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Supplementary Notes 

Case-based interventions in Taiwan 

Case detection: The detection of COVID-19 cases in Taiwan mainly depended on two surveillance 

systems: the National Notifiable Disease Surveillance System and the laboratory surveillance system. 

The COVID-19 was listed as a notifiable disease in Taiwan since January 15, 2020. The initial case 

definition was patients with upper respiratory infection/fever and with travel history related to Wuhan 

city, China, and extended to other areas/countries according to the increased risk for the COVID-19 

epidemic. The case definition was finally expanded to include those pneumonia patients highly 

suspected to be COVID-19, regardless of travel history, on February 28 to increase the sensitivity of 

the passive surveillance because of the increase of the locally-acquired cases and the concern of 

undetected community outbreak. Cases are isolated immediately after being detected. 

Of the 443 confirmed cases by June 6, only 11 cases (2.5%) had unknown sources of infection, and 

no locally-acquired cases were identified after April 11.  

In our analysis, the rate of case detection was defined as the number of cases detected via 

surveillance systems. Because each case with unknown source suggests at least one or two 

undetected patients in the community, we assumed that the proportion of undetected patients was 

around 2.5–5% and thus assumed the baseline rate of case detection was approximately 95% to 

avoid too much overestimation of the rate of case detection. 

 

Contact tracing: Every time when a COVID-19 case was laboratory-confirmed, case investigation 

would be done within 24 hours and a full list of possible contacts from 2 days before disease onset 

until the day before isolation would be obtained. Those contacts who had face-to-face contacts with 

the confirmed cases for more than 15 minutes would be considered as close contacts, which means 

they had higher risk of COVID-19 infection.  

As of June 30, 37 of the 42 epidemiologically-linked secondary cases (88%) were found via contact 

tracing, 5 (12%) patients were found via case detection and recognized as a close contact of 

previously confirmed cases through epidemiological inspection.  

We assumed the rate of case ascertainment (defined as the number of contacts identified via contact 

tracing efforts) was the same in the infected and non-infected close contacts, and all 

epidemiologically-link secondary cases were eventually caught via contact tracing or case 

investigation. Therefore, we then assumed the rate of contact ascertainment in infected contacts was 

around 90% and used this estimate as the baseline of this parameter to represent a setting with a 

highly efficient and effective contact tracing system. A sensitivity analysis was performed to explore 

the uncertainty of the parameters. 

Quarantine for close contacts of confirmed cases: After the case investigation and contact tracing, 

the close contacts would be put in quarantine at home (home quarantine) for at least 14 days. If they 

became symptomatic, medical visits would be arranged, and they would be tested for COVID-19 if 

necessary.  

Quarantine for travelers entering Taiwan: For those travelers from areas and countries where the 

level 3 travel alert is announced by the Central Epidemic Command Center (CECC), a 14-day 

quarantine at home or quarantine institution is required.  
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For those who require home quarantine but stay in the same household with individuals at higher risk, 

including elderly persons aged ≥ 65 years, children aged ≤ 6 years, and patients with chronic 

conditions (e.g., cardiovascular disease, diabetes, and chronic lung disease), quarantine at 

institutions would be recommended. An electronic tracking system was implemented to facilitate the 

health monitoring of the quarantined contacts. Besides, the CECC developed a positioning system 

using the mobile phone and cellular base station near the quarantined sites to monitor if any breach of 

home quarantine occurred. No secondary case caused by the COVID-19 cases diagnosed during the 

home quarantine period was identified.   

 

Population-based interventions in Taiwan 

Facial mask supply: After the COVID-19 outbreak in Wuhan city, China was confirmed, and the 

CECC was activated, the CECC soon announced the export ban of medical face masks and activated 

several measures to secure the stockpile of face masks for both medical use and the general public. 

Although no universal use of the face mask was recommended, the CECC announced guidelines for 

face mask use as an alternative when people could not follow the guidance of physical distancing, 

especially in public transportations and some massive gatherings.  

Guidance on health behavior and physical distancing: Because of the experience of the SARS 

outbreak in 2003, the Taiwanese society established good habits of face mask use afterward, 

especially when they felt sick. Sick students or employees were encouraged to stay at home, 

especially when they were feverish. Guidance on preventing clusters of respiratory diseases in 

hospitals, schools, and long-term care facilities were also established and implemented by local 

governments and Taiwan CDC1.     

