SUPPLEMENTARY APPENDIX

Section	Content	Page
Ι	Search Strategy	3
п	A) Study Characteristics that compared patients who died with those who survived (Supplementary table S1)	4
	B) Study Characteristics that compared patients with severe disease with those with non-severe disease (Supplementary table S2)	7
III	Quality assessment (Supplementary tables 3 and 4)	12
IV	Subgroup analysis based on the inclusion of only critically ill or all COVID-19 patients as study participants	17
V	Supplementary figures (Forest and funnel plots 1-121)	18
VI	Supplementary figures (Bubble plot 122-165)	147
VII	Definitions	192
VIII	References	193

Search Strategy

PubMed Search Strategy

"COVID-19" [Supplementary Concept] OR "severe acute respiratory syndrome coronavirus 2" [Supplementary Concept] OR 2019 novel coronavirus [tw] OR SARS2 [tw] OR coronavirus disease-19 OR COVID-19 [tw] OR "COVID 19"[tw] OR "COVID19"[tw] OR "COVID2019"[tw] OR "COVID 2019"[tw] OR "COVID-2019"[tw] OR "novel coronavirus"[tw] OR "new coronavirus"[tw] OR "new coronavirus"[tw] OR "novel coronavirus"[tw] OR "SARS-CoV-2"[tw] OR "new corona virus"[tw] OR "SARS-CoV-2"[tw] OR "SARSCoV2"[tw] OR "SARS-CoV2"[tw] OR "coronavirus disease 2019"[tw] OR "severe acute respiratory syndrome coronavirus 2"[tw] OR "severe acute respiratory syndrome coronavirus 2"[tw] OR "sars-coronavirus 2"[tw] OR "coronavirus disease 2019"[tw] OR "corona virus 2"[tw] OR "severe acute respiratory syndrome coronavirus 2"[tw] OR "severe acute respiratory syndrome coronavirus 2"[tw] OR "sars-coronavirus 2"[tw] OR "coronavirus disease 2019"[tw] OR "corona virus disease 2019"[tw] OR "corona virus 2"[tw] OR "sars-coronavirus 2"[tw] OR "coronavirus disease 2019"[tw] OR "corona virus 2"[tw] OR "sars-coronavirus 2"[tw] OR "coronavirus disease 2019"[tw] OR "corona virus 2"[tw] OR "coronavirus 2"[tw] OR "co

Embase Search Strategy

^{'2019} novel coronavirus'/exp OR SARS2:ab,ti,kw OR 'Wuhan coronavirus':ab,ti,kw OR 'Wuhan seafood market pneumonia virus':ab,ti,kw OR coronavirus disease-19:ab,ti,kw OR COVID-19:ab,ti,kw OR 'COVID 19':ab,ti,kw OR 'COVID19':ab,ti,kw OR 'COVID2019':ab,ti,kw OR 'COVID 2019':ab,ti,kw OR 'COVID-2019':ab,ti,kw OR 'novel coronavirus':ab,ti,kw OR 'new coronavirus':ab,ti,kw OR 'novel corona virus':ab,ti,kw OR 'new corona virus':ab,ti,kw OR 'novel corona virus':ab,ti,kw OR 'new corona virus':ab,ti,kw OR 'SARS-CoV2:ab,ti,kw OR 'SARS-CoV2:ab,ti,kw OR '2019nCo:ab,ti,kw V':ab,ti,kw OR '2019-nCoV':ab,ti,kw OR '2019 coronavirus':ab,ti,kw OR '2019 corona virus':ab,ti,kw OR 'coronavirus disease 2019':ab,ti,kw OR 'severe acute respiratory syndrome coronavirus 2':ab,ti,kw OR 'coronavirus disease 2019':ab,ti,kw OR 'corona virus disease 2019':ab,ti,kw OR

Section II

A) Supplementary Table S1: Study characteristics for the studies that compared patients who died with those who survived.

Name of the Author	Study duration	Month and year of publication	Study design	Country of study	Study setting, City/Province	Patient characteristics	Number of participants	Age Mean (SD) / Mean*[IQR]	Male: Female	Time of laboratory assessment	Time of Radiological assessment
Xiaobo Yang(1)	24 Dec 2019 – 9 Feb 2020	Feb 2020	Retrospective Cohort	China	Jin Yin-tan hospital, Wuhan	Critically ill patients	52	59.7 (13.3)	35:17	Admission	-
Tao Chen(2)	13 Jan 2020 – 28 Feb 2020	Mar 2020	Retrospective Cohort	China	Tongji Hospital, Wuhan	Moderate to critically ill	274	62* [44 -70]	171:103	Admission	Admission
Ning Tang(3)	1 Jan 2020 – 13 Feb 2020	Feb 2020	Retrospective Cohort	China	Tongji Hospital, Wuhan	All confirmed case of COVID-19	183	54.1 (16.2)	98:85	Admission	-
Qiurong Ruan(4)	NA	Mar 2020	Retrospective Cohort	China	Jin Yin-tan hospital and Tongji hospital, Wuhan	All confirmed case of COVID-19	150	NA	NA	Timeline NA	-
Chaomin Wu(5)	25 Dec 2019 – 26 Jan 2020	Mar 2020	Retrospective Cohort	China	Jin Yin-tan hospital, Wuhan	All confirmed case of COVID-19	84	51* [43-60]	60:24	Admission	Admission
Yang-kai Li(6)	1 Jan 2020 – 3 Mar 2020	Mar 2020	Retrospective Cohort	China	Tongji Hospital, Wuhan	From Thoracic surgery department	25	48.4 (14.4)	12:13	Timeline NA	-
Yan Deng(7)	1 Jan 2020 – 21 Feb 2020	Mar 2020	Retrospective Cohort	China	Tongji Hospital, Wuhan	All confirmed case of COVID-19	225	NA	124:104	Admission	-
Mingli Yuan(8)	1 Jan 2020 – 25 Jan 2020	Mar 2020	Retrospective Cohort	China	Hubei Public Health Clinical Center, Hubei Province	All confirmed case of COVID-19	27	60* [47 - 69]	12:15	-	Admission
Fei Zhou(9)	29 Dec 2019 – 31 Jan 2020	Mar 2020	Retrospective Cohort	China	Jin Yin-tan hospital and Wuhan Pulmonary Hospital, Wuhan	All confirmed case of COVID-19	191	56* [46 - 67]	119:72	Admission	Admission
Jianlei Cao(10)	3 Jan 2020 – 1 Feb 2020	Mar 2020	Retrospective Cohort	China	Wuhan University Zhongnan Hospital, Wuhan	All confirmed case of COVID-19	102	54* [37-67]	53:49	Admission	Admission
Rong-Hui Du(11)	25 Dec 2019 – 7 Feb 2020	Mar 2020	Prospective Cohort	China	Wuhan Pulmonary Hospital, Wuhan	All confirmed case of COVID-19	179	57.6 (13.7)	97:82	Timeline NA	-
Wen-Jun Tu(12)	3 Jan 2019 – 24 Feb 2020	Apr 2020	Retrospective Cohort	China	Wuhan University Zhongnan Hospital, Wuhan	All confirmed case of COVID-19	174	70* [64-80]	79:95	Admission	-
Lang Wang(13)	1 Jan 2020 – 5 Mar 2020	Apr 2020	Retrospective Cohort	China	Renmin Hospital of Wuhan University, Wuhan	Elderly patients	339	69* [65, 76]	173:166	Timeline NA	-

Yang Wang(14)	25 Jan 2020 – 25 Feb 2020	Apr 2020	Retrospective Cohort	China	Tongji Hospital, Wuhan	Critically ill patients	344	64* [52-72]	179:165	Admission	Admission
Mengyuan Dai(15)	1 Jan 2020 - 24 Feb 2020	Apr 2020	Retrospective Cohort	China	Multicenter study, Wuhan	All confirmed case of COVID-19	641	64* [57-71]	57:48	-	-
Ming Ding(16)	1 Jan 2020 – 20 Mar 2020	Apr 2020	Retrospective Cohort	China	Huang-shi Traditional Chinese Medicine Hospital, Hubei Province	All confirmed case of COVID-19	32	63 (16)	13:19	Admission	-
Helena Barrasaa(17)	4 Mar 2020 - 31 Mar 2020	Apr 2020	Prospective Cohort	Spain	University Hospital Araba, Vitoria	ICU patients	48	63 (12)	27:21	Admission	-
TieLong Chen(18)	1 Jan 2020 - 10 Feb 2020.	Apr 2020	Retrospective Cohort	China	Zhongnan Hospital, Wuhan	All confirmed case of COVID-19	203	54* [41–68]	108:95	Admission	Admission
Hernando Trujillo(19)	NA	May 2020	Retrospective Cohort	Spain		Patients with end- stage renal disease on dialysis (n=25) and renal transplantation (n=26) who developed COVID- 19	51	64(15)	29:22	Admission	Admission
Gwilym Webb (20)	Till 22 Apr 2020	Apr 2020	Retrospective Cohort	Americas, China, Japan, South Korea	Multi-center, from 21 countries	All confirmed case of COVID-19	39	58* [50-64]	NA	Admission	-
Qingchun Yao(21)	30 Jan 2020 to 11 Feb 2020	Apr 2020	Retrospective Cohort	China	Dabieshan Medical Center, Huanggang, Hubei province	All confirmed case of COVID-19	108	52 * [37-58]	43:65	Admission	Admission
Jia-Fu Wei(22)	Jan 2020 - 10 Mar 2020	Apr 2020	Prospective Cohort	China	Two designated covid-19 treatment centers in Sichuan	All confirmed COVID-19 All confirmed case of COVID-19	101	49 [34 - 62]	NA	Admission	Admission
Jennifer Tomlins(23)	10 Mar 2020 - 30 Mar 2020	Apr 2020	Retrospective cohort	United Kingdom	North Bristol NHS Trust, a large, regional teaching hospital in the UK.	All confirmed case of COVID-19	95	75* [59-82]	60:35	Timeline NA	Timeline NA
Xiaobo Yang(24)	Till 25 Feb 2020	Apr 2020	Retrospective cohort	China	Jin Yin-tan Hospital, Wuhan	All confirmed case of COVID-19	1476	57 [47-67]	776:700	Timeline NA	-
Rongrong Yang (25)	11 Jan 2020 - 16 Mar 2020	Apr 2020	Retrospective Cohort	China	Zhongnan Hospital of Wuhan University, Wuhan	All confirmed case of COVID-19	212	55.6* [40–67]	107:105	-	-
Safiya Richardson(26)	1 Mar 2020 – 4 Apr 2020	Apr 2020	Prospective Cohort	United States	Multi-center, 12 hospitals in New York City, Long Island, and Westchester County, New York, within the Northwell Health system	All confirmed case of COVID-19	5700	63* [52-75]	3437:2263	Admission	-
Jeremy Gold(27)	March 2020	Apr 2020	Prospective Cohort	United States	8 Georgia hospitals (7 in metropolitan Atlanta and 1 in Southern Georgia)	All confirmed case of COVID-19	305	60* [46–69]	151:154	-	-
Lei Gao(28)	NA	Apr 2020	Retrospective Cohort	China	Hubei general Hospital, Hubei Province	All confirmed case of COVID-19	54	60.4 (16.1)	NA	Admission	-

Shailendra Singh(29)	Till 12 Apr 2020	Apr 2020	Retrospective Cohort	United States	Multi-center, 34 health care centers across the US	All confirmed case of COVID-19	2780	52 (18)	1070:1710	-	-
Alberto Zangrillo(30)	20 Feb 2020 - 2 April 2020.	Apr 2020	Retrospective Cohort	Italy	Large tertiary hospital in Milan, Italy	Critically ill patients	73	61* [54–69]	61:12	Admission	Admission
Yongli Yan(31)	10 Jan 2020 - 24 Feb 2020	Apr 2020	Retrospective cohort	China	Tongji Hospital, Wuhan	All patients had "severe" COVID-19	193	64* [49–73]	114:79	-	-
Kun Wang (32)	7 Jan 2020 - 11 Feb 2020	May 2020	Retrospective Cohort	China	First People's Hospital of Jiangxia district in Wuhan	All confirmed case of COVID-19	296	47 (15)	140:156	Admission	-
Ke Wang(33)	NA	Apr 2020	Ambispective Cohort	China	Unspecified hospital in Wuhan	All confirmed case of COVID-19	548		NA	Admission	-
Litao Zhang(34)	12 Jan 2020 - 15 Mar 2020	Apr 2020	Retrospective Cohort	China	Wuhan Asia General Hospital, Wuhan	All confirmed case of COVID-19	343	62* [48-69]	NA	Admission	-
Dawei Wang(35)	Till 10 Feb 2020	Apr 2020	Retrospective Cohort	China	Zhongnan Hospital of Wuhan University in Wuhan and Xishui Hospital, Hubei Province	All COVID-19 positive patients that were discharged from the two hospitals	107	51* [36–65]	57:50	Admission	-
Yanli Liu(36)	Till 1 Mar 2020	Apr 2020	Retrospective Cohort	China	Central Hospital of Wuhan, Wuhan	All confirmed case of COVID-19	383	46* [34-61]	162:221	Admission	-
Yuwei Liu(37)	1 Jan 2020 – 29 Feb 2020	Apr 2020	Retrospective Cohort	China	the Zhongnan Hospital of Wuhan University, Wuhan	All confirmed case of COVID-19	245	54 (17)	114:131	Admission	-
Juyi Li(38)	15 Jan 2020 -25 Mar 2020	Apr 2020	Retrospective Cohort	China	Central hospital of Wuhan, Hubei Province	All confirmed case of COVID-19	1178	55.5* [38-67]	545:633	Timeline NA	-
Mohamad Nikpouraghdam(39)	19 Feb 2020 - 15 Apr 2020	Apr 2020	Retrospective Cohort	Iran	Baqiyatallah Hospital in Tehran	All confirmed case of COVID-19	2964	56 (15)	1.93:1	-	-
J. Zhang(40)	11 Jan 2020 – 6 Feb 2020	Apr 2020	Retrospective Cohort	China	Renmin Hospital of Wuhan University, Wuhan	All confirmed case of COVID-19	663	56* [44-69]	321:342	Admission	Admission
Vikas Mehta(41)	18 Mar 2020 - 8 Apr 2020	May 2020	Retrospective Cohort	United States	Montefiore Health system, New York	All COVID-19 positive patients, and cancer patients (75% of patients had solid tumors and 25% with hematologic malignancies)	218	69* [Range 10- 92]	127:91	Timeline NA	-
Xiaojing Zou(42)	10 Jan 2020 - 10 Feb 2020	May 2020	Retrospective Cohort	China	Tongji Hospital in Wuhan, China	All confirmed case of COVID-19	154	61 (13)	67:87	Admission	Admission

* = Mean. [..] = IQR. (..) = SD. Timeline NA= Timeline Not available.

Name of the Author	Study duration	Month and year of publication	Study design	Country of study	Study setting, City/Province	Number of participants	Age Mean (SD) / Mean*[IQR]	Male: Female	Time of laboratory assessment	Time of Radiological assessment	Time of Disease severity assessment	Criteria for severe disease
Wei-jie Guan(43)	11 Dec 2019 - 29 Jan 2020	Feb 2020	Retrospective cohort	China	552 hospitals in 30 provinces	1099	54.1 (16)	637:459	Admission	Admission	Admission	ATS
Yu-Huan Xu (44)	Jan 2020 - Feb 2020	Feb 2020	Retrospective cohort	China	The Fifth Medical Center of Chinese PLA General Hospital, Beijing	50	43.9 (16.8)	29:21	-	Admission	Admission	CNHC
Sijia Tian (45)	20 Jan 2020 - 10 Feb 2020	Feb 2020	Retrospective cohort	China	Beijing Emergency Medical Center, Beijing	262	47.5* [Range 1-97]	127:135	-	-	Admission	CNHC
Kunhua Li(46)	Jan 2020 - Feb 2020	Feb 2020	Retrospective cohort	China	The second affiliated Hospital of Chongqing Medical university, Chongqing	83	45.5(12.3)	44:39	Timeline NA	Timeline NA	Admission	CNHC
Wei Zhao(47)	NA	Feb 2020	Retrospective cohort	China	four institutions in Hunan province	101	44.4 (12.3)	56:45	Timeline NA	Admission	Admission	CNHC
Huan Han(48)	31 Jan 2020 - 10 Feb 2020	Feb 2020	Prospective cohort	China	Renmin Hospital of Wuhan University, Wuhan	94	NA	48:46	Timeline NA	-	Timeline NA	CNHC
Guo-Qing Qian(49)	20 Jan 2020 - 11 Feb 2020	Mar 2020	Retrospective cohort	China	Ningbo City First Hospital & many, Zhejiang	91	50* [36.5-57]	37:54	Admission	Admission	Timeline NA	CNHC
Rong Qu(50)	Jan 2020 - Feb 2020	Mar 2020	Retrospective cohort	China	Huizhou municipal central hospital, Huizhou	30	50.5* [36-65]	16:14	Admission	-	Timeline NA	CNHC
Yong Gao (51)	23 Jan 2020 - 2 Feb 2020	Feb 2020	Retrospective cohort	China	Fuyang Second People's Hospital, Fuyang	43	45.2(7.68)	9:6	Timeline NA	-	Timeline NA	CNHC
Kai-Cai Liu (52)	21 Jan 2020 - 3 Feb 2020	Feb 2020	Retrospective cohort	China	Hefei Second People's Hospital, Hufei	73	41.6 (14.5)	41:32	Timeline NA	Timeline NA	Timeline NA	CNHC
Suxin Wan (53)	23 Jan 2020 - 8 Feb 2020	Mar 2020	Retrospective cohort	China	Chongqing University Three Gorges Hospital, Chongqing	135	47* [36-55]	72:63	Admission	-	Timeline NA	CNHC
Yu Shi(54)	Up to 17 Feb 2020	Mar 2020	Retrospective cohort	China	The First Affiliated Hospital, Wenzhou	487	46(19)	259:228	Admission	Admission	Admission	CNHC

