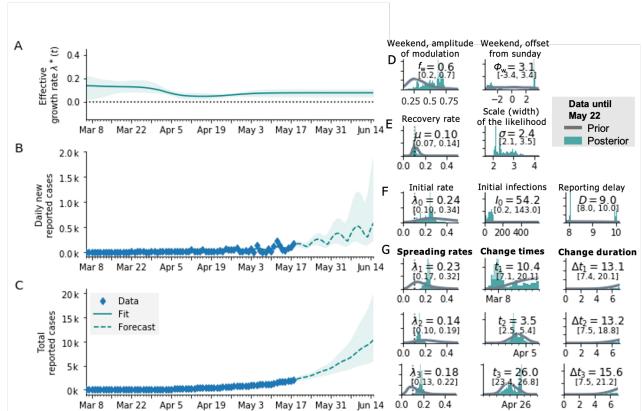


Figure S6. Sensitivity analysis. Full SIR model with three change points and weekly reporting modulation, but with a **wider prior for change durations** (now 4 times wider). Other priors are the same as in the main text model (Fig.3). A: Estimate of the effective spreading rate; B: Daily new reported cases (blue diamonds) and the model (teal solid line for median fit with 95% credible intervals). Teal dashed line is the median forecast with 95% CI. C: Total reported cases and the model (color representation same as in B). D-F: Inference of central epidemiological parameters: prior (gray) and posterior distributions (teal), inset values indicate the median and 95% CI of posteriors. G: Spreading rates, change times and change duration for the three change points, respectively.