At the COVID-19 outbreak, the CECC announced the precaution of physical distancing for large-scale 

public gatherings and assemblies, large business premises, community maintenance, and 

management in April when the concern of community outbreak arose. Hand sanitizers are commonly 

provided in public areas. 
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Supplementary Methods 

1. Estimation of the interval parameters 

The incubation period, the onset-to-isolation interval, and the serial interval were estimated from the 

dates (or date intervals if the exact date is unknown) of exposure, symptom onset, isolation of the 

confirmed SARS-CoV-2 cases in Taiwan. We estimated the distributions of these interval parameters 

using a Bayesian framework2 that deals with the situation where the exact date is uncertain for both 

ends of the interval (i.e., doubly interval-censored). This method uses a hierarchical model to estimate 

the exact two ends of the time interval for each individual as well as the overall distribution of the 

interval among the population. In the case of incubation period estimation, the exact infection and 

onset times were unobserved and uniform priors bonded by individual exposure and onset windows 

were assumed. For each individual 𝑖,  

𝑋𝑖
𝑠𝑡𝑎𝑟𝑡 ∼ Uniform(𝑋𝑙,𝑖

𝑠𝑡𝑎𝑟𝑡 , 𝑋𝑢,𝑖
𝑠𝑡𝑎𝑟𝑡) 

𝑋𝑖
𝑒𝑛𝑑 ∼ Uniform(𝑋𝑙,𝑖

𝑒𝑛𝑑 , 𝑋𝑢,𝑖
𝑒𝑛𝑑) 

𝑌𝑖 = 𝑋𝑖
𝑒𝑛𝑑 − 𝑋𝑖

𝑠𝑡𝑎𝑟𝑡 

, 𝑋𝑖
𝑠𝑡𝑎𝑟𝑡 is the exact time of infection, which was not observed. [𝑋𝑙,𝑖

𝑠𝑡𝑎𝑟𝑡 , 𝑋𝑢,𝑖
𝑠𝑡𝑎𝑟𝑡] represents the time 

window within which exposure could have occurred, and was obtained based on patients’ travel 

histories or case investigation reports. Likewise, 𝑋𝑖
𝑒𝑛𝑑 is the unobserved exact time of symptom onset 

and [𝑋𝑙,𝑖
𝑒𝑛𝑑 , 𝑋𝑢,𝑖

𝑒𝑛𝑑] is the time window within which symptom onset could have occurred. 𝑌𝑖 is the 

individual incubation period, and was assumed to follow a gamma distribution with the shape (α) and 

the scale (β). We assumed flat exponential priors for α and β as follows. 

𝑌𝑖 ∼ Gamma(α, β) 

α ∼ Exponential(1/1000) 

β ∼ Exponential(1/1000) 

To estimate the onset-to-isolation interval, we simply replaced the exposure-to-onset quantities with 

onset-to-testing quantities. To estimate the serial interval, we replaced the exposure-to-onset 

quantities with onset-to-onset quantities between the primary and secondary cases. We ran 4 Markov 

chain Monte Carlo (MCMC) chains using the Non-U-Turn Sampler in Stan3. Each chain contains 1000 

warm-up iterations and 500 samples, rendering to a total of 2000 samples. The credible intervals are 

obtained from the 2.5th and 97.5th percentiles in the posterior predictive simulations of the gamma 

distributions. 

 

  

https://www.codecogs.com/eqnedit.php?latex=i#0
https://www.codecogs.com/eqnedit.php?latex=X%5E0_i#0
https://www.codecogs.com/eqnedit.php?latex=%5Cbeta#0
https://www.codecogs.com/eqnedit.php?latex=%5Cbeta#0
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2. The dynamical transmission model 

2.1 Overview 

We adopted the structure of the branching process model developed by Hellewell, et al.9, which in 

essence consists of two components: 1) the branching process, and 2) the intervention model. The 

branching process simulates the disease transmission dynamics in the early phase of an outbreak. 

The intervention model accounts for the effects of various case-based interventions put into outbreak 

mitigation or containment. Specifically, case detection, contact tracing, and quarantine of close 

contacts are considered. The parameters and their values for this dynamical transmission model are 

listed in Table 1. 