B) Supplementary Table S2: Study characteristics for the studies that compared patients with severe disease with those with non-severe disease

Kunwei Li (55)	18 Jan 2020 - 7 Feb 2020	Mar 2020	Retrospective cohort	China	The Fifth Affiliated Hospital of Sun Yat- sen University, Guangzhou	78	44.6(17.9)	38:40	Admission	Admission	Admission	CNHC
Chuan Qin (56)	10 Jan 2020 - 12 Feb 2020	Feb 2020	Retrospective cohort	China	Tongji Hospital, Wuhan	452	58* [47-67]	235:217	Admission	-	Admission	CNHC
Lu Huang (57)	1 Jan 2020 - 3 Feb 2020	N/A	Retrospective cohort	China	Tongji Hospital, Wuhan	126	52(15)	67:59	-	Admission	Admission	CNHC
Jin-Jin Zhang(58)	16 Jan 2020 - Feb 2020	Feb 2020	Retrospective cohort	China	No. 7 Hospital of Wuhan, Wuhan	140	57* [Range 25-87]	71:69	Admission	Admission	Admission	CNHC
Gemin Zhang (59)	16 Jan 2020 - 25 Feb 2020	Mar 2020	Retrospective cohort	China	Wuhan Xinzhou District People's Hospital, Wuhan	95	49* [Range 39-58]	53:42	Admission	Admission	Admission	CNHC
Guang Chen(60)	Dec 2019- 27 Jan 2020	Mar 2020	Retrospective cohort	China	Tongji hospital, Wuhan	21	56* [50-65]	17:4	Admission	Admission	Admission	CNHC
Jiaojiao Chu(61)	7 Jan 2020 - 11 Feb 2020	Mar 2020	Retrospective cohort	China	Tongji hospital, Wuhan	54	39* [Range 26-73]	36:18	Admission	Admission	Admission	CNHC
Yang-kai Li(6)	1 Jan 2020 - 3 Mar 2020	Mar 2020	Retrospective cohort	China	Tongji Hospital affiliated to Tongji Medical College of Huazhong University of Science and Technology, Wuhan	25	61* [51-59]	12:13	Timeline NA	Timeline NA	Timeline NA	CNHC
Jing Yuan(62)	11 Jan 2020 - 4 Feb 2020	Mar 2020	Retrospective cohort	China	Shenzhen Third People's Hospital, Shenzen	94	40* [Range 1-78]	42:52	Admission	-	Timeline NA	CNHC
Luwen Wang(63)	14 Jan 2020 - 13 Feb 2020	Mar 2020	Prospective cohort	China	Renmin Hospital of Wuhan University, Wuhan	116	54* [38-69]	67:49	Timeline NA	-	Timeline NA	CNHC
Huan Han(64)	1 Jan 2020 – 18 Feb 2020	Mar 2020	Retrospective cohort	China	Renmin Hospital of Wuhan University, Wuhan	273	58.8(12.1)	97:176	Admission	-	Admission	CNHC
Hangsheng Xie(65)	2 Feb 2020 - 23 Feb 2020	Mar 2020	Retrospective Cohort	China	Jinyintan Hospital, Wuhan	79	60* [Range 27-87]	44:35	Admission	Admission	Admission	CNHC
Qingzian Cai(66)	11 Jan 2020 – 6 March 2020	Mar 2020	Retrospective Cohort	China	Third People's Hospital of Shenzhen, Shenzen	298	47.5* [33-61]	145:153	Admission	Admission	Admission	CNHC
Yafei Zhang(67)	18 Jan 2020 – 22 Feb 2020	Apr 2020	Retrospective Cohort	China	Zhongnan Hospital of Wuhan University, Wuhan	115	49.52 (17.06)	49:66	Admission	-	Admission	CNHC
Wang Ling(68)	23 Jan 2020 – 29 Feb 2020	Mar 2020	Retrospective Cohort	China	Qiandongnan People's Hospital, Kaili City, Qiandongna Miao and Dong Autonomous Prefecture, Guizhou	27	33 (13)	13:14	Admission	Admission	Admission	CNHC
Xinyi Chen(69)	26 Jan 2020 – 31 Jan 2020	Apr 2020	Retrospective Cohort	China	Chongqing Three Gorges Central Hospital, Chongqing	78	45* [Range 15-79]	39:39	Timeline NA	Timeline NA	Admission	CNHC
Fang Zheng(70)	17 Jan 2020 – 7 Feb 2020	Mar 2020	Retrospective Cohort	China	Changsha First Hospital, Changsha	161	45* [33.5-57]	80:81	Admission	Admission	Admission	CNHC
Qing Deng(71)	6 Jan 2020 – 20 Feb 2020	Mar 2020	Retrospective Cohort	China	Renmin Hospital of Wuhan University, Wuhan	112	65* [49-70.7]	57:55	Admission	-	Admission	CNHC

Huan Li (72)	18 Jan 2020 - 26 Feb 2020	Apr 2020	Retrospective Cohort	China	Tianyou hospital, Wuhan	132	64 (13)	75:57	Admission	Admission	Admission	CNHC
Ying Zou(73)	20 Jan 2020 - 24 Feb 2020	Apr 2020	Retrospective Cohort	China	Shanghai public health clinical center, Shanghai	303	51* [Range 16-88]	158:145	Admission	-	Admission	CNHC
Juyi Li(38)	15 Jan 2020 - 15 Mar 2020	Apr 2020	Retrospective cohort	China	Central Hospital of Wuhan, Wuhan	362	66* [59-73]	189:173	Admission	-	Timeline NA	CNHC
Fengjuan Shi(74)	Up to 4 Feb 2020	Apr 2020	Retrospective cohort	China	Multicenter, Jiangsu Province of China	114	43.5* [Range 6-79]	59:55	Admission	-	Admission	CNHC
Guyi Wang(75)	17 Jan 2020 – 20 Feb 2020	N/A	Retrospective cohort	China	The Public Health Treatment Center of Changsha, Changsha	209	54* [Range 35-68]	105:104	Admission	Admission	Admission	CNHC
Ji Mengyao (76)	2 Jan 2020 – 28 Jan 2020	May 2020	Retrospective cohort	China	Wuhan University Renmin Hospital, Wuhan	101	51* [37-61]	48:53	Admission	Admission	Admission	CNHC
Liang Shen(77)	Jan 2020 - Feb 2020	May 2020	Retrospective cohort	China	Xiangyang Central Hospital, Xiangyang City, Hubei Province	119	49* [38-61]	56:63	Admission	-	Timeline NA	CNHC
Fan Yang(78)	1 Jan 2020 - 15 Apr 2020	May 2020	Retrospective cohort	China	Renmin Hospital of Wuhan University, Wuhan	52	63* [Range 34-98]	28:24	Admission	Admission	Admission	CNHC
Jia Ma(79)	1 Jan 2020 – 30 Mar 2020	Apr 2020	Retrospective cohort	China	Hubei Cancer Hospital, Tongji Medical College, Wuhan	34	62* [59-70]	20:17	Admission	-	Timeline NA	CNHC
Qingqing Chen(80)	1 Jan 2020 – 11 Mar 2020	Apr 2020	Retrospective cohort	China	Taizhou Public Health Medical Center, Zhejiang	145	47.5 (14.6)	79:66	Admission	Admission	Admission	CNHC
Marta Colaneri (81)	21 Feb 2020 - 28 Feb 2020	Apr 2020	Retrospective cohort	Italy	Pavia	44	47.5* [Range 10- 94]	28:16	Admission	Admission	Admission	ATS
Xin-Ying Zhao(82)	16 Jan 2020 - 10 Feb 2020	Apr 2020	Retrospective cohort	China	Jingzhou central hospital, Jingzhou	90	46*	49:42	Admission	-	Timeline NA	CNHC
Lian Chen(83)	8 Dec 2019 - 20 Mar 2020	Apr 2020	Retrospective cohort	China	National Health Commission of China	118	31* [28-34]	0:118	Admission	Admission	Timeline NA	CNHC
Lijun Sun(84)	20 Jan 2020 - 15 Feb 2020	May 2020	Retrospective cohort	China	Beijing 302 hospital, Beijing	55	44* [34-56]	31:24	Admission	Admission	Admission	CNHC
Zhe Zhu(85)	23 Jan 2020 - 20 Feb 2020	Apr 2020	Retrospective cohort	China	Hwa Mei Hospital, University of Chinese Academy of Sciences, Ningbo	127	50.90 (15.26)	45:82	Admission	-	Timeline NA	CNHC
Ming Ding(16)	1 Jan 2020 – 20 Mar 2020	Apr 2020	Retrospective cohort	China	Huangshi Traditional Chinese Medicine Hospital, Huangshi City, Hubei Province	32	NA	NA	Admission	-	Admission	CNHC
Yang Liu(86)	Jan 2020 - Feb 2020	Apr 2020	Retrospective cohort	China	First Affiliated Hospital of Nanchang University, Nanchang	76	45* [Range 18-78]	49:27	Admission	-	Admission	CNHC
Yun Feng(87)	1 Jan 2020 – 15 Feb 2020	Apr 2020	Retrospective cohort	China	Three Hospitals from Wuhan, Shanghai, Anhui province	476	53* [40-64]	271:205	Admission	Admission	Timeline NA	CNHC
Rui Zhang(88)	10 January 2020 - 10 Feb 2020	Apr 2020	Retrospective cohort	China	Renmin Hospital of Wuhan University, Wuhan	120	45.4 (15.6)	43:77	Admission	Admission	Admission	CNHC
Xiaohua Chen(89)	1 Feb 2020 – 19 Feb 2020	Apr 2020	Retrospective cohort	China	General Hospital of Central Theater Command, PLA, Beijing	48	64.6 (18.1)	37:11	Admission	-	Timeline NA	CNHC

Xiuqi Wei(90)	13 Feb 2020 - 3 Mar 2020	Apr 2020	Retrospective cohort	China	Union Hospital of Tongji Medical College, Wuhan, Hubei Province	252	64.8 (13.3)	130 :122	Timeline NA	-	Timeline NA	ATS
Zheng Yi(91)	16 Jan 2020 – 4 Feb 2020	Apr 2020	Retrospective cohort	China	Taihe Hospital, Shiyan	73	43 [Range 21-76]	40: 33	Admission	-	Timeline NA	CNHC
Ruirui Wang(92)	20 Jan 2020 - 9 Feb 2020	Apr 2020	Retrospective cohort	China	NO.2 People's Hospital of Fuyang City, Fuyang city	125	38.8 (13.8)	71: 54	Admission	Admission	Timeline NA	CNHC
Zhixian Yao(93)	1 Jan 2020 – 6 Feb 2020	May 2020	Retrospective cohort	China	Jinyintan Hospital, Wuhan	463	51* [43-60]	244: 219	-	-	Timeline NA	CNHC
Fang Lei(94)	20 Dec 2019 - 8 Mar 2020	May 2020	Retrospective cohort	China	Multcenter, Wuhan	5771	56* [43-65]	2724: 3047	Admission	Admission	Admission	CNHC
Lu Lu(95)	18 Jan 2020 – 18 Feb 2020	Apr 2020	Retrospective cohort	China	Multicenter study - 42 officially designed hospitals in Hubei province	304	44* [33,59.25]	182:122	Timeline NA	-	Timeline NA	CNHC
Yang Yang(96)	NA	Apr 2020	Retrospective cohort	China	Shenzhen Third People's Hospital, Shenzen	50	62*[Range 22-78]	29:21	Admission	-	Timeline NA	CNHC
Xiaojie Bi(97)	23 Jan 2020 – 4 Feb 2020	Apr 2020	Retrospective cohort	China	Taizhou Hospital, Zhejiang Province	91	44* (36–54)	51:40	Admission	Admission	Timeline NA	CNHC
Fang Liu(98)	18 Jan 2020 – 12 Mar 2020	Apr 2020	Retrospective cohort	China	General Hospital of Central Theater Command of People's Liberation Army, Wuhan	140	65.5* (54.3-73)	49:91	Admission	Admission	Timeline NA	CNHC
Guangchang Pei (99)	Up to 9 Feb 2020	Apr 2020	Retrospective cohort	China	Tongji Medical College, Huazhong University of Science and Technology, Wuhan	333	56.3 (13.4)	182:151	Admission	Timeline NA	Admission	CNHC
Qingchun Yao(21)	30 Jan 2020 – 11 Feb 2020	Apr 2020	Retrospective cohort	China	Dabieshan Medical Center, Huanggang city, Hubei Province	108	52 (37 – 58)	43:65	Admission	Admission	Timeline NA	ATS
Ling Hu(100)	8 Jan 2020 – 20 Feb 2020	May 2020	Retrospective cohort	China	Tianyou Hospital, an affiliate of the Wuhan University of Science and Technology, Wuhan	323	61* [Range 29-91]	166:157	Admission	Admission	Admission	CNHC
Xiaofan Liu(101)	5 Feb 2020 - 14 Mar 2020	Apr 2020	Retrospective cohort	China	Renmin Hospital of Wuhan University, Wuhan	99	NA	NA	Timeline NA	-	Timeline NA	CNHC
Zhang J (40)	11 Jan 2020 – 6 Feb 2020	Apr 2020	Retrospective cohort	China	Renmin Hospital of Wuhan University, Wuhan	663	55.6* [44-69]	321:342	Admission	Admission	Admission	CNHC
Yuan-Yuan Wei(102)	N/A	Apr 2020	Retrospective cohort	China	Multicenter, Anhui Province	167	42.31 (15.29)	95 :72	Timeline NA	-	Timeline NA	CNHC
Xiaochen Li(103)	26 Jan 2020 - 5 Feb 2020	Apr 2020	Retrospective cohort	China	Sino-French New City Branch of Tongji Hospital, Huazhong University of Science and Technology, Wuhan	548	60* [48-69]	279:269	Admission	Admission	Admission	ATS/CNHC
Yufen Zheng(104)	17 Jan 2020 - 26 Feb 2020	Apr 2020	Retrospective cohort	China	Taizhou Public Health Medical Center, Taizhou Hospital, Taizhou, Zhejiang Province	141	47* [38-56]	74:67	Admission	-	Admission	CNHC
Feng Wang (105)	Up to Jan 2020	May 2020	Retrospective cohort	China	Tongji Hospital, Wuhan	65	57.1 (13.01)	37:28	Timeline NA	-	Timeline NA	CNHC

Peijie Lyu	15 Jan 2019 -	Apr	Retrospective	China	The First Affiliated Hospital of	51	54 (17)	29:22	-	Timeline	Timeline	CNHC
(106)	24 Feb 2020	2020	cohort		Zhengzhou University, Zhengzhou,					NA	NA	
					Henan Province							
Rui Liu(107)	31 Jan 2020 -	Mar	Retrospective	China	Renmin Hospital, Wuhan	119	63.3 (11.7)	62:57	Admission	-	Admission	CNHC
	26 Feb 2020	2020	cohort		_							
H Hou(108)	24 Jan 2020 -	Apr	Retrospective	China	Tongji Hospital, Wuhan.	389	61.3 (13.8)	200:189	Admission	-	Admission	CNHC
	15 Feb 2020	2020	cohort									
Shufa	19 Jan 2020 -	Apr	Retrospective	China	First Affiliated Hospital, College of	96	55* [44.3 - 64.8]	58:38	-	Admission	Admission	CNHC
Zheng(109)	20 Mar 2020	2020	cohort		Medicine,		_					
					Zhejiang University, Hangzhou							

ATS= American thoracic society guidelines(110). CNHC= Chinese National Health Commission guidelines(111). PLA=People's Liberation Army. Timeline NA= Timeline Not available. * = Mean. [] = IQR. () = SD.

Section III

Quality assessment

Supplementary Table S3: Quality assessment for studies that compared patients who died with those who survived.

			le-Ott ore=9)	awa Qua	ality a	ssessr	nent S	Scale
Name of the Author	Representativeness of exposed	Selection of the non-exposed	Ascertainment of exposure	Outcome of interest was not present at the start	Comparability	Assessment of outcome	Long enough follow up	Adequacy of follow up
Xiaobo Yang(1)	*	*	*	*	*	*	*	*
Tao Chen(2)	*	*	*	*	*	*	*	*
Ning Tang(3)	*	*	*	*	*	*	*	*
Qiurong Ruan(4)	*	*	*	*	*	*	*	*
Chaomin Wu(5)	*	*	*	*	*	*	*	*
Yang-kai Li(6)	*			*		*	*	*
Yan Deng(7)	*	*	*	*	*	*	*	*
Mingli Yuan(8)	*	*	*	*	*	*	*	
Fei Zhou(9)	*	*	*	*	*	*	*	
Jianlei Cao(10)	*	*	*	*	*	*	*	*
Rong-Hui Du(11)	*	*	*	*	*	*	*	
Wen-Jun Tu(12)	*	*	*	*	*	*	*	*
Lang Wang(13)	*	*	*	*	*	*	*	*
Yang Wang(14)	*	*	*	*	*	*	*	*
Mengyuan Dai(15)	*	*	*	*	**	*	*	*
Ming Ding(16)			*	*	*	*	*	*
Helena Barrasaa(17)	*		*	*	*	*	*	*

TieLong Chen(18)	*	*	*	*	*	*	*	
Hernando Trujillo(19)	*		*	*	*	*	*	
Gwilym Webb (20)	*	*	*	*	*	*	*	*
Qingchun Yao(21)	*			*	*	*		
Jia-Fu Wei(22)	*	*	*	*	*	*	*	*
Jennifer Tomlins(23)	*	*	*	*	*	*	*	*
Xiaobo Yang(24)	*	*	*	*	*	*	*	*
Rongrong Yang (25)	*	*	*	*	*	*	*	*
Safiya Richardson(26)	*		*	*	*	*	*	*
Jeremy Gold(27)	*	*	*	*	*	*	*	*
Lei Gao(28)	*	*	*	*	*	*	*	*
Shailendra Singh(29)	*	*	*	*	*			
Alberto Zangrillo(30)	*	*	*	*	*	*	*	*
Yongli Yan(31)	*	*	*	*	*	*	*	*
Kun Wang (32)	*		*	*	*	*	*	*
Ke Wang(33)	*		*	*	*	*	*	*
Litao Zhang(34)	*		*	*	*	*	*	*
Dawei Wang(35)	*	*	*	*	*	*	*	*
Yanli Liu(36)	*	*	*	*	*	*	*	*
Yuwei Liu(37)	*		*	*	*	*	*	*
Juyi Li(38)	*	*	*	*	*	*	*	*
Mohamad Nikpouraghdam(39)	*		*	*	*	*	*	*
J. Zhang(40)	*		*		*			*
Vikas Mehta(41)	*	*	*	*	*	*	*	*
Xiaojing Zou(42)	*	*	*	*	*	*	*	*
L	I	I	L	I	I	I	I	I

Supplementary Table S4: Quality assessment of studies that compared patients with severe disease with those with non-severe disease

	New	Castl		awa - Qu (Total sc			ment S	Scale
Name of the Author	Representativeness of exposed	Selection of the non-exposed	Ascertainment of exposure	Outcome of interest was not present at the start	Comparability	Assessment of outcome	Long enough follow up	Adequacy of follow up
Wei-jie Guan(43)	*	*	*	*	*	*	*	*
Yu-Huan Xu (44)	*	*	*	*	*	*	*	*
Sijia Tian (45)	*	*	*	*	*	*	*	*
Kunhua Li(46)	*		*	*	*	*	*	*
Wei Zhao(47)	*	*	*	*	*	*	*	*
Huan Han(48)			*	*	*	*	*	*
Guo-Qing Qian(49)	*	*	*	*	*	*	*	
Rong Qu(50)	*	*	*	*	*	*	*	
Yong Gao (51)	*	*	*	*	*	*	*	*
Kai-Cai Liu (52)	*	*	*	*	*	*	*	
Suxin Wan (53)	*	*	*	*	*	*	*	
Yu Shi(54)	*	*	*	*	*	*	*	*
Kunwei Li (55)	*	*	*	*	*	*	*	*
Chuan Qin (56)	*	*	*	*	*	*	*	*
Lu Huang (57)	*	*	*	*	*	*	*	
Jin-Jin Zhang(58)	*	*	*	*	*	*	*	*
Gemin Zhang (59)	*	*		*	*	*		
Guang Chen(60)	*	*	*	*	*	*	*	*

Jiaojiao Chu(61)	*	*	*	*	*	*	*	
Yang-kai Li(6)	*			*		*	*	*
Jing Yuan(62)	*	*	*	*	*	*	*	
Luwen Wang(63)	*	*	*	*	*	*	*	
Huan Han(64)	*	*	*	*	*	*	*	*
Hangsheng Xie(65)	*	*	*		*	*	*	*
Qingzian Cai(66)	*	*		*	*	*		
Yafei Zhang(67)	*	*	*		*		*	*
Wang Ling(68)	*	*	*		*		*	*
Xinyi Chen(69)	*	*	*	*	*	*	*	*
Fang Zheng(70)	*	*	*		*	*	*	*
Qing Deng(71)	*	*	*		*	*	*	*
Huan Li (72)	*	*	*		*	*	*	*
Ying Zou(73)	*	*	*	*	*	*	*	*
Juyi Li(38)	*	*	*	*	*	*	*	*
Fengjuan Shi(74)	*	*	*	*	*	*	*	
Guyi Wang(75)	*	*	*	*	*	*	*	*
Ji Mengyao (76)	*	*	*	*	*	*	*	
Liang Shen(77)	*	*	*	*	*	*	*	*
Fan Yang(78)	*	*	*	*	*	*	*	*
Jia Ma(79)	*	*	*	*	*	*	*	*
Qingqing Chen(80)	*	*	*	*	*	*	*	*
Marta Colaneri (81)	*	*	*	*	*	*	*	*
Xin-Ying Zhao(82)	*	*	*	*	*	*	*	
Lian Chen(83)	*	*	*	*	*	*	*	*
Lijun Sun(84)	*	*	*	*	*	*	*	
Zhe Zhu(85)	*	*	*	*	*	*	*	
Ming Ding(16)	*	*	*	*	*	*	*	
Yang Liu(86)	*	*	*	*	*	*	*	*
Yun Feng(87)	*	*	*	*	*	*	*	*
Rui Zhang(88)	*			*	*			*
	I	I	I	I	I	1	1	

Xiaohua Chen(89)	*	*	*	*	*	*	*	*
Xiuqi Wei(90)	*	*	*	*	*	*	*	
Zheng Yi(91)	*	*	*	*	*	*	*	*
Ruirui Wang(92)	*	*	*	*	*	*	*	
Zhixian Yao(93)	*	*	*	*	*	*	*	*
Fang Lei(94)	*	*	*	*		*	*	*
Lu Lu(95)	*	*	*	*	*	*	*	*
Yang Yang(96)	*	*		*	*	*		
Xiaojie Bi(97)	*	*	*	*	*	*	*	*
Fang Liu(98)	*	*	*	*	*	*	*	*
Guangchang Pei (99)	*	*	*	*	*	*	*	
Qingchun Yao(21)	*			*	*	*		
Ling Hu(100)	*	*	*	*	*	*	*	
Xiaofan Liu(101)	*	*	*	*	*	*	*	
Zhang J (40)	*	*	*	*	*	*	*	
Yuan-Yuan Wei(102)	*	*	*	*	*	*	*	*
Xiaochen Li(103)	*	*	*	*		*	*	
Yufen Zheng(104)	*	*	*	*	*	*	*	*
Feng Wang (105)	*	*	*	*	*	*	*	
Peijie Lyu (106)	*	*	*	*	*	*	*	
Rui Liu(107)	*	*	*	*	*	*	*	
H Hou(108)	*	*	*	*	*	*	*	*
Shufa Zheng(109)	*	*	*	*	*	*	*	
Shuta Zheng(109)	т	T	T	T	т	ጥ	т	

Section IV

Supplementary Table S5: Subgroup analysis based on whether critically ill patients were included in the study

Clinical characteristics	All studies			Studies wit	th all COVID-19 patients		Studies with patients	only critically ill COVID	-19
	No. of Studies	Pooled RR [95% CI]	I ²	No. of Studies	Pooled RR [95% CI]	I ²	No. of Studies	Pooled RR [95% CI]	I ²
Cardiovascular diseases	25	2.27 [1.88–2.79]	70.78%	22	2.47[2.06-2.95]	63.76%	3	1.27 [0.90–1.80]	20.87%
Cerebrovascular Disease	15	2.63 [1.97–3.51]	75.22%	14	2.76[2.02-3.75]	73.28%	1	1.69[1.23-2.32]	
Diarrhea	14	1.15 [0.85–1.57]	64.65%	13	1.23[0.8–1.70]	60.55%	1	0.76[0.55–1.07]	
Dyspnea	20	2.55 [1.88-3.46]	77.13%	16	3.17[2.32 -4.32]	63.89%	4	1.38 [0.98–1.94]	51.88%
Shock	9	6.12 [3.59–10.45]	93.35%	8	5.66 [3.15–10.15]	93.57%	1	10.76 [7.15–16.19]	
Bacteremia	6	5.07 [2.02–12.67]	94.28%	5	6.55 [2.60–16.54]	93.92%	1	1.24 [0.54–2.84]	
Acute cardiac injury	14	5.42 [3.79–7.77]	86.24 %	14	5.82 [4.40-7.71]	69.79%	2	3.37 [0.53–21.47]	97.74%
Acute Respiratory Distress Syndrome	14	20.19 [10.87-37.52]	79.05%	12	22.76 [13.07–39.66]	63.32%	2	8.48 [0.54–133.79]	96.04%
Acute Kidney Injury	15	4.65 [3.25-6.65]	94.89%	13	5.07 [3.49–7.37]	94.38%	2	2.70 [0.85-8.59]	96.06%
Acute liver injury	10	2.54 [1.77–3.66]	93.14%	8	2.84 [1.94-4.17]	91.17%	2	1.67 [0.60-4.64]	93.37%
Disseminated intravascular coagulation	4	3.41 [2.00–5.81]	94.86%	3	3.17 [1.53–6.57]	95.98%	1	4.27 [3.43–5.31]	
Gastrointestinal bleeding	4	2.53 [1.42-4.49]	76.21%	3	3.13 [1.79–5.46]	64.09%	1	1.39 [0.80–2.42]	
TLC > 10 x 109/L	5	4.72 [2.69-8.30]	86.80%	5	4.72 [2.69-8.30]	86.80%			
Na+ > 145 mmol/L	2	2.70 [2-3.64]	63.06%	2	2.70 [2-3.64]	63.06%			
Procalcitonin >0.5 ng/mL	6	2.44 [1.40-4.26]	92.33%	5	3.39 [2.62-4.39]	43.43%	1	0.88 [0.69–1.12]	
BNP > 100 ng/L	2	14.65 [0.49-440.36]	90.98%	2	14.65 [0.49-440.36]	90.98%			

Section V

Supplementary figures

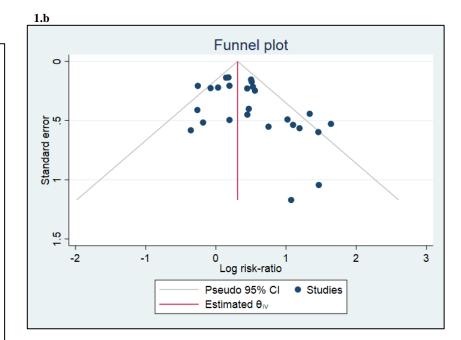
The following symbols in the forest plots denote the primary hospital where the study was conducted

! Shenzhen Third People's Hospital, Shenzhen, China

Tongji Hospital, Wuhan, China

- \$ Wuhan Jinyintan Hospital, Wuhan, China
- * Zhongnan Hospital of Wuhan University, Wuhan, China
- % Tianyou Hospital, Wuhan, China

& Taizhou Public Health Medical Center, Zhejiang, China; Central hospital of Wuhan, Wuhan

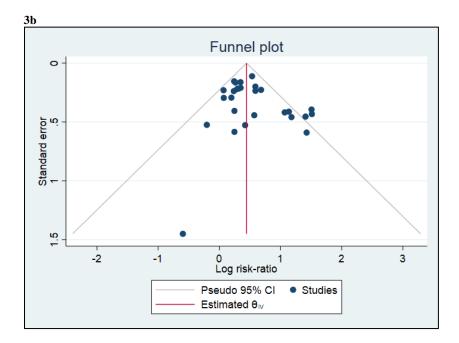

- + Chongqing Three Gorges Central Hospital, Chongqing, China
- @ Renmin Hospital of Wuhan University, Wuhan, China

^ General Hospital of Central Theater Command of People's Liberation Army, Wuhan, China

eFigure 1. Pooled Risk ratio of death in male patients compared to female patients. a) Forest plot b) Funnel Plot

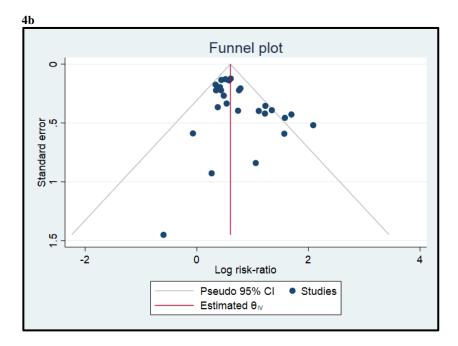
1.a

		Male	F	emale	Risk Ratio	Weig
Study	Died	Survived	Died	Survived	with 95% CI	(%)
Mingli Yuan	4	8	6	9	0.83 [0.30, 2.29]	2.04
Kun Wang	11	126	8	148	1.57 [0.65, 3.78]	2.53
Qingchun Yao	7	36	5	60	2.12 [0.72, 6.24]	1.84
Ming Ding	2	11	1	18	2.92 [0.29, 28.99]	0.48
Rong-Hui Du	10	87	11	71	0.77 [0.34, 1.72]	2.89
Xiaobo Yang \$	21	14	11	6		5.71
Vikas Mehta	36	91	25	66		5.81
Gwilym J Webb	5	20	4	10	0.70 [0.22, 2.19]	1.68
Mohamad N	167	1,788	72	937	1.20 [0.92, 1.58]	7.85
Hernando Trujillo	8	21	5	17	1.21 [0.48, 3.20]	2.18
Yang Wang #	74	105	59	106	1.16 [0.88, 1.51]	7.81
Yang-kai Ll #	4	8	1	12	4.33 [0.56, 33.53]	0.59
Tao Chen #	83	88	30	73		6.94
Xiaojing Zou #	20	47	32	155	1.74 [1.08, 2.83]	5.28
Yan Deng #	73	51	36	65	· 1.65 [1.22, 2.23]	7.41
Ning Tang #	16	82	5	80	2.78 [1.06, 7.26]	2.22
Qiurong Ruan #	49	53	19	29	- 1.21 [0.81, 1.82]	6.15
Chaomin Wu \$	29	31	15	9		6.13
Juyi Li &	50	139	27	146		5.96
TieLong Chen *	16	18	3	18	3.29 [1.09, 9.96]	1.77
Dawei Wang *	16	41	3	43	4.30 [1.34, 13.87]	1.61
Rongrong Yang *	21	86	4	101	5.15 [1.83, 14.50]	1.97
Jianlei Cao *	13	40	4	45	3.00 [1.05, 8.60]	1.92
Wen-Jun Tu *	19	60	6	89	3.81 [1.60, 9.07]	2.59
Lang Wang @	39	127	26	147	1.56 [1.00, 2.45]	5.65
J. Zhang @	15	306	10	332	1.60 [0.73, 3.51]	2.99
Overall					1.45 [1.23, 1.71]	
Heterogeneity: τ ²	= 0.01	7, I [°] = 49.	27%,	H [*] = 1.97		
Test of $\theta_1 = \theta_1$: Q(25) =	48.89, p =	= 0.00)		
Test of $\theta = 0$: $z = 4$	4.50,	p = 0.00				
					1.00	

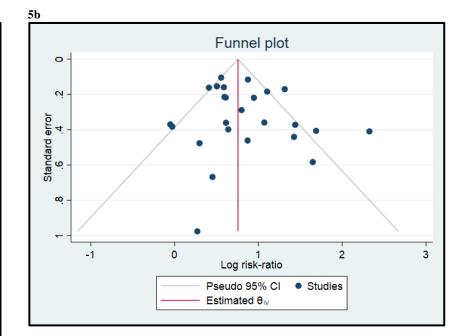

20

eFigure 2. Pooled Risk ratio of death in ever smoker patients. a) Forest plot

	Ever	Smokers	Never	smokers		Risk Ratio	Weight
Study	Died	Survived	Died	Survived		with 95% CI	(%)
Kun Wang	1	11	18	266		1.31 [0.19, 9.05]	1.95
Hernando Trujillo	0	2	18	5 -		0.22 [0.02, 2.74]	1.12
Yang-kai LI #	3	4	2	16		— 3.86 [0.81, 18.39]	2.97
Tao Chen #	9	10	104	151	-#-	1.16 [0.71, 1.91]	29.40
Xiaojing Zou #	6	7	46	95		1.41 [0.75, 2.66]	18.07
Ke Wang #	18	74	56	396		1.58 [0.98, 2.56]	31.27
Fei Zhou \$	5	6	49	131	- 	1.67 [0.84, 3.33]	15.22
Overall					•	1.43 [1.09, 1.87]	
Heterogeneity: T ² =	0.00, I ²	= 0.00%, H	l ² = 1.00)			
Test of $\theta_1 = \theta_2$: Q(6)	= 4.72,	p = 0.58					
Test of $\theta = 0$: $z = 2$.	59, p =	0.01					
					1.00		
Random-effects REI	ML mode	el					


eFigure 3. Pooled Risk ratio of death in patients with Diabetes Mellitus (DM). a) Forest plot b) Funnel Plot

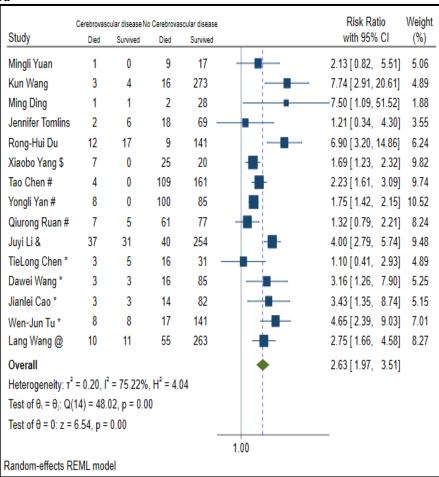
	Diabete	s mellitus	No Diabe	tes mellitus	Risk Ratio
Study	Died	Survived	Died	Survived	with 95% CI
Mingil Yuan	6	0	4	17	4.54 [1.94, 10.61]
Kun Wang	6	24	13	253	4.09 [1.68, 9.97]
Ming Ding	0	6	3	23 —	0.55 [0.03, 9.47]
Jennifer Tomlins	13	24	7	51	2.91 [1.28, 6.62]
Rong-Hul Du	6	27	15	131	1.77 [0.74, 4.22]
Xlaobo Yang \$	7	2	25	18	- 1.34 [0.87, 2.06]
Vikas Mehta	27	53	34	104	1.37 [0.90, 2.09]
Gwllym J Webb	4	11	5	19	1.28 [0.41, 4.02]
Mohamad N	11	102	228	2,623	
Hernando Trujilio	4	14	9	24	0.81 [0.29, 2.28]
Alberto Zangrillo	3	6	14	50	1.52 [0.54, 4.28]
Yang Wang #	30	34	103	177	1.27 [0.94, 1.72]
Yang-kal LI #	1	0	4	20	4.17 [1.31, 13.26]
Tao Chen #	24	23	89	138	- 1.30 [0.94, 1.80]
Xlaojing Zou #	16	24	36	78	
Yan Deng #	17	9	92	107	1.41 [1.03, 1.94]
Ke Wang #	19	64	59	406	- 1.80 [1.14, 2.86]
Yongil Yan #	39	9	69	76	1.71 [1.37, 2.12]
Qiurong Ruan #	12	13	56	69	
Chaomin Wu Ş	11	5	33	35	- 1.42 [0.94, 2.14]
Fel Zhou Ş	17	19	37	118	- 1.98 [1.27, 3.09]
Juyi Li &	38	89	39	196	- 1.80 [1.22, 2.67]
TieLong Chen *	5	7	14	29	1.28 [0.58, 2.84]
Dawel Wang *	5	6	14	82	
Jianiel Cao *	6	5	11	80	8 4.51 [2.08, 9.78]
Wen-Jun Tu *	6	19	11	138	3.25 [1.32, 8.00]
Lang Wang @	11	43	54	231	
Overall					1.59 [1.41, 1.78]
Heterogeneity: T ³ =	0.02, I ^a	- 23.15%,	H ² = 1.30		
Test of $\theta_i = \theta_j$: Q(26)	i) - 43.39	9, p = 0.02			
Test of 0 = 0: z = 7.	81, p = 0	.00			
					1.00