2.2 The branching process 

The branching process simulates growing transmission trees starting from some given initial cases. 

This process is implemented by the following steps.  

i. Initiate with given active cases. 

ii. For each active case, determine the onset time and the testing time by drawing an individual 

incubation period, and an onset-to-isolation interval. 

iii. For each active case, draw the number of secondary cases from the distribution of the 

reproduction number. 

iv. For each active case, apply the intervention model (see Supplementary Method 2.3 for more 

details) and determine the period of quarantine and isolation. 

v. For each secondary case, determine the infection time by drawing an individual generation 

interval. 

vi. For each transmission pair, determine whether the transmission is realized, or prevented by 

comparing the infection time of the secondary case and the period of quarantine/ isolation of 

the index case. 

vii. Deactivate the index cases, and activate the realized secondary cases. 

viii. Repeat step ii~vii, until there is no active case, or maximum number of generations is 

reached. 

The distributions of the incubation period and onset-to-isolation interval were estimated from case 

series data with the method described in Supplementary Notes. We assumed a negative binomial 

distribution for the reproduction number, which is governed by the reproduction number (𝑅) and the 

dispersion parameter (𝑘). The dispersion parameter was estimated by fitting the dynamical model to 

the observed cluster sizes (see Supplementary Method 3.3). The generation interval distribution was 

assumed to be a skewed normal distribution centered at each index case’s onset time to avoid the 

inconsistent length of incubation periods and generation intervals. This parameterization also makes 

the proportion of pre-symptomatic transmission (𝑝𝑝𝑟𝑒) an explicit parameter in our model. The 

standard deviation of the generation interval (σ), and the proportion of pre-symptomatic transmission 

(𝑝𝑝𝑟𝑒) were estimated by fitting the dynamical model to the observed serial intervals (see 

Supplementary Method 3.2). Regarding the possibility of asymptomatic infection, we assumed a fixed 

probability of being asymptomatic (𝑝𝑎𝑠𝑦𝑚), and fixed relative transmissibility (𝑟𝑎𝑠𝑦𝑚) for all infections. 

 

https://www.codecogs.com/eqnedit.php?latex=k#0
https://www.codecogs.com/eqnedit.php?latex=%5Csigma#0
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2.3 The intervention model 

The intervention model is composed of a set of rules which determine whether and when active cases 

and their contacts are quarantined or isolated and hence unable to transmit disease. Specifically, 

case detection, contact tracing, and quarantine of close contacts were implemented as described in 

the following. 

i. Case detection:  Each active, untraced, and symptomatic case was tested with probability θ, 

and was immediately isolated if tested positive. The secondary cases generated during the 

incubation period (pre-symptomatic period) and the onset-to-isolation interval cannot be 

prevented. 

ii. Contact tracing: Each active and symptomatic case (except initial introductions) was 

ascertained as a close contact (traced) of another detected case with probability ρ. If the case 

is successfully traced, and showing symptoms around the time of contact tracing (the onset 

time of the detected primary case), the case was immediately isolated (i.e., it did not require a 

positive test outcome to isolate a traced case). Case detection plus contact tracing was able 

to prevent the transmission during the onset-to-isolation interval, but not during the incubation 

period. 

iii. Quarantine of close contacts: Each active and traced case (regardless of the presence of 

symptoms) was immediately quarantined at the time of being traced. If the case develops 

symptoms during the quarantine period, he/she was immediately isolated. Only the 

combination of detection, tracing, and quarantine was able to prevent pre-symptomatic 

transmissions and transmissions from asymptomatic cases. 

Note that asymptomatic cases were never detected, traced or isolated, but could be quarantined. We 

also assumed the complete effect of isolation and quarantine, and all transmissions were prevented 

during the period. Extended Data Fig. 3 gives examples that illustrate the effects of these 

interventions on the prevention of disease transmission.  