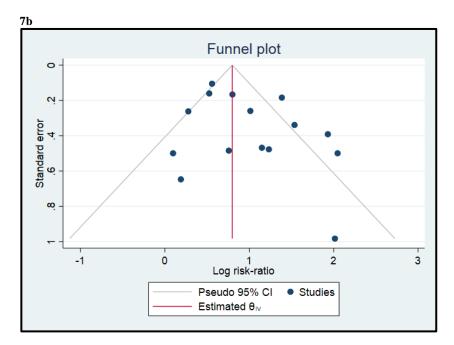

eFigure 4. Pooled Risk ratio of death in patients with Hypertension (HTN). a) Forest plot b) Funnel Plot

	Нуре	ertension	No Hyp	pertension	R	isk Ratio	Welgi
Study	Died	Survived	Died	Survived	wit	h 95% Cl	(%)
Mingli Yuan	5	0	5	17	3.83 [1.78, 8.26]	2.14
Kun Wang	9	33	10	244		2.35, 12.60]	1.83
Dingchun Yao	7	9	5	87		2.91, 22.27]	1.29
Ming Ding	0	6	3	23 -	0.55 [0.03, 9.47]	0.18
Jennifer Tomlins	11	24	9	51	2.10 [0.96, 4.55]	2.10
Rong-Hul Du	13	45	8	113	3.39 [1.49, 7.72]	1.89
Vikas Mehta	47	100	14	57	1.62 [0.96, 2.74]	3.98
Gwllym J Webb	4	14	5	16	0.93 [0.29, 2.96]	1.02
Mohamad N	8	51	231	2,674	1.71	0.88, 3.29]	2.79
Hernando Trujilio	12	34	1	4	1.30 [0.21, 8.04]	0.43
Alberto Zangrilio	14	22	3	34	4.80 [1.50, 15.29]	1.01
Yang Wang #	69	72	64	139	1.55 [1.19, 2.02]	9.18
′ang-kal LI #	1	1	4	19	2.88 [0.55, 14.93]	0.52
Tao Chen #	54	39	59	122	1.78 [1.36, 2.34]	8.95
Klaojing Zou #	21	26	31	76	- 1.54 [1.00, 2.38]	5.22
'an Deng #	40	18	69	98	1.67 [1.30, 2.14]	9.61
Ke Wang #	38	128	40	342	- 2.19 [1.46, 3.28]	5.74
Yongii Yan #	57	16	51	69	1.84 [1.44, 2.34]	9.90
Qlurong Ruan #	29	23	39	59	1.40 [0.99, 1.98]	7.03
Chaomin Wu \$	16	7	28	33	· 1.52 [1.03, 2.22]	6.15
Fel Zhou \$	26	32	28	105	- 2.13 [1.38, 3.29]	5.21
TeLong Chen *	9	12	10	24		0.71, 2.99]	2.40
Dawel Wang *	10	16	9	62		1.39, 6.62]	2.08
llaniel Cao *	11	17	6	68	4.85 [1.98, 11.85]	1.63
Nen-Jun Tu *	12	25	13	124		1.70, 6.85]	2.53
.ang Wang @	32	105	33	168	1.41 [0.91, 2.18]	5.21
Overall					1.90 [1.69, 2.15]	
Heterogeneity: T ³ =	0.02, I ³	- 28.03%,	H ² = 1.3	9			
est of 8, = 8;: Q(25	- 43.8	8, p = 0.01					
rest of 0 = 0: z = 10	.50, p -	0.00					
					1.00		

Mingli Yuan 3 0 7 17 2.92 [1.44, 5.90] Kun Wang 5 5 14 272 10.21 [4.57, 22.80] Qingchun Yao 2 2 10 94 5.20 [1.68, 16.32] Jennifer Tomlins 7 14 13 61 1.90 [0.87, 4.14] Xiaobo Yang S 3 2 29 18 0.97 [0.46, 2.06] Wikas Mehta 19 24 42 133 1.84 [1.20, 2.82] Gwilyn J Webb 2 4 7 26 1.57 [0.42, 5.82] Mohamad N 4 33 235 2,892 1.35 [0.53, 3.43] Hernando Trujillo 4 9 34 2.39 [0.97, 6.30] Yang Wang # 22 18 111 193 1.51 [1.10, 2.07] Yang Kai Ll # 1 3 4 17 1.31 [0.19, 8.89] Tao Chen # 16 7 97 154 1.80 [1.32, 2.46] Xiaojing Zou # 18 5 34 97 3.02 [2.10, 4.32] Yan Deng # 10 24 6		ovascular diseas led Survive		scular disease Survived		Risk Ratio with 95% CI	Weig (%)
Clingchun Yao 2 2 10 94 6.20 [1.86, 16.32] Jannifer Tomlins 7 14 13 61 1.90 [0.87, 4.14] Xiaobo Yang S 3 2 29 18 0.97 [0.46, 2.08] Vikas Mehta 19 24 42 133 1.84 [1.20, 2.82] Gwilym J Webb 2 4 7 26 1.57 [0.42, 5.82] Mohamad N 4 33 235 2,692 1.35 [0.53, 3.43] Hernando Trujillo 4 4 9 34 2.39 [0.97, 5.90] Yang Wang # 22 18 111 193 1.51 [1.10, 2.07] Yang Wang # 13 4 97 1.31 [0.19, 8.89] Tao Chen # 16 7 97 154 Yang Berg # 13 4 96 112 1.66 [1.23, 2.24] Yang Wang # 10 24 68 446 2.22 [1.26, 3.91] Yongli Yan # 27 4 81 1.74 [1.42, 2.14] 1.66 [1.23, 2.24] Quirong Ruan # 13 0 55	Yuan	3 0	7	17		2.92 [1.44, 5.90]	3.50
Jennifer Tomlins 7 14 13 61 1.90 [0.87, 4.14] Xiaobo Yang \$ 3 2 29 18 0.97 [0.46, 2.08] Vikas Mehta 19 24 42 133 1.84 [1.20, 2.82] Gwilym J Webb 2 4 7 26 1.57 [0.42, 5.82] Mohamad N 4 33 235 2,692 1.35 [0.53, 3.43] Hernando Trujillo 4 4 9 34 2.39 [0.97, 5.90] Yang Wang # 22 18 111 193 1.51 [1.10, 2.07] Yang-kai Ll # 1 3 4 17 1.31 [0.19, 8.89] Tao Chen # 16 7 97 154 1.80 [1.32, 2.46] Xiaojing Zou # 18 5 34 97 3.02 [2.10, 4.32] Yan Deng # 13 4 96 112 1.66 [1.23, 2.24] Yan Deng # 13 0 55 82 2.40 [1.91, 3.01] Yongli Yan # 27 4 81 81 1.74 [1.42, 2.14] Qiurong Ruan # 13 <	/ang	5 5	14	272		-10.21 [4.57, 22.80]	3.04
Xiaobo Yang \$ 3 2 29 18 0.97 [0.46, 2.06] Vikas Mehta 19 24 42 133 1.84 [1.20, 2.82] Gwilym J Webb 2 4 7 26 1.57 [0.42, 5.82] Gwilym J Webb 2 4 7 26 1.57 [0.42, 5.82] Mohamad N 4 33 235 2.692 1.35 [0.53, 3.43] Yang Wang # 22 18 111 193 1.51 [1.10, 2.07] Yang Wang # 22 18 111 193 1.51 [1.10, 2.07] Yang Wang # 13 4 17 1.31 [0.19, 8.89] Tao Chen # 16 7 97 154 1.80 [1.32, 2.46] Xiaojing Zou # 18 5 34 97 3.02 [2.10, 4.32] Yan Deng # 13 4 96 112 1.66 [1.23, 2.24] Yan Deng # 10 24 68 446 2.22 [1.26, 3.01] Yongli Yan # 27 4 81 81 1.74 [1.42, 2.14] Qiurong Ruan # 13 0 55	hun Yao	2 2	10	94		- 5.20 [1.66, 16.32]	1.92
Vikas Mehta 19 24 42 133 1.84 [1.20, 2.82] Gwilym J Webb 2 4 7 26 1.57 [0.42, 5.82] Mohamad N 4 33 235 2,692 1.35 [0.53, 3.43] Hernando Trujillo 4 4 9 34 2.39 [0.97, 5.90] Yang Wang # 22 18 111 193 1.51 [1.10, 2.07] Yang Wang # 22 18 111 193 1.51 [1.10, 2.07] Yang Kai Li # 1 3 4 17 1.31 [0.19, 8.89] Tao Chen # 16 7 97 154 1.80 [1.32, 2.46] Xiaojing Zou # 18 5 34 97 3.02 [2.10, 4.32] Yan Deng # 13 4 96 112 1.66 [1.23, 2.24] Yan Deng # 10 24 68 446 2.22 [1.26, 3.91] Yongli Yan # 27 4 81 81 1.74 [1.42, 2.14] Qiurong Ruan # 13 0 55 82 2.40 [1.91, 3.01] Chaomin Wu \$ 4 <t< td=""><td>er Tomlins</td><td>7 14</td><td>13</td><td>61</td><td></td><td>1.90 [0.87, 4.14]</td><td>3.14</td></t<>	er Tomlins	7 14	13	61		1.90 [0.87, 4.14]	3.14
Gwilym J Webb 2 4 7 28 1.57 [0.42, 5.82] Mohamad N 4 33 235 2,692 1.55 [0.53, 3.43] Hernando Trujillo 4 9 34 2.39 [0.97, 5.00] Yang Wang # 22 18 111 193 1.51 [1.10, 2.07] Yang-kai Ll # 1 3 4 17 1.31 [0.19, 8.89] Tao Chen # 16 7 97 154 1.80 [1.32, 2.46] Xiaojing Zou # 18 5 34 97 3.02 [2.10, 4.32] Yan Deng # 13 4 96 112 1.66 [1.23, 2.24] Yan Deng # 10 24 68 446 2.22 [1.26, 3.01] Yongli Yan # 27 4 81 81 1.74 [1.42, 2.14] Qiurong Ruan # 13 0 55 82 2.40 [1.91, 3.01] Chaomin Wu \$ 4 4 0 36 0.95 [0.46, 1.96] Jui Li & 21 41 56 244 1.81 [1.19, 2.76] TieLong Chen * 6 5 13<	o Yang \$	3 2	29	18		0.97 [0.46, 2.06]	3.28
Non-Jime Provide Provid	Mehta 1	9 24	42	133		1.84 [1.20, 2.82]	5.13
Hernando Trujillo 4 4 9 34 2.39 [0.97, 5.90] Yang Wang # 22 18 111 193 1.51 [1.10, 2.07] Yang-kai LI # 1 3 4 17 1.31 [0.19, 8.89] Tao Chen # 16 7 97 154 1.80 [1.32, 2.46] Xiaojing Zou # 18 5 34 97 3.02 [2.10, 4.32] Yan Deng # 13 4 96 112 1.66 [1.23, 2.24] Yan Deng # 10 24 68 446 2.22 [1.26, 3.91] Yongli Yan # 27 4 81 81 1.74 [1.42, 2.14] Qiurong Ruan # 13 0 55 82 2.40 [1.91, 3.01] Chaomin Wu \$ 4 4 0 36 0.95 [0.46, 1.96] Juyi Li & 21 41 56 244 1.81 [1.19, 2.76] TieLong Chen * 6 5 13 31 1.85 [0.91, 3.74] Dawei Wang * 7 6 12 4 2.58 [1.88, 3.96] J. Zhang @ 16 148 <td>n J Webb</td> <td>2 4</td> <td>7</td> <td>26</td> <td></td> <td>1.57 [0.42, 5.82]</td> <td>1.57</td>	n J Webb	2 4	7	26		1.57 [0.42, 5.82]	1.57
Yang Wang # 22 18 111 193 1.51 [1.10, 2.07] Yang-kai Ll # 1 3 4 17 1.31 [0.19, 8.89] Tao Chen # 16 7 97 154 1.80 [1.32, 2.46] Xiaojing Zou # 18 5 34 97 3.02 [2.10, 4.32] Yan Deng # 13 4 96 112 1.66 [1.23, 2.24] Yan Deng # 10 24 68 446 2.22 [1.26, 3.91] Yongli Yan # 27 4 81 81 1.74 [1.42, 2.14] Qiurong Ruan # 13 0 55 82 2.40 [1.91, 3.01] Chaomin Wu \$ 4 40 36 0.95 [0.46, 1.96] 3.72 [2.67, 5.19] Juyi Li & 21 41 56 244 1.81 [1.19, 2.76] 1.85 [0.91, 3.74] Dawei Wang * 7 6 12 82 4.22 [2.03, 8.75] 3.96] Jianlei Cao * 3 2 14 83 4.16 [1.75, 9.87] 4.22 [2.03, 8.76] 4.22 [2.03, 8.76] Juarg Wang @ 16 148 9<	mad N	4 33	235	2,692		1.35 [0.53, 3.43]	2.53
Yang-kai Li # 1 3 4 17 1.31 [0.19, 8.89] Tao Chen # 16 7 97 154 1.80 [1.32, 2.46] Xiaojing Zou # 18 5 34 97 3.02 [2.10, 4.32] Yan Deng # 13 4 96 112 1.66 [1.23, 2.24] Yan Deng # 10 24 68 446 2.22 [1.26, 3.91] Yongli Yan # 27 4 81 81 1.74 [1.42, 2.14] Qiurong Ruan # 13 0 55 82 2.40 [1.91, 3.01] Chaomin Wu \$ 4 40 36 0.95 [0.46, 1.96] 3.72 [2.67, 5.19] Juyi Li & 21 41 56 244 1.81 [1.19, 2.76] TieLong Chen * 6 5 13 31 1.85 [0.91, 3.74] Dawei Wang * 7 6 12 82 4.22 [2.03, 8.75] Jianlei Cao * 3 2 14 83 4.16 [1.75, 9.87] Lang Wang @ 16 148 9 490 5.41 [2.44, 12.01] Overall 2.27 [1.88,	ndo Trujillo	4 4	9	34		2.39 [0.97, 5.90]	2.64
Tao Chen # 16 7 97 154 Xiaojing Zou # 18 5 34 97 Yan Deng # 13 4 96 112 1.80 [1.32, 2.46] Yan Deng # 13 4 96 112 1.66 [1.23, 2.24] Yan Deng # 10 24 68 446 2.22 [1.26, 3.91] Yongli Yan # 27 4 81 81 1.74 [1.42, 2.14] Qiurong Ruan # 13 0 55 82 2.40 [1.91, 3.01] Chaomin Wu \$ 4 40 36 0.95 [0.46, 1.96] Fei Zhou \$ 13 2 41 135 Juyi Li & 21 41 56 244 TieLong Chen * 6 5 13 31 Dawei Wang * 7 6 12 82 4.22 [2.03, 8.76] Jianlei Cao * 3 2 14 83 4.16 [1.75, 9.87] Lang Wang @ 16 148 9 490 5.41 [2.44, 12.01] Overall 2.27 [1.88, 2.73] 2.27 [1.88, 2.73]	Nang# 2	2 18	111	193	-	1.51 [1.10, 2.07]	5.84
Xiaojing Zou # 18 5 34 97 3.02 [2.10, 4.32] Yan Deng # 13 4 96 112 1.66 [1.23, 2.24] Ke Wang # 10 24 68 446 2.22 [1.26, 3.61] Yongli Yan # 27 4 81 81 1.74 [1.42, 2.14] Qiurong Ruan # 13 0 55 82 2.40 [1.91, 3.01] Chaomin Wu \$ 4 4 0 36 0.95 [0.46, 1.96] Juyi Li & 21 41 56 244 1.81 [1.19, 2.76] TieLong Chen * 6 5 13 31 1.85 [0.91, 3.74] Dawei Wang * 7 6 12 82 4.22 [2.03, 8.75] Jianlei Cao * 3 2 14 83 4.16 [1.75, 9.87] Lang Wang @ 21 32 44 242 2.58 [1.68, 3.96] J. Zhang @ 16 148 9 490 5.41 [2.44, 12.01] Overall 4.227 [1.88, 2.73] 4.227 [1.88, 2.73] 2.27 [1.88, 2.73]	kai LI #	1 3	4	17		1.31 [0.19, 8.89]	0.83
Yan Deng # 13 4 96 112 1.66 [1.23, 2.24] Yan Deng # 10 24 68 446 2.22 [1.26, 3.91] Yongli Yan # 27 4 81 81 2.22 [1.26, 3.91] Qiurong Ruan # 13 0 55 82 2.40 [1.91, 3.01] Chaomin Wu \$ 4 4 0.36 0.95 [0.46, 1.96] Juyi Li & 21 41 56 244 TieLong Chen * 6 5 13 31 Dawei Wang * 7 6 12 82 Jianlei Cao * 3 2 14 83 J. Zhang @ 16 148 9 490 Overall Heterogeneity: t ² = 0.13, l ² = 70.78%, H ² = 3.42 2.27 [1.88, 2.73]	hen # 1	6 7	97	154		1.80 [1.32, 2.46]	5.87
Ke Wang # 10 24 68 446 2.22 [1.26, 3.91] Yongli Yan # 27 4 81 81 1.74 [1.42, 2.14] Qiurong Ruan # 13 0 55 82 2.40 [1.91, 3.01] Chaomin Wu \$ 4 40 36 0.95 [0.46, 1.98] Juyi Li & 21 41 56 244 TieLong Chen * 6 5 13 31 Dawei Wang * 7 6 12 82 Jianlei Cao * 3 2 14 83 J. Zhang @ 16 148 9 490 Overall Heterogeneity: t ² = 0.13, l ² = 70.78%, H ² = 3.42 422 2.27 [1.88, 2.73]	ng Zou # 1	8 5	34	97		3.02 [2.10, 4.32]	5.56
Yongli Yan # 27 4 81 81 1.74 [1.42, 2.14] Qiurong Ruan # 13 0 55 82 2.40 [1.91, 3.01] Chaomin Wu \$ 4 4 0 36 0.95 [0.46, 1.96] Fei Zhou \$ 13 2 41 135 0.95 [0.46, 1.96] Juyi Li & 21 41 56 244 1.81 [1.19, 2.76] TieLong Chen * 6 5 13 31 1.85 [0.91, 3.74] Dawei Wang * 7 6 12 82 4.22 [2.03, 8.75] Jianlei Cao * 3 2 14 83 4.16 [1.75, 9.87] Lang Wang @ 21 32 44 242 2.58 [1.68, 3.96] J. Zhang @ 16 148 9 490 5.41 [2.44, 12.01] Overall 4.227 [1.88, 2.73] 2.27 [1.88, 2.73] 2.27 [1.88, 2.73]	eng# 1	3 4	96	112		1.66 [1.23, 2.24]	5.93
Qiurong Ruan # 13 0 55 82 2.40 [1.91, 3.01] Chaomin Wu \$ 4 40 36 0.95 [0.46, 1.96] Fei Zhou \$ 13 2 41 135 3.72 [2.67, 5.19] Juyi Li & 21 41 56 244 1.81 [1.19, 2.76] TieLong Chen * 6 5 13 31 1.85 [0.91, 3.74] Dawei Wang * 7 6 12 82 4.22 [2.03, 8.75] Jianlei Cao * 3 2 14 83 4.16 [1.75, 9.87] Lang Wang @ 21 32 44 242 2.58 [1.68, 3.96] J. Zhang @ 16 148 9 490 5.41 [2.44, 12.01] Overall 2.27 [1.88, 2.73] 2.27 [1.88, 2.73] 2.27 [1.88, 2.73]	ang# 1	0 24	68	448		2.22 [1.26, 3.91]	4.26
Landmin Wu \$ 4 4 40 36 0.95 [0.46, 1.96] Juyi Li & 21 41 56 244 1.81 [1.19, 2.76] Juyi Li & 21 41 56 244 1.81 [1.19, 2.76] TieLong Chen * 6 5 13 31 1.85 [0.91, 3.74] Dawei Wang * 7 6 12 82 4.22 [2.03, 8.75] Jianlei Cao * 3 2 14 83 4.16 [1.75, 9.87] Lang Wang @ 21 32 44 242 2.58 [1.68, 3.06] J. Zhang @ 16 148 9 490 5.41 [2.44, 12.01] Overall 4.227 [1.88, 2.73] 4.27 [1.88, 2.73] 4.27 [1.88, 2.73]	Yan# 2	7 4	81	81		1.74 [1.42, 2.14]	6.48
Fei Zhou \$ 13 2 41 135 Juyi Li & 21 41 56 244 TieLong Chen * 6 5 13 31 Dawei Wang * 7 6 12 82 Jianlei Cao * 3 2 14 83 Lang Wang @ 21 32 44 242 J. Zhang @ 16 148 9 490 Overall Heterogeneity: τ ² = 0.13, l ² = 70.78%, H ³ = 3.42 42 2.27 [1.88, 2.73]	ig Ruan # 1	3 0	55	82		2.40 [1.91, 3.01]	6.37
Juyi Li & 21 41 56 244 1.81 [1.19, 2.76] TieLong Chen * 6 5 13 31 1.85 [0.91, 3.74] Dawei Wang * 7 6 12 82 4.22 [2.03, 8.75] Jianlei Cao * 3 2 14 83 4.16 [1.75, 9.87] Lang Wang @ 21 32 44 242 2.58 [1.68, 3.96] J. Zhang @ 16 148 9 490 5.41 [2.44, 12.01] Overall 4.227 [1.88, 2.73] 4.227 [1.88, 2.73] 4.227 [1.88, 2.73]	nin Wu \$	4 4	40	38	-	0.95 [0.46, 1.96]	3.40
TieLong Chen * 6 5 13 31 1.85 [0.91, 3.74] Dawei Wang * 7 6 12 82 4.22 [2.03, 8.75] Jianlei Cao * 3 2 14 83 4.16 [1.75, 9.87] Lang Wang @ 21 32 44 242 2.58 [1.68, 3.96] J. Zhang @ 16 148 9 490 5.41 [2.44, 12.01] Overall Heterogeneity: τ ² = 0.13, l ² = 70.78%, H ³ = 3.42 2.27 [1.88, 2.73]	ou\$1	3 2	41	135		3.72 [2.67, 5.19]	5.73
Dawei Wang * 7 6 12 82 Jianlei Cao * 3 2 14 83 Jang Wang @ 21 32 44 242 J. Zhang @ 16 148 9 490 Overall 4.22 [2.03, 8.75] 4.16 [1.75, 9.87] Heterogeneity: τ ³ = 0.13, l ² = 70.78%, H ² = 3.42 4.00 5.41 [2.44, 12.01]	i& 2	1 41	56	244		1.81 [1.19, 2.76]	5.17
Jianlei Cao* 3 2 14 83 Lang Wang @ 21 32 44 242 J. Zhang @ 16 148 9 490 Dverall Heterogeneity: τ ² = 0.13, l ² = 70.78%, H ² = 3.42	1g Chen *	6 5	13	31		1.85 [0.91, 3.74]	3.49
Lang Wang @ 21 32 44 242 J. Zhang @ 16 148 9 490 Overall 4 2.27 [1.88, 2.73] Heterogeneity: τ ² = 0.13, l ² = 70.78%, H ² = 3.42 2.27 [1.88, 2.73]	Wang *	7 6	12	82		4.22 [2.03, 8.75]	3.37
J. Zhang @ 16 148 9 490 Overall Heterogeneity: τ ² = 0.13, 1 ² = 70.78%, H ² = 3.42	i Cao *	3 2	14	83		4.16 [1.75, 9.87]	2.79
Overall Heterogeneity: τ ² = 0.13, l ² = 70.78%, H ² = 3.42	Nang @ 2	1 32	44	242		2.58 [1.68, 3.96]	5.11
Heterogeneity: τ ² = 0.13, I ² = 70.78%, H ² = 3.42	ng @ 1	6 148	9	490		5.41 [2.44, 12.01]	3.06
	а				•	2.27 [1.88, 2.73]	
Test of $\theta_1 = \theta_1$: $O(24) = 68.49$, $p = 0.00$	ogeneity: $\tau^2 = 0.13$	3, I ² = 70.78%,	H ² = 3.42			•	
	$f \theta_1 = \theta_1$: Q(24) =	68.49, p = 0.00)				
Test of θ = 0: z = 8.65, p = 0.00	f 0 = 0: z = 8.65, r	o = 0.00					

eFigure 5. Pooled Risk ratio of death in patients with Cardiovascular disease a) Forest plot b) Funnel Plot c) Subgroup analysis

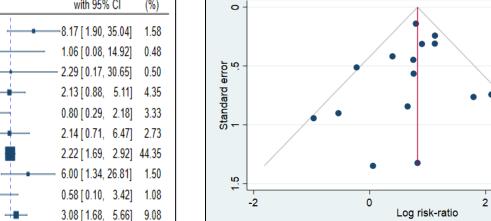

5c


	Cardiovasc	Jar disesse 🕴	to Cardiovas	cular disease		Risk Ratio	Weight
Study	Died	Survived	Died	Survived		with 95% CI	(%)
Mingil Yuan	3	0	7	17		2.92 [1.44, 5.90]	3.50
Kun Wang	5	5	14	272		- 10.21 [4.57, 22.80]	3.04
Qingchun Yao	2	2	10	94		5.20 [1.66, 16.32]	1.92
Jennifer Tomlins	7	14	13	61		1.90 [0.87, 4.14]	3.14
Vikas Mehta	19	24	42	133		1.84 [1.20, 2.82]	5.13
Gwllym J Webb	2	4	7	26		1.57 [0.42, 5.82]	1.57
Mohamad N	4	33	235	2,692		1.35 [0.53, 3.43]	2.53
Hernando Trujillo	4	4	9	34	-	2.39 [0.97, 5.90]	2.64
Yang-kal LI #	1	3	4	17 —		1.31 [0.19, 8.89]	0.83
Tao Chen #	16	7	97	154		1.80 [1.32, 2.46]	5.87
Kisojing Zou #	18	5	34	97		3.02 [2.10, 4.32]	5.56
Yan Deng #	13	4	96	112	-	1.66 [1.23, 2.24]	5.93
Ke Wang #	10	24	68	446		2.22 [1.26, 3.91]	4.26
Yongii Yan #	27	4	81	81		1.74 [1.42, 2.14]	6.48
Qiurong Ruan #	13	0	55	82		2.40 [1.91, 3.01]	6.37
Fel Zhou &	13	2	41	135	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	3.72 [2.67, 5.19]	5.73
Juyi Li &	21	41	56	244	-	1.81 [1.19, 2.76]	5.17
TeLong Chen *	6	5	13	31		1.85[0.91, 3.74]	3.49
Dawel Wang *	7	6	12	82		4.22 [2.03, 8.75]	3.37
Jianiel Cao *	3	2	14	83		4.16 [1.75, 9.87]	2.79
Lang Wang 🚳	21	32	44	242		2.58 [1.68, 3.96]	5.11
J. Zhang @	16	148	9	490		5.41 [2.44, 12.01]	3.06
Heterogeneity: T ² =	0.09, 1 ² = 6	53.76%, H ² •	2.76		•	2.47 [2.06, 2.95]	
Test of 0, = 0;: Q(21) = 53.60, p	0.00					
Klaobo Yang Ş	3	2	29	18		0.97 [0.46, 2.06]	3.28
Yang Wang #	22	18	111	193	-	1.51 [1.10, 2.07]	5.84
Chaomin Wu Ş	4	4	40	36		0.95 [0.46, 1.96]	3.40
Heterogeneity: $ au^2$ =	0.02, 1 ² = 3	20.87%, H ² •	1.26		•	1.27 [0.90, 1.80]	
Test of $\Theta_1 = \Theta_2$: $\Omega(2)$	= 2.09, p =	0.35					
Overall					•	2.27 [1.88, 2.73]	
Heterogeneity: τ^2 =	0.13, 1 ² = 7	70.78%, H ² •	3.42				
Test of 0, = 0;: Q(24	() = 68.49, p	0.00					
Test of group differe	ences: Q (1	1 = 11.14 m	- 0.00				
and an group childre				-		_	
andom-effects REA					1.00		

eFigure 6. Pooled Risk ratio of death in patients with Congestive Heart Failure a) Forest plot

Study	Chronic H Died	eart FailureN Survived	o Chronic Died	Heart Failure Survived			Risk Ratio with 95% Cl	Weight (%)
Jennifer Tomlins	7	8	13	67			-2.87 [1.38, 5.99]	
		-						
Vikas Mehta	15	18	46	139			1.83 [1.17, 2.87]	43.50
Hernando Trujillo	2	3	11	35 -		•	- 1.67 [0.51, 5.50]	6.21
Tao Chen #	1	0	112	161	_		1.83 [0.81, 4.12]	13.34
Juyi Li &	5	5	72	280			2.44 [1.27, 4.70]	20.64
Overall						-	2.08 [1.54, 2.80]	
Heterogeneity: T ² =	= 0.00, I ² =	= 0.00%, H ² =	= 1.00					
Test of $\theta_1 = \theta_1$: Q(4)) = 1.52, j	o = 0.82						
Test of $\theta = 0$: $z = 4$.83, p = 0	.00		_				
					1.	00		
Random-effects RE	ML mode	I						

eFigure 7. Pooled Risk ratio of death in patients with Cerebrovascular diseases a) Forest plot b) Funnel Plot c) Subgroup analysis



· 1	

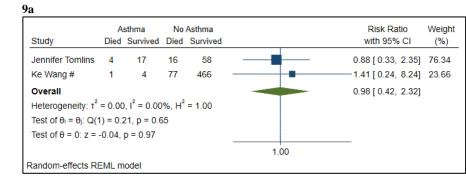
	Cerebrovas	cular diseaseNo	Cerebrove	scular disease		Risk Ratio	Weigh
Study	Died	Survived	Died	Survived		with 95% CI	(%)
Min I Maria	1	0	9	17		0.407.0.00 5.54	5.06
Mingli Yuan	-	4	-			2.13 [0.82, 5.51]	
Kun Wang	3		16	273		7.74 [2.91, 20.61]	
Ming Ding	1	1	2	28		7.50 [1.09, 51.52]	
Jennifer Tomlins	2	6	18	69 —		1.21 [0.34, 4.30]	
Rong-Hui Du	12	17	9	141		6.90 [3.20, 14.86]	
Tao Chen #	4	0	109	161		2.23 [1.61, 3.09]	
Yongli Yan #	8	0	100	85		1.75 [1.42, 2.15]	
Qiurong Ruan #	7	5	61	77		1.32 [0.79, 2.21]	8.24
Juyi Li &	37	31	40	254		4.00 [2.79, 5.74]	
TieLong Chen *	3	5	16	31 -	-	1.10 [0.41, 2.93]	4.89
Dawei Wang *	3	3	16	85		3.16 [1.26, 7.90]	5.25
Jianlei Cao *	3	3	14	82		3.43 [1.35, 8.74]	5.15
Wen-Jun Tu *	8	8	17	141	+	4.65 [2.39, 9.03]	7.01
Lang Wang @	10	11	55	263		2.75 [1.66, 4.58]	8.27
Heterogeneity: T ² =	0.20, I [°] =	: 73.28%, H	[°] = 3.74		•	2.76 [2.03, 3.75]	
Test of $\theta_1 = \theta_1$: Q(13)	8) = 44.64	4, p = 0.00					
	7		25	20	-	1.69 [1.23, 2.32]	9.82
Heterogeneity: T ² =	0.00, I [°] =	: .%, H ² = .			•	1.69 [1.23, 2.32]	
Test of $\theta_1 = \theta_1$: Q(0)	= 0.00, p	p = .					
Overall	-				+	2.63 [1.97, 3.51]	
Heterogeneity: τ^2 =	0.20, I [°] =	: 75.22%, H	² = 4.04				
Test of $\theta_1 = \theta_1$: Q(14)	4) = 48.02	2, p = 0.00					
Test of group differe	nces: Qa	(1) = 4.75, (p = 0.03	_			

8a Risk Ratio Weight COPD Absent COPD Present Study with 95% CI (%) Died Survived Died Survived Kun Wang 18 276 8.17 [1.90, 35.04] 1.58 1 Qingchun Yao 12 93 1.06 [0.08, 14.92] 0.48 0 3 Ming Ding 2.29 [0.17, 30.65] 0.50 0 3 28 1 Jennifer Tomlins 6 16 69 2.13 [0.88, 5.11] 4.35 4 Xiaobo Yang \$ 30 18 0.80 [0.29, 2.18] 3.33 2 2 Hernando Trujillo 2 2 11 36 2.14 [0.71, 6.47] 2.73 120 Yang Wang # 208 2.22 [1.69, 2.92] 44.35 13 3 Yang-kai LI # 2 18 6.00 [1.34, 26.81] 1.50 3 2 Xiaojing Zou # 51 0.58 [0.10, 3.42] 1.08 1 4 98 71 Ke Wang # 460 7 10 3.08 [1.68, 5.66] 9.08 1.48 [0.65, 3.37] 4.99 Qiurong Ruan # 2 66 81 1 Fei Zhou \$ 135 4 2 50 2.47 [1.34, 4.55] 8.92 TieLong Chen * 18 30 0.38 [0.06, 2.43] 0.98 6 1 Dawei Wang * 18 86 1.93 [0.37, 10.07] 1.23 1 2 Lang Wang @ 264 11 10 54 3.08 [1.92, 4.96] 14.90 Overall 2.29 [1.90, 2.75] Heterogeneity: $\tau^2 = 0.00$, $I^2 = 0.00\%$, $H^2 = 1.00$ Test of $\theta_1 = \theta_1$: Q(14) = 18.65, p = 0.18 Test of θ = 0: z = 8.85, p = 0.00 1.00 Random-effects REML model