  

https://www.codecogs.com/eqnedit.php?latex=%5Ctheta#0
https://www.codecogs.com/eqnedit.php?latex=%5Crho#0
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3. Parameter estimation and model fitting 

3.1 Sequential Monte Carlo (SMC) algorithm 

Since the likelihood of the dynamical model is intractable, we used a sequential Monte Carlo algorithm 

to obtain posterior distributions of parameters of interest. This algorithm was used to fit branching 

process-based dynamical models in a similar context10,11.  The algorithm started from a population of 

1000 parameter sets drawn from the prior distributions. Data were simulated with the branching 

process model parameterized by these parameter sets, and the distance between the simulated and 

empirical data was measured by Kolmogorov–Smirnov (KS) statistics. In each round of iteration, the 

parameter set was resampled, perturbed, and passed on until the criteria of convergence were met. 

We ran 4 chains of SMC algorithm to generate a total of 4000 posterior samples for inference.  

The steps of an SMC algorithm are as follows. 

i. Initiation: generate a population of 1000 parameter sets by Latin Hypercube sampling from 

prior distributions. 

ii. Simulation: simulate data points with each parameter set and the dynamical model. 

iii. Evaluation: calculate the KS statistics. 

iv. Evolution: resample a new population of 1000 parameter sets from the current population 

weighted by 1/KS2. 

v. Mutation: perturb each new parameter set by up to 10%. 

vi. Repeat step ii~v until the median KS statistics of the population is less than 0.05 and is within 

10% of each of the previous two rounds. 

3.2 Stage 1: fit to the serial intervals 

The probability of pre-symptomatic transmission (𝑝𝑝𝑟𝑒) and the standard deviation (σ) of the 

generation interval was estimated in the first stage, by fitting the model to empirical serial intervals. 

Supplementary Table 1 lists the values of priors and fixed parameters used in this stage. We note that 

the reproduction number (𝑅) and the dispersion parameter (𝑘) only affect the number of infections, not 

the temporal relationship between successive generations. Hence, they do not influence the 

distribution of generation interval or serial interval.   

3.3 Stage 2: fit to the cluster sizes 

The reproduction number under population-based interventions only (𝑅𝑝), and the dispersion 

parameter (𝑘) were estimated in stage 2, by fitting the model to observed cluster sizes. Because 

clusters of size 1 are prone to incomplete observation, which happens when the imported index cases 

were either undetected or intervened by swift isolation upon entry (truncating the subsequent 

transmission), we limited the observed and simulated data to clusters with 2 or more cases. 

Supplementary Table 2 lists the priors and other fixed parameters used, and Extended Data Fig. 2 

presents the convergence plots and the posterior distributions of the estimates in this stage. The 

parameters estimated in stage 1 were treated as fixed parameters in stage 2. 

  

https://www.codecogs.com/eqnedit.php?latex=%5Csigma#0
https://www.codecogs.com/eqnedit.php?latex=k#0
https://www.codecogs.com/eqnedit.php?latex=R_p#0
https://www.codecogs.com/eqnedit.php?latex=k#0
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4. Estimation of the time-varying reproduction numbers 

The time-varying reproductive number (𝑅𝑡) for SARS-CoV-2 and influenza were estimated using 

Wallinga-Teunis method4, also known as the “case reproduction number”5. This method attributes the 

transmission events and assigns the value of 𝑅𝑡 to the cohort of primary cases at time 𝑡 . Since 𝑅𝑡  

represents the transmissibility of primary cases, it explains the future incidence, and can reflect the 

subsequent impacts of events after specific time points6. Practically, this method estimates the 

transmission probabilities between every possible transmission pair, according to their observed serial 

intervals. The probability that case 𝑖 was infected by case 𝑗  (𝑝𝑖𝑗) is given as  

𝑝𝑖𝑗 =
𝑤(𝑡𝑖 − 𝑡𝑗)

∑ 𝑤(𝑡𝑖 − 𝑡𝑚)𝑖≠𝑚

 

𝑝𝑖𝑗 is calculated by normalizing the likelihood of case  infecting case  by the sum of the likelihood 

from all possible infector cases 𝑚. 𝑤(𝑡𝑖 − 𝑡𝑗) is the transmission likelihood quantifying how well the 

observed serial interval (the onset time difference between case 𝑖 and 𝑗, 𝑡𝑖 − 𝑡𝑗) fits the serial interval 

distribution of ascertained transmission pairs. The effective reproduction number of case 𝑗 is by 

definition (the expected number of secondary infections) the sum of all the transmission probabilities 

where case 𝑗 is the infector. 