Funnel plot

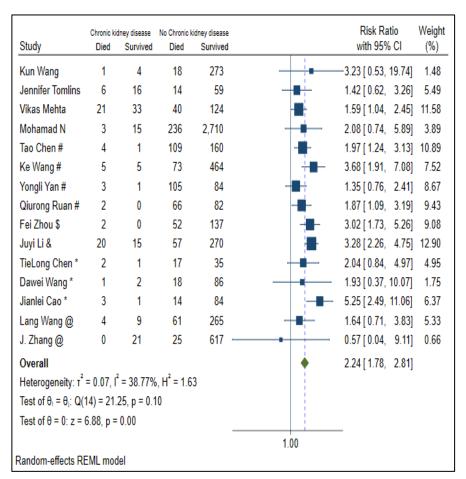
Pseudo 95% Cl

Estimated θ_{IV}

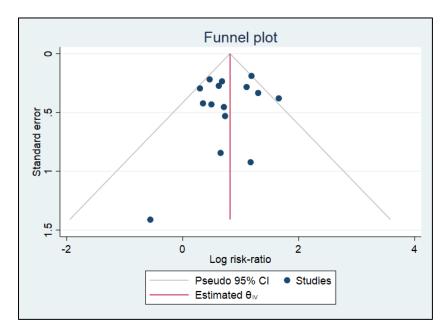

Studies

8b

eFigure 8. Pooled Risk ratio of death in patients with COPD a) Forest plot b) Funnel Plot


4

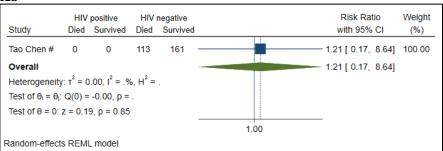
eFigure 9. Pooled Risk ratio of death in patients with Asthma a) Forest plot



eFigure 10. Pooled Risk ratio of death in patients with Chronic Kidney Disease a) Forest plot b) Funnel Plot

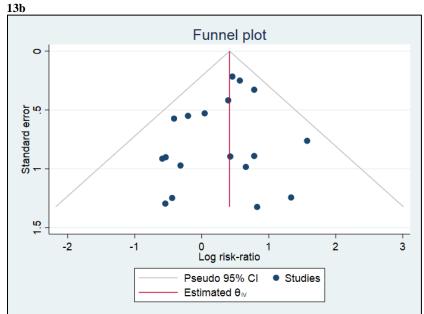
1	Λn
T	va

10b



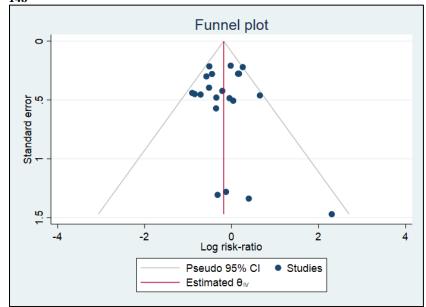
eFigure 11. Pooled Risk ratio of death in patients with Hepatitis B infection a) Forest plot

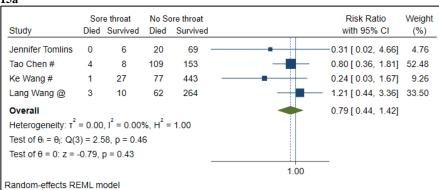
1	1a	


Study	Hepatitis Died	B positive Survived	Hepatitis Died	B negative Survived	Risk Ratio with 95% Cl	Weight (%)
Study	Dieu	Surviveu	Dieu	Surviveu	With 55 % CI	(70)
Tao Chen #	5	6	108	155		87.63
Ke Wang #	1	4	77	466	1.41 [0.24, 8.24] 12.37
Overall					1.14 [0.61, 2.12]
Heterogeneit	у: т ² = 0.0	$00, I^2 = 0.00$	0%, H ² =	1.00		
Test of $\theta_i = \theta_j$: Q(1) = 0	0.06, p = 0.	80			
Test of $\theta = 0$:	z = 0.42,	p = 0.68				
Random-effect	ts REML	model				

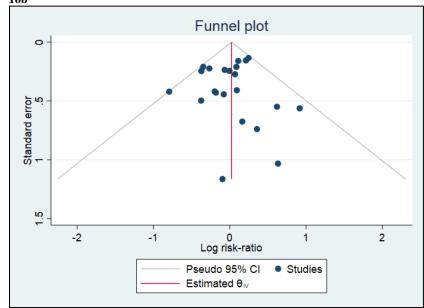
eFigure 12. Pooled Risk ratio of death in patients with HIV infection a) Forest plot

13a Risk Ratio Malignancy Weight No Malignancy Study Died Survived Died Survived with 95% CI (%) 0.64 [0.06, 7.42] 0.87 Mingli Yuan 10 16 0 1 Kun Wang 19 276 3.79 [0.33, 43.47] 0 1 0.88 Qingchun Yao 11 95 4.82 [1.08, 21.48] 2.34 1 1 Ming Ding 28 2.29 [0.17, 30.65] 0 3 0.78 1 58 Jennifer Tomlins 3 17 17 0.66 [0.22, 2.04] 4.14 Rong-Hui Du 20 155 2.19 [0.38, 12.55] 1.71 1 3 Mohamad N 238 2,709 0.73 [0.11, 4.90] 1.44 1 16 Mengyuan Dai 12 93 28 508 2.19 [1.15, 4.16] 12.64 Tao Chen # 5 2 108 159 1.77 [1.08, 2.88] 21.73 Xiaojing Zou # 51 98 0.58 [0.10, 3.42] 1.67 1 4 Yan Deng # 1.58 [1.03, 2.41] 29.11 6 2 103 114 0.81 [0.28, 2.40] 4.49 Ke Wang # 3 21 75 414 Qiurong Ruan # 2 66 81 1.48 [0.65, 3.37] 7.78 1 Fei Zhou S 0 2 54 135 0.58 [0.05, 7.37] 0.81 TieLong Chen * 18 32 0.56 [0.09, 3.33] 1 4 1.63 Jianlei Cao * 3 16 82 1.53 [0.26, 8.86] 1.70 1 1.05 [0.37, 2.95] Lang Wang @ 12 62 262 3 4.87 J. Zhang @ 1 13 24 625 1.93 [0.28, 13.29] 1.41 Overall 1.52 [1.21, 1.90] Heterogeneity: $\tau^{2} = 0.00$, $I^{2} = 0.00\%$, $H^{2} = 1.00$ Test of $\theta_i = \theta_i$: Q(17) = 12.60, p = 0.76 Test of θ = 0: z = 3.56, p = 0.00 1.00 Random-effects REML model


eFigure 13. Pooled Risk ratio of death in patients with Malignancy a) Forest plot b) Funnel Plot

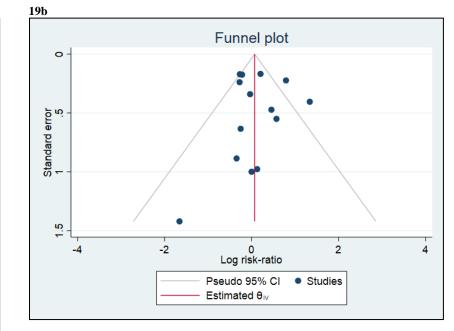

eFigure 14. Pooled Risk ratio of death in patients with fever a) Forest plot b) Funnel Plot

Study	fever Died Survived		No fever Died Survived			Risk Ratio with 95% Cl		Weight (%)
Mingli Yuan	6	15	4	2		0.43 [0.18,	1.04]	3.91
Kun Wang	10	207	9	70		0.40 [0.17,	0.96]	4.05
Qingchun Yao	8	72	4	24		0.70 [0.23,	2.15]	2.63
Ming Ding	3	10	0	19			178.75]	0.45
Jennifer Tomlins	12	56	8	19		0.60 [0.27,	1.29]	4.77
Rong-Hui Du	21	156	0	2		0.72 [0.06,	9.39]	0.57
Xiaobo Yang \$	31	20	1	0		0.81 [0.35,	1.85]	4.31
Hernando Trujillo	6	22	7	16		0.70 [0.27,	1.80]	3.53
Yang Wang #	115	186	16	25	#	0.98 [0.65,	1.47]	10.37
Yang-kai LI #	5	19	0	1		0.88 [0.07,	10.84]	0.59
Tao Chen #	104	145	9	16	÷	1.16 [0.67,	2.00]	7.71
Xiaojing Zou #	44	94	8	8	-	0.64 [0.37,	1.10]	7.64
Yan Deng #	95	94	14	22	-	1.29 [0.84,	1.99]	9.82
Qiurong Ruan #	59	68	9	14	-	1.19 [0.69,	2.04]	7.71
Chaomin Wu \$	39	39	5	1	-	0.60 [0.39,	0.91]	10.09
Fei Zhou \$	51	129	3	8		1.04 [0.39,	2.80]	3.23
TieLong Chen *	17	35	2	1		0.49 [0.20,	1.19]	3.86
Dawei Wang *	19	85	0	3		1.49 [0.11,	20.48]	0.54
Jianlei Cao *	12	61	5	24		0.95 [0.37,	2.47]	3.47
Lang Wang @	56	255	9	19		0.56 [0.31,	1.01]	6.99
J. Zhang @	19	394	6	244		1.92 [0.78,	4.74]	3.76
Overall					•	0.82 [0.67,	1.00]	
Heterogeneity: T ² :	= 0.05,	l ² = 28.48	3%, H	² = 1.40				
Test of $\theta_i = \theta_j$: Q(2	20) = 2	6.37, p = (0.15					
Test of θ = 0: z = -	1.98, p	o = 0.05						
					1.00			


eFigure 15. Pooled Risk ratio of death in patients with sore throat a) Forest plot

eFigure 16. Pooled Risk ratio of death in patients with cough a) Forest plot b) Funnel Plot

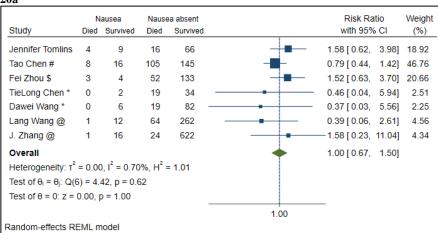
Study	Cougl Died	h present Survived		h absent Survived		Risk Ratio with 95% CI	Weigh (%)
Mingli Yuan	5	11	5	6		0.69 [0.26, 1.82]	1.71
Kun Wang	15	183	4	94		1.86 [0.63, 5.44]	1.41
Qingchun Yao	10	74	2	22		- 1.43 [0.34, 6.08]	0.79
Ming Ding	2	20	1	9 —		- 0.91 [0.09, 8.90]	0.33
Jennifer Tomlins	14	56	6	19		0.83 [0.36, 1.93]	2.25
Rong-Hui Du	14	132	7	26		0.45 [0.20, 1.03]	2.32
Xiaobo Yang \$	25	15	7	5	-	1.07 [0.63, 1.83]	5.00
Hernando Trujillo	11	31	2	7		1.18 [0.31, 4.43]	0.95
Yang Wang #	96	137	37	74		1.24 [0.91, 1.68]	11.51
Yang-kai LI #	4	13	1	7			0.41
Tao Chen #	79	106	34	55	+	1.12 [0.82, 1.53]	11.14
Xiaojing Zou #	34	69	18	33		0.94 [0.59, 1.49]	6.35
Yan Deng #	47	36	62	78	-	1.28 [0.98, 1.67]	13.59
Ke Wang #	59	356	19	114		1.00 [0.62, 1.61]	6.00
Qiurong Ruan #	51	59	17	23		1.09 [0.72, 1.65]	7.56
Chaomin Wu \$	33	35	11	5		0.71 [0.47, 1.06]	7.61
Fei Zhou \$	39	112	15	25		0.69 [0.42, 1.12]	5.92
TieLong Chen *	15	21	3	15		- 2.50 [0.83, 7.53]	1.35
Dawei Wang *	11	56	8	32		0.82 [0.36, 1.87]	2.34
Jianlei Cao *	8	42	9	43		0.92 [0.39, 2.21]	2.11
Lang Wang @	30	149	35	125		0.77 [0.49, 1.19]	6.89
J. Zhang @	16	394	9	244		1.10 [0.49, 2.45]	2.45
Overall					4	1.00 [0.88, 1.14]	
Heterogeneity: 7 ² =	0.01,	l ² = 16.299	6, Н ² =	1.19			
Test of $\theta_1 = \theta_1$: Q(2							
Test of $\theta = 0$: $z = 0$.05, p	= 0.96					
	-			_	1.00		



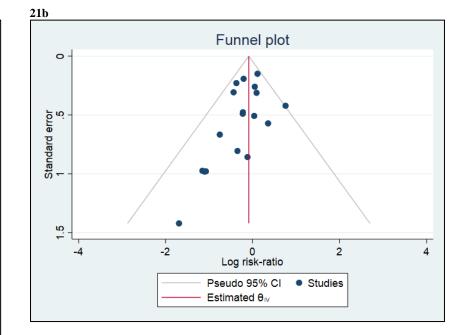
eFigure 17. Pooled Risk ratio of death in patients with expectoration a) Forest plot

	Expectora	tion present	Expectora	tion absent		Risk Ratio	Weight
Study	Died	Survived	Died	Survived		with 95% CI	(%)
Kun Wang	14	30	40	107	_	1.17 [0.70, 1.94]	8.71
Rong-Hui Du	12	43	9	115			4.56
Yang Wang #	53	82	80	129		1.03 [0.78, 1.35]	15.26
Tao Chen #	35	48	78	113		1.03 [0.76, 1.40]	14.16
Yan Deng #	35	14	74	102		1.70 [1.33, 2.18]	16.06
Qiurong Ruan #	29	25	39	57	+	1.32 [0.94, 1.87]	12.83
Chaomin Wu \$	19	22	25	18 ·		0.80 [0.53, 1.21]	10.85
Fei Zhou \$	14	30	40	107		1.17 [0.70, 1.94]	8.71
Lang Wang @	17	76	48	198		0.94 [0.57, 1.54]	8.87
Overall						1.19 [0.98, 1.45]	
Heterogeneity: T	² = 0.04, I ²	= 55.06%, H	² = 2.23				
Test of $\theta_1 = \theta_1$: Q	(8) = 19.76	, p = 0.01					
Test of $\theta = 0$: z =	1.79, p = 0	0.07					
					1.00		
Random-effects R	EML mode	el .					

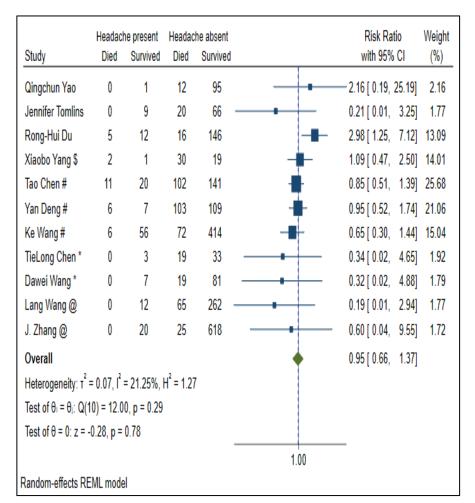
	Vomitin	g present	Vomiti	ng absent		Risk Ratio	Weight
Study	Died	Survived	Died	Survived		with 95% CI	(%)
Xiaobo Yang \$	1	1	31	19		0.81 [0.20, 3.28]	13.94
Tao Chen #	6	10	107	151		0.90 [0.47, 1.73]	65.12
Ke Wang #	1	44	77	426 -		0.15 [0.02, 1.02]	7.22
Dawei Wang *	1	2	18	86		1.93 [0.37, 10.07]	10.02
J. Zhang @	0	8	25	630			3.71
Overall						0.86 [0.51, 1.44]	
Heterogeneity: T	² = 0.00, I	² = 0.00%, I	H ² = 1.0	0			
Test of $\theta_1 = \theta_1$: Q	(4) = 4.28	, p = 0.37					
Test of $\theta = 0$: z =	-0.58, p	= 0.56					
				_	1.00		
Random-effects R	EMI mor	اما					

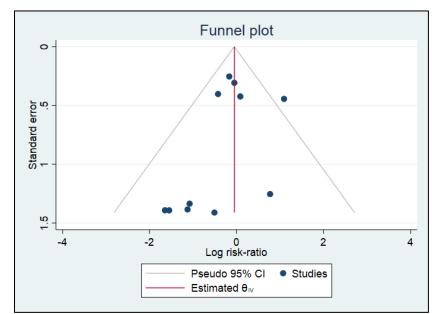

19a Risk Ratio Diarrhea No Diarrhea Weight Study with 95% CI (%) Died Survived Died Survived Qingchun Yao 89 1.14 [0.17, 7.72] 2.19 1 7 11 Jennifer Tomlins 66 1.58 [0.62, 3.98] 6.30 9 16 4 Yang Wang # 104 148 0.76 [0.55, 1.07] 12.56 29 63 16 Yang-kai LI # - 1.00 [0.14, 7.10] 2.11 1 4 4 Tao Chen # 111 0.80 [0.57, 1.13] 12.47 27 50 86 Xiaojing Zou # 10 42 97 2.21 [1.42, 3.42] 11.35 5 Yan Deng # 102 1.23 [0.88, 1.71] 12.62 19 14 90 Ke Wang # 158 312 0.76 [0.48, 1.21] 11.00 21 57 Fei Zhou \$ 130 0.78 [0.22, 2.70] 4.32 2 7 52 TieLong Chen * 18 33 0.71 [0.12, 4.03] 2.58 1 3 85 Dawei Wang * 3 15 4 77 Jianlei Cao * 14 — 1.77 [0.60, 5.21] 5.24 3 8 Lang Wang @ 239 0.97 [0.50, 1.88] 8.70 8 35 57 J. Zhang @ 577 0.19 [0.01, 3.09] 1.12 0 61 25 Overall 1.15 [0.85, 1.57] Heterogeneity: $r^2 = 0.17$, $I^2 = 64.65\%$, $H^2 = 2.83$ Test of $\theta_1 = \theta_1$: Q(13) = 33.19, p = 0.00 Test of θ = 0: z = 0.92, p = 0.36 1.00 Random-effects REML model

eFigure 19. Pooled Risk ratio of death in patients with Diarrhea a) Forest plot b) Funnel Plot c) Subgroup analysis