𝑅𝑗 = ∑ 𝑝𝑖𝑗
𝑖

 

We then summarized the 𝑅𝑗’s into the time-varying reproduction numbers (𝑅𝑡) by calculating the 7-day 

moving averages according to their onset time. The confidence intervals were calculated by the 2.5th 

and 97.5th percentiles in the 𝑅𝑡 of 100 simulated transmission trees from the 𝑝𝑖𝑗 ’s matrix, as in Cori, et 

al5.  

For SARS-CoV-2, we directly used the daily incidence based on the symptom onset date to estimate 

𝑅𝑡. For influenza, the weekly incidence from two different data sources were used, including the 

notified influenza cases with severe complications in the National Notifiable Disease Surveillance 

System, and the influenza-like illness (ILI) consulting rate in the out-patient and emergency 

departments. The ILI consultation rate was further multiplied by the positive rate of influenza 

according the laboratory surveillance data. Cubic spline smoothing was used to disaggregate the 

weekly-basis data into daily-basis incidence7. Another key input to 𝑅𝑡 estimation is the distribution of 

the serial interval. For SARS-CoV-2, the serial interval was estimated using the ascertained 

transmission pairs in our case series data, as in Supplementary Notes. For seasonal influenza, we 

assumed the mean and standard deviation of the serial interval to be 3.6 and 1.6 according to a 

previous study8.  

 

 

  

https://www.codecogs.com/eqnedit.php?latex=p_%7Bij%7D#0
https://www.codecogs.com/eqnedit.php?latex=k#0
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Supplementary tables 

Supplementary Table 1. The values of fixed parameters and the priors of fitted 

parameters in stage-1 model fitting. 

Parameter Fixed value/ prior range 

Mean Incubation period, days 5.50 

Mean onset-to-isolation interval, days 5.01 

Reproduction number, 𝑅 2.5 

Dispersion parameter, 𝑘 20 

Probability of asymptomatic infection, 𝑝𝑎𝑠𝑦𝑚  0.15 

Relative transmissibility of asymptomatic case, 𝑟𝑎𝑠𝑦𝑚  0.5 

Proportion of pre-symptomatic transmission, 𝑝𝑝𝑟𝑒  Uniform(0.01, 0.99) 

Standard deviation of the generation interval, σ Uniform(0.001, 5) 

Probability of case detection, θ 0.95 

Probability of contact ascertainment, ρ 0.90 

Duration of quarantine, days 14 

Backtracking days for quarantined contacts 4 
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Supplementary Table 2. The values of fixed parameters and the priors of fitted 

parameters in stage-2 model fitting. 

Parameter Fixed value/ prior range 

Mean Incubation period, days 5.50 

Mean onset-to-isolation interval, days 5.01  

Reproduction number, 𝑅 Uniform(0.1, 3.0) 

Dispersion parameter, 𝑘 Uniform(0.001, 50) 

Probability of asymptomatic infection, 𝑝𝑎𝑠𝑦𝑚  0.15 

Relative transmissibility of asymptomatic case, 𝑟𝑎𝑠𝑦𝑚  0.5 

Proportion of pre-symptomatic transmission, 𝑝𝑝𝑟𝑒  0.52 

Standard deviation of the generation interval, σ 2.69 

Probability of case detection, θ 0.95 

Probability of contact ascertainment, ρ 0.90 

Duration of quarantine, days 14 

Backtracking days for quarantined contacts 4 
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Supplementary Table 3. Scenarios in the assessment of case-based interventions. 

Scenario Probability of 
detection (𝛉) 

Probability of 
contact 
ascertainment (𝛒) 

Duration of 
quarantine, days 

No intervention 0  0  0  

Detection 0.95 0 0 

Detection + Tracing 0.95 0.9 0 

Detection + Tracing + 7-day Quarantine 0.95 0.9 7 

Detection + Tracing + 14-day Quarantine 0.95 0.9 14 

 

 

 

 

 

 

 

 

 

 

 

 

  

https://www.codecogs.com/eqnedit.php?latex=%5Ctheta#0
https://www.codecogs.com/eqnedit.php?latex=%5Crho#0
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