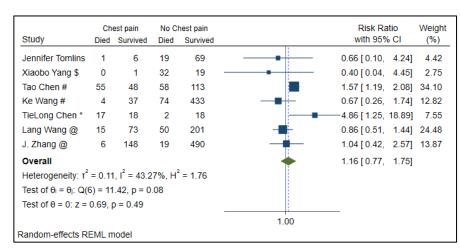

	Di	arrhea	No	Diarrhea	Risk Ratio	Weight
Study	Died	Survived	Died	Survived	with 95% Cl	(%)
Qingchun Yao	1	7	11	89		2.19
Jennifer Tomlins	4	9	16	66	- 1.58 [0.62, 3.98]	6.30
Yang-kai LI #	1	4	4	16		2.11
Tao Chen #	27	50	86	111	0.80 [0.57, 1.13]	12.47
Xiaojing Zou #	10	5	42	97		11.35
Yan Deng #	19	14	90	102	1.23 [0.88, 1.71]	12.62
Ke Wang #	21	158	57	312		11.00
Fei Zhou \$	2	7	52	130	0.78 [0.22, 2.70]	4.32
TieLong Chen *	1	3	18	33	0.71 [0.12, 4.03]	2.58
Dawei Wang *	4	3	15	85		7.44
Jianlei Cao *	3	8	14	77	1.77 [0.60, 5.21]	5.24
Lang Wang @	8	35	57	239		8.70
J. Zhang @	0	61	25	577	0.19 [0.01, 3.09]	1.12
Heterogeneity: T	= 0.17	7, I [°] = 60.5	55%, H	l ² = 2.53	1.23 [0.88, 1.70]	
Test of $\theta_i = \theta_j$: Q(1)	12) = 2	28.23, p =	0.01			
Yang Wang #	29	63	104	148	0.76 [0.55, 1.07]	12.56
Heterogeneity: T ²	= 0.00), I [°] = .%,	н ² = .		0.76 [0.55, 1.07]	
Test of $\theta_i = \theta_j$: Q(0	0) = 0.	00, p = .				
Overall					+ 1.15 [0.85, 1.57]	
Heterogeneity: 7 ²	= 0.17	7, I [°] = 64.6	35%, H	l [°] = 2.83		
Test of $\theta_i = \theta_j$: Q(1	13) = 3	33.19, p =	0.00			
Test of group diffe	rence	s: Q _s (1) =	3.90,	p = 0.05		
					1.00	
Random-effects RE	EML m	lebor			1.00	
anaonn-eneots ru		NO DEL				

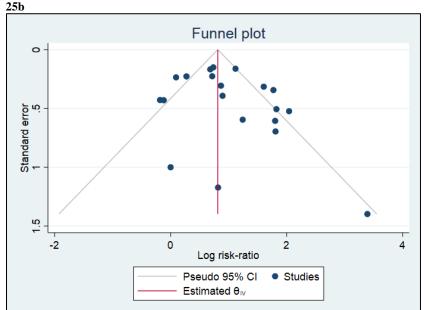
eFigure 20. Pooled Risk ratio of death in patients with nausea a) Forest plot


eFigure 21. Pooled Risk ratio of death in patients with Myalgia a) Forest plot b) Funnel Plot


21a Risk Ratio Weight Myalgia No myalgia Study Died Survived Died Survived with 95% CI (%) Mingli Yuan 9 15 0.89 [0.17, 4.78] 1 2 1.05 Qingchun Yao 24 72 - 1.43 [0.47, 4.38] 2.32 4 8 Jennifer Tomlins 12 19 63 0.33 [0.05, 2.27] 0.80 1 Rong-Hui Du 7 27 131 2.13 [0.93, 4.87] 4.16 14 Xiaobo Yang \$ 4 2 28 18 1.10 [0.59, 2.02] 7.27 Hernando Trujillo 0.34 [0.05, 2.33] 9 12 29 1 0.81 Yang-kai LI # 3 14 2 6 0.71 [0.15, 3.43] 1.19 Tao Chen # 21 39 92 122 0.81 [0.56, 1.19] 16.46 Yan Deng # 27 79 89 1.12 [0.83, 1.50] 23.78 30 Ke Wang # 67 370 0.65 [0.35, 1.18] 7.46 11 100 Qiurong Ruan # 72 1.05 [0.63, 1.75] 10.01 9 10 59 Chaomin Wu S 15 21 29 19 0.69 [0.44, 1.08] 12.44 Fei Zhou S 3 8 46 129 1.04 [0.38, 2.81] 2.91 TieLong Chen * 2 9 17 27 0.47 [0.13, 1.74] 1.72 60 Dawei Wang * 5 28 0.80 [0.31, 2.04] 14 3.29 Jianlei Cao * 30 12 55 0.80 [0.31, 2.08] 3.13 5 Lang Wang @ 15 259 0.32 [0.05, 2.13] 0.82 1 64 J. Zhang @ 0 63 25 575 0.18 [0.01, 2.99] 0.39 Overall 0.91 [0.76, 1.08] Heterogeneity: $\tau^2 = 0.01$, $I^2 = 7.54\%$, $H^2 = 1.08$ Test of $\theta_i = \theta_j$: Q(17) = 16.08, p = 0.52 Test of $\theta = 0$: z = -1.12, p = 0.261.00 Random-effects REML model

43


22a


eFigure 23. Pooled Risk ratio of death in patients with anorexia a) Forest plot

Chest pain No Chest pain Risk Ratio Weight Study Died Survived with 95% CI (%) Died Survived Jennifer Tomlins 6 19 69 0.66 [0.10, 4.24] 4.42 1 0.40 [0.04, 4.45] 2.75 19 Xiaobo Yang \$ 0 1 32 1.57 [1.19, 2.08] 34.10 Tao Chen # 55 48 58 113 Ke Wang # 433 0.67 [0.26, 1.74] 12.82 4 37 74 -4.86 [1.25, 18.89] 7.55 17 18 TieLong Chen * 18 2 0.86 [0.51, 1.44] 24.48 Lang Wang @ 15 73 50 201 J. Zhang @ 6 148 19 490 1.04 [0.42, 2.57] 13.87 1.16 [0.77, 1.75] Overall Heterogeneity: $\tau^2 = 0.11$, $I^2 = 43.27\%$, $H^2 = 1.76$ Test of $\theta_1 = \theta_1$: Q(6) = 11.42, p = 0.08 Test of θ = 0: z = 0.69, p = 0.49 1.00 Random-effects REML model

25a Risk Ratio Dyspnea present Dyspnea absent with 95% CI Study Died Survived Died Survived (%) Mingli Yuan 10 0 16 29.75 [1.92, 460.32] 1.08 1 --87 Qingchun Yao 6 9 6 6.20 [2.30, 16.71] 4.38 Ming Ding 13 16 2.27 [0.23, 22.56] 1.46 2 1 Jennifer Tomlins 56 6 0.83 [0.36, 1.93] 5.03 14 19 Rong-Hui Du 18 71 3 87 6.07 [1.85, 19.88] 3.65 Xiaobo Yang \$ 21 12 11 8 1.10 [0.69, 1.74] 6.83 Hernando Trujillo 10 15 3 23 3.47 [1.08, 11.14] 3.72 Alberto Zangrillo 10 35 7 21 0.89 [0.38, 2.06] 5.02 Yang Wang # 100 108 33 103 1.98 [1.43, 2.75] 7.40 Yang-kai LI # 4 16 1 4 1.00 [0.14, 7.10] 1.87 Tao Chen # 70 50 43 111 2.09 [1.55, 2.81] 7.53 - -9.24] 6.09 Xiaojing Zou # 42 33 10 79 4.98 [2.69, Yan Deng # 77 22 32 94 3.08 [2.23, 4.21] 7.45 Ke Wang # 5.89 [3.00, 11.55] 5.81 69 241 9 229 Qiurong Ruan # 59 51 9 31 -2.38 [1.31, 4.35] 6.17 1.31 [0.84, 2.05] 6.91 Chaomin Wu S 15 29 21 19 TieLong Chen * 17 15 2 21 _ 6.11 [1.56, 23.89] 3.11 -Dawei Wang * 68 7.71 [2.76, 21.53] 4.24 15 20 4 Lang Wang @ 38 100 27 174 · 2.05 [1.32, 3.19] 6.92 -J. Zhang @ 150 14 488 2.45 [1.13, 5.29] 5.35 11 Overall 2.55 [1.88, 3.46] 4 Heterogeneity: $\tau^2 = 0.30$, $I^2 = 77.13\%$, $H^2 = 4.37$ Test of $\theta_1 = \theta_1$: Q(19) = 62.63, p = 0.00 Test of θ = 0: z = 5.99, p = 0.00 1.00 Random-effects REML model

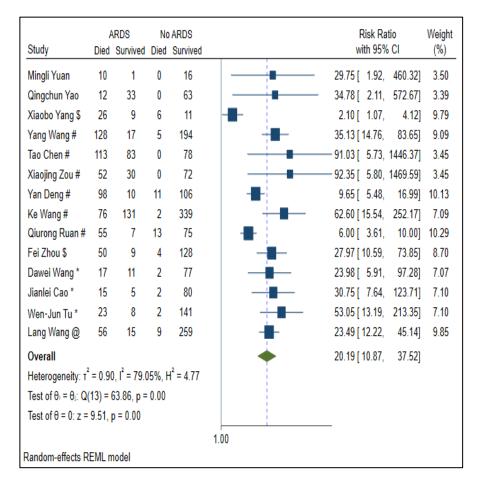
Weight 0

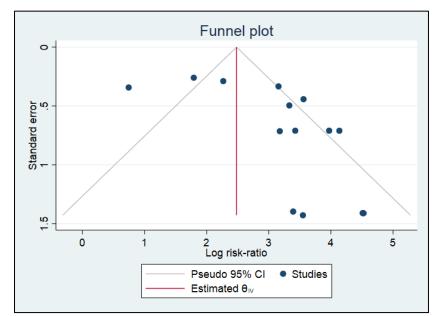
eFigure 25. Pooled Risk ratio of death in patients with dyspnea a) Forest plot b) Funnel Plot c) Subgroup analysis

	Dyspne	Dyspnea present		ea absent	Risk Ratio	Weigh
Study	Died	Survived	Died	Survived	with 95% CI	(%)
Mingli Yuan	10	1	0	16	29.75 [1.92, 460.32] 1.08
Qingchun Yao	6	9	6	87	6.20 [2.30, 16.71	4.38
Ming Ding	2	13	1	16	2.27 [0.23, 22.56	1.46
Jennifer Tomlins	14	56	6	19	0.83 [0.36, 1.93	5.03
Rong-Hul Du	18	71	3	87	6.07 [1.85, 19.88	3.65
Hernando Trujilio	10	15	3	23	3.47 [1.08, 11.14	3.72
Yang-kal LI #	4	16	1	4	1.00 [0.14, 7.10] 1.87
Tao Chen #	70	50	43	111	2.09 [1.55, 2.81	7.53
Xlaojing Zou #	42	33	10	79	4.98 [2.69, 9.24	6.09
Yan Deng #	77	22	32	94	3.06 [2.23, 4.21	7.45
Ke Wang #	69	241	9	229	- 5.89 [3.00, 11.55	5.81
Qlurong Ruan #	59	51	9	31	- 2.38 [1.31, 4.35	6.17
TieLong Chen *	17	15	2	21	6.11 [1.56, 23.89	3.11
Dawel Wang *	15	20	4	68	7.71 [2.76, 21.53	4.24
Lang Wang @	38	100	27	174	2.05 [1.32, 3.19	6.92
J. Zhang @	11	150	14	488	2.45 [1.13, 5.29] 5.35
Heterogeneity: T ^a =	0.20, 1	- 63.89%,	H ² = 2.7	7	3.17 [2.32, 4.32	1
Test of 0, = 0;: Q(15	i) = 35.56	5, p = 0.00				
Xlaobo Yang \$	21	12	11	8	· 1.10 [0.69, 1.74	6.83
Alberto Zangrillo	10	35	7	21	0.89 [0.38, 2.06	5.02
Yang Wang #	100	108	33	103] 7.40
Chaomin Wu \$	29	21	15	19	1.31 [0.84, 2.05	6.91
Heterogeneity: 🕇 =	0.06, I ^a	- 51.88%,	H [°] = 2.0	8	1.38 [0.98, 1.94]
Test of $\theta_i = \theta_j$: Q(3)	= 6.29, p	0 = 0.10				
Overall					2.55 [1.88, 3.46]
Heterogeneity: 🕇 =	0.30, I ^a	77.13%,	H [°] = 4.3	7		
Test of $\theta_i = \theta_j; Q(19)$) = 62.63	3, p = 0.00				
Test of group differe	ences: Q	(1) = 12.4	9, p = 0.	00		
					1.00	
andom-effects REI	di model				1.00	

eFigure 26. Pooled Risk ratio of death in patients with hemoptysis a) Forest plot

	Hen	noptysis	No He	emoptysis		Risk Ratio	Weight
Study	Died	Survived	Died	Survived		with 95% CI	(%)
Ming Ding	0	1	3	28			1.03
Rong-Hui Du	0	10	21	148 —		0.36 [0.02, 5.55]	0.93
Tao Chen #	4	3	109	158		1.40 [0.73, 2.70]	16.09
Xiaojing Zou #	4	5	48	97		1.34 [0.62, 2.89]	11.85
Yan Deng #	5	2	104	114		1.50 [0.92, 2.44]	29.14
Qiurong Ruan #	3	0	65	82		1.98 [1.31, 2.99]	40.96
Overall					•	1.62 [1.25, 2.11]	
Heterogeneity: T ²	= 0.00), I ² = 0.00	%, H ² =	= 1.00			
Test of $\theta_i = \theta_j$: Q(5) = 2.	65, p = 0.7	75				
Test of $\theta = 0$: z =	3.60, j	00.0 = c					
					1.00		
Random-effects R	EML m	nodel					

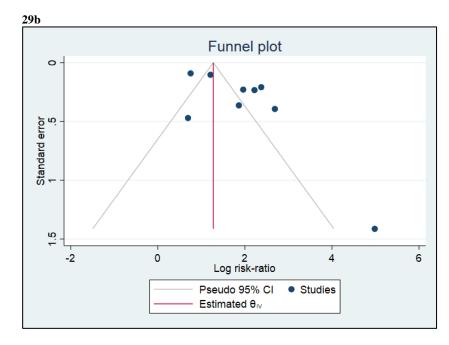

eFigure 27. Pooled Risk ratio of death in patients with Abdomen pain a) Forest plot


	Abdon	ninal pain	No Abdo	minal pain		Risk Ratio	Weight
Study	Died	Survived	Died	Survived		with 95% CI	(%)
Jennifer Tomlins	1	4	19	71		0.95 [0.16, 5.72]	25.54
Ke Wang #	0	16	78	454 ·		0.20 [0.01, 3.09]	11.63
TieLong Chen *	0	2	19	34		0.46 [0.04, 5.94]	13.28
Dawei Wang *	1	1	18	87		2.92 [0.69, 12.41]	37.44
J. Zhang @	0	5	25	663		- 2.25 [0.15, 32.87]	12.11
Overall						1.22 [0.47, 3.16]	
Heterogeneity: T ² =	= 0.09, I ²	= 7.02%,	H ² = 1.08				
Test of $\theta_1 = \theta_2$: Q(4) = 3.90	p = 0.42					
Test of $\theta = 0$: $z = 0$.40, p =	0.69					
					1.00	_	
Random-effects RE	ML mod	el					

eFigure 28. Pooled Risk ratio of death in patients with Acute respiratory syndrome a) Forest plot b) Funnel Plot c) Subgroup analysis

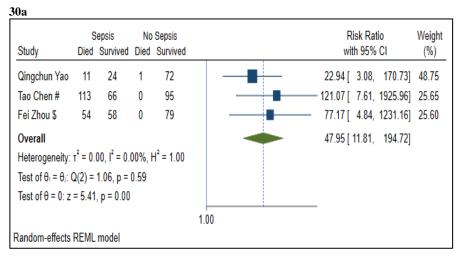
28b

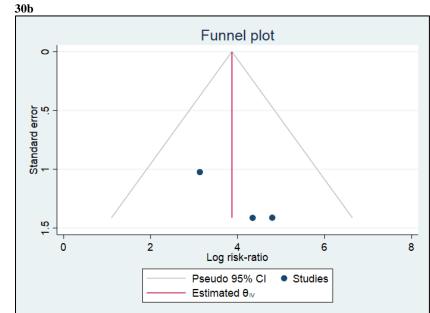
28a

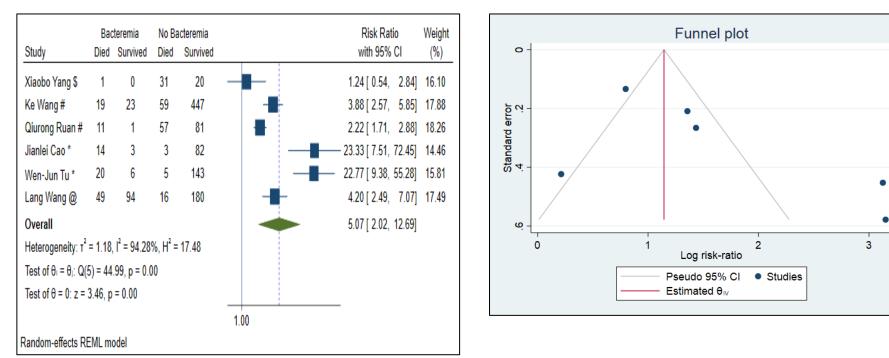


51

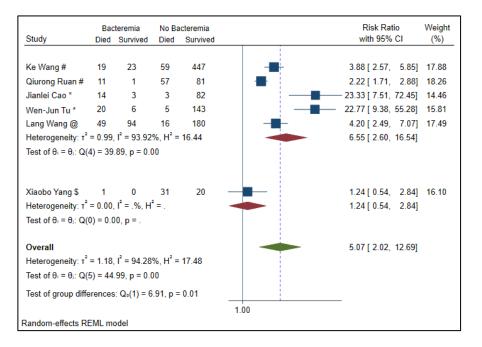
	-	RDS		ARDS	Risk Ratio	Weight
Study	Died	Survived	Died	Survived	with 95% Cl	(%)
Mingli Yuan	10	1	0	16	29.75 [1.92, 460.32]	3.50
Qingchun Yao	12	33	0	63	34.78 [2.11, 572.67]	3.39
Tao Chen #	113	83	0	78	91.03 [5.73, 1446.37]	3.45
Xiaojing Zou #	52	30	0	72	92.35 [5.80, 1469.59]	3.45
Yan Deng #	98	10	11	106	9.65 [5.48, 16.99]	10.13
Ke Wang #	76	131	2	339	62.60 [15.54, 252.17]	7.09
Qiurong Ruan #	55	7	13	75		10.29
Fei Zhou \$	50	9	4	128	27.97 [10.59, 73.85]	8.70
Dawei Wang *	17	11	2	77	23.98 [5.91, 97.28]	7.07
Jianlei Cao *	15	5	2	80	30.75 [7.64, 123.71]	7.10
Wen-Jun Tu *	23	8	2	141	53.05 [13.19, 213.35]	7.10
Lang Wang @	56	15	9	259		9.85
Heterogeneity: T	= 0.4	7, I [°] = 63.	32%,	H [°] = 2.73	22.76 [13.07, 39.66]	
Test of $\theta_i = \theta_j$: Q((11) =	30.57, p =	= 0.00			
Xiaobo Yang \$	26	9	6	11		9.79
Yang Wang #	128	17	5	194	35.13 [14.76, 83.65]	9.09
Heterogeneity: T	= 3.8	1, I [°] = 96.	04%,	H [°] = 25.27	8.48 [0.54, 133.79]	
Test of $\theta_i = \theta_j$: Q((1) = 2	5.27, p =	0.00			
Overall					20.19 [10.87, 37.52]	
Heterogeneity: 1	= 0.9	0, 1 [°] = 79.	05%,	H ² = 4.77		
Test of $\theta_1 = \theta_1$: Q((13) =	63.86, p =	= 0.00			
Test of group diff	erence	es: Q ₆ (1) :	= 0.47	. p = 0.49		
					1.00	
Random-effects R	EML r	nodel				


29a Risk Ratio No Shock Weight Shock Died Survived Died Survived with 95% CI (%) Study Qingchun Yao 96 14.71 [6.80, 31.84] 10.76 6 6 _ 0 Yang Wang # 112 209 10.76 [7.15, 16.19] 12.84 2 21 Tao Chen # 67 161 3.36 [2.74, 4.11] 13.61 46 0 7.11 [4.54, 11.15] 12.64 Xiaojing Zou # 36 0 16 102 . Yan Deng # 13 96 116 2.13 [1.78, 2.54] 13.67 0 Fei Zhou \$ 38 16 137 9.21 [5.83, 14.56] 12.60 0 Dawei Wang * 19 85 145.83 [9.15, 2325.22] 2.94 3 0 Jianlei Cao * 10 82 6.44 [3.16, 13.13] 11.14 7 3 62 269 Lang Wang @ 3 5 2.00 [0.80, 5.04] 9.82 6.12 [3.59, 10.45] Overall Heterogeneity: τ^2 = 0.54, I² = 93.35%, H² = 15.04 Test of $\theta_1 = \theta_1$: Q(8) = 110.09, p = 0.00 Test of θ = 0: z = 6.64, p = 0.00 1.00 Random-effects REML model


eFigure 29. Pooled Risk ratio of death in patients with shock a) Forest plot b) Funnel Plot c) Subgroup analysis.

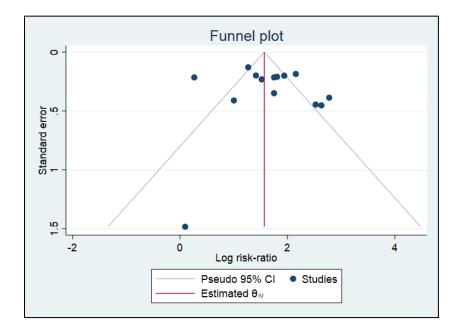

	5	Shock	No	Shock			Risk R	atio	Weight
Study	Died	Survived	Died	Survived			with 95%	6 CI	(%)
Qingchun Yao	6	0	6	96			14.71 [6.80,	31.84]	10.76
Tao Chen #	46	0	67	161			3.36 [2.74,	4.11]	13.61
Xiaojing Zou #	36	0	16	102		-	7.11 [4.54,	11.15]	12.64
Yan Deng #	13	0	96	116			2.13 [1.78,	2.54]	13.67
Fei Zhou \$	38	0	16	137		.	9.21 [5.83,	14.56]	12.60
Dawei Wang *	19	3	0	85			— 145.83 [9.15,	2325.22]	2.94
Jianlei Cao *	7	3	10	82			6.44 [3.16,	13.13]	11.14
Lang Wang @	3	5	62	269			2.00 [0.80,	5.04]	9.82
Heterogeneity: 1	r ² = 0.	56, I ² = 93	3.57%	, H ² = 15.55		-	5.66 [3.15,	10.15]	
Test of $\theta_i = \theta_i$: C	Q(7) =	79.82, p =	= 0.00						
						_			
Yang Wang #				209			10.76 [7.15,	16.19]	12.84
Heterogeneity: 1	r ² = 0.	00, I ² = .9	6, H ² :			•	10.76 [7.15,	16.19]	
Test of $\theta_i = \theta_i$: C	2(0) =	-0.00, p =							
Overall						-	6.12 [3.59,	10.45]	
Heterogeneity:	$r^{2} = 0$	$54 ^2 = 93$	3 35%	$H^2 = 15.04$					
Test of $\theta_i = \theta_i$: C									
Test of group dif	fferen	ces: Q ₆ (1)	= 3.1	2, p = 0.08					
					1	00			
Random-effects I	REMI	model				~~			

eFigure 30. Pooled Risk ratio of death in patients with sepsis a) Forest plot b) Funnel Plot


eFigure 31. Pooled Risk ratio of death in patients with bacteremia a) Forest plot b) Funnel Plot c) Subgroup analysis

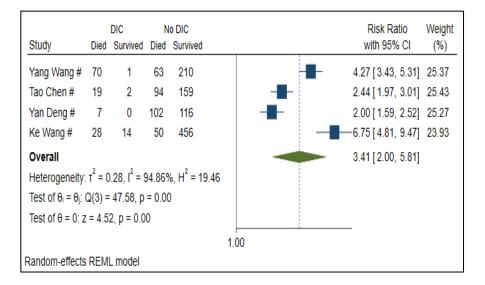
31b

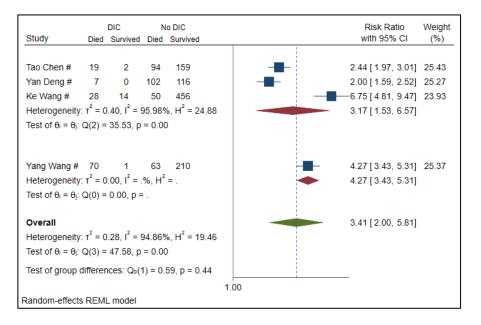
31a


.

eFigure 32. Pooled Risk ratio of death in patients with Acute cardiac injury a) Forest plot b) Funnel Plot c) Subgroup analysis

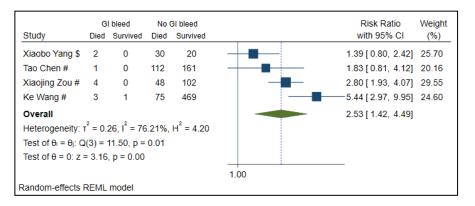
	Acute ca	rdiac injury	No Acute c	ardiac injury	Risk Ratio Weight
Study	Died	Survived	Died	Survived	with 95% Cl (%)
Qingchun Yao	6	2	6	94	12.50 [5.22, 29.92] 6.00
Jia-Fu Wei	3	85	0	13	1.10 [0.06, 20.20] 1.31
Xiaobo Yang \$	9	3	23	17	
Yang Wang #	107	4	26	207	8.64 [6.00, 12.43] 8.48
Tao Chen #	72	18	22	91	4.11 [2.78, 6.06] 8.37
Xiaojing Zou #	34	11	18	91	
Yan Deng #	65	1	44	115	3.56 [2.76, 4.58] 8.88
Ke Wang #	49	70	29	400	
Fei Zhou \$	32	1	22	136	6.96 [4.70, 10.31] 8.36
Dawei Wang *	8	4	11	84	5.76 [2.90, 11.42] 6.94
Rongrong Yang *	6	16	19	171	2.73 [1.22, 6.10] 6.34
Jianlei Cao *	12	3	5	82	13.92 [5.73, 33.82] 5.93
Wen-Jun Tu *	18	6	7	143	
Lang Wang @	39	31	26	243	
Overall					5.42 [3.79, 7.77]
Heterogeneity: T ² =	= 0.36, I ² :	= 86.24%,	H ² = 7.27		
Test of $\theta_i = \theta_j$: Q(1	3) = 81.2	2, p = 0.00)		
Test of $\theta = 0$: z = 9).22, p = (00.00			
					1.00
Random-effects RE	ML mode				

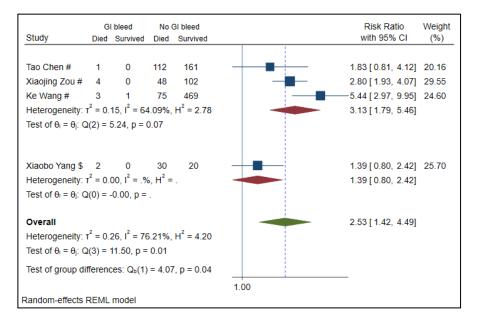



	Acute car	rdiac injury N	lo Acute c	ardiac injury	Risk Ratio	Weight
Study	Died	Survived	Died	Survived	with 95% Cl	(%)
Qingchun Yao	6	2	6	94	1 2 50 (5 22, 20, 0	
-	-	-	-		12.50 [5.22, 29.9	
Jia-Fu Wei	3	85	0	13	1.10 [0.06, 20.2	•
Tao Chen #	72	18	22	91	4.11 [2.78, 6.0	·
Xiaojing Zou #	34	11	18	91	4.58 [2.91, 7.2	•
Yan Deng #	65	1	44	115	3.56 [2.76, 4.5	
Ke Wang #	49	70	29	400	6.09 [4.03, 9.2	
Fei Zhou \$	32	1	22	136	- 6.96 [4.70, 10.3	•
Dawei Wang *	8	4	11	84	5.76 [2.90, 11.4	2] 6.94
Rongrong Yang *	6	16	19	171	2.73 [1.22, 6.1	0] 6.34
Jianlei Cao *	12	3	5	82		2] 5.93
Wen-Jun Tu *	18	6	7	143		4] 6.56
Lang Wang @	39	31	26	243	- 5.76 [3.78, 8.7	3] 8.24
Heterogeneity: τ ² =	0.15, I ² :	= 69.79%, H	l [°] = 3.31		5.82 [4.40, 7.7	1]
Test of $\theta_1 = \theta_1$: Q(11) = 33.88	8, p = 0.00				
Xiaobo Yang \$	9	3	23	17		9] 8.23
Yang Wang #	107	4	26	207	8.64 [6.00, 12.4	3] 8.48
Heterogeneity: τ ² =	1.75, I ² :	= 97.74%, H	l [°] = 44.25	5	3.37 [0.53, 21.4	7]
Test of $\theta_i = \theta_j$: Q(1)	= 44.25	, p = 0.00				
Overall					5.42 [3.79, 7.7	7]
Heterogeneity: τ ² =	0.36, I ² :	= 86.24%, H	l [°] = 7.27			
Test of $\theta_i = \theta_j$: Q(13)	3) = 81.22	2, p = 0.00				
Test of group differ	ences: Q	s(1) = 0.33,	p = 0.57			
		_			1.00	
andom-effects REI	VIL mode	9				

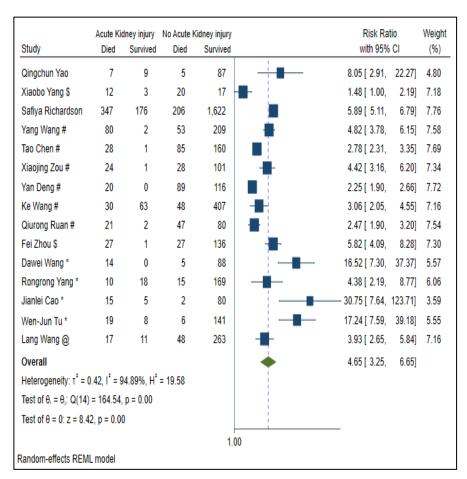
eFigure 33. Pooled Risk ratio of death in patients with Acute heart failure a) Forest plot

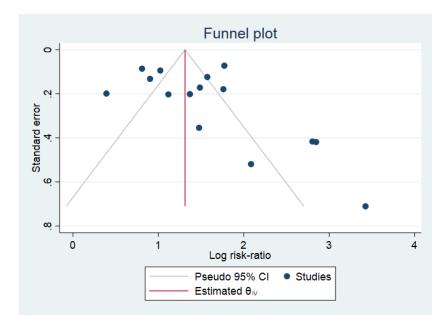
	Acute H	eart failure	No Acute I	Heart failure	Risk Ratio	Weight
Study	Died	Survived	Died	Survived	with 95% Cl	(%)
Tao Chen #	41	3	42	<mark>91</mark>	2.95 [2.27, 3.84]	55.30
Fei Zhou \$	28	16	26	121	3.60 [2.38, 5.44]	22.24
Lang Wang @	25	33	40	241	3.03 [2.01, 4.57]	22.46
Overall					3.10 [2.55, 3.77]	
Heterogeneity: T	² = 0.00, I	² = 0.00%, H	l ² = 1.00			
Test of $\theta_i = \theta_j$: Q	(2) = 0.64	l, p = 0.72				
Test of θ = 0: z =	= 11.36, p	= 0.00				
				1.(0	
Random-effects F	REML moo	del				


eFigure 34. Pooled Risk ratio of death in patients with DIC a) Forest plot b) Subgroup analysis



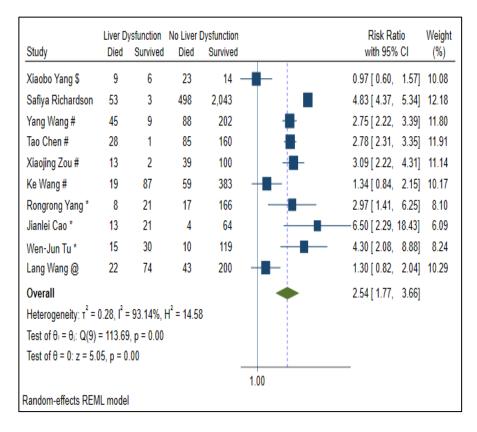
eFigure 35. Pooled Risk ratio of death in patients with GI bleeding a) Forest plot b) Subgroup analysis


35a



eFigure 36. Pooled Risk ratio of death in patients with Acute Kidney Injury a) Forest plot b) Funnel Plot c) Subgroup analysis.

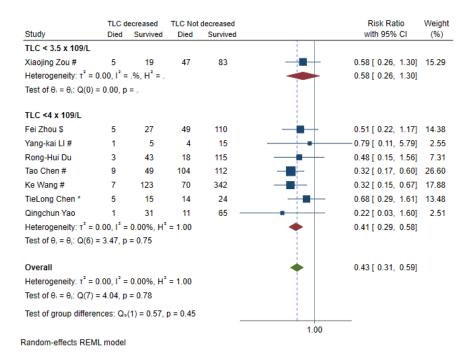
36a





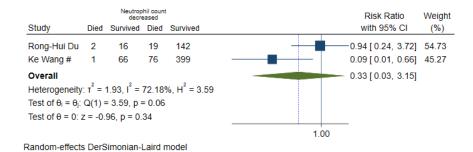
	Acute Ki	dney injury N	lo Acute k	(idney injury			Risk Ra	tio	Weight
Study	Died	Survived	Died	Survived			with 95%	i Cl	(%)
Qinochun Yao	7	9	5	87		-	8.05 [2.91.	22.271	4.80
Safiya Richardson		9 176	206	1.622					
	347			.,	1		5.89 [5.11,		7.76
Tao Chen #	28	1	85	160	_		2.78 [2.31,		7.69
Xiaojing Zou #	24	1	28	101	- 1	r	4.42 [3.16,		7.34
Yan Deng #	20	0	89	116			2.25 [1.90,		
Ke Wang #	30	63	48	407			3.06 [2.05,		7.16
Qiurong Ruan #	21	2	47	80	-		2.47 [1.90,	•	
Fei Zhou \$	27	1	27	136	-		5.82 [4.09,	8.28]	7.30
Dawei Wang *	14	0	5	88			18.52 [7.30,	37.37]	5.57
Rongrong Yang *	10	18	15	169	_	H	4.38 [2.19,	8.77]	6.06
Jianlei Cao *	15	5	2	80			30.75 [7.64,	123.71]	3.59
Wen-Jun Tu *	19	8	6	141			- 17.24 [7.59,	39.18]	5.55
Lang Wang @	17	11	48	263		-	3.93 [2.65,	5.84]	7.16
Heterogeneity: τ ² = 0	.39, I ² = 9	4.38%, H ² =	17.80		-		5.07 [3.49,	7.37]	
Test of θ ₁ = θ ₁ : Q(12)	= 138.66	, p = 0.00							
Xiaobo Yang \$	12	3	20	17	-		1.48 [1.00,	2.19]	7.18
Yang Wang #	80	2	53	209			4.82 [3.78,	6.15]	7.58
Heterogeneity: τ ² = 0	.67, I ² = 9	6.06%, H ² =	25.37				2.70 [0.85,	8.59]	
Test of $\theta_1 = \theta_1$: Q(1) :	= 25.37, p	= 0.00							
Overall							4.65 [3.25,	6.65]	
Heterogeneity: τ ² = 0	.42, I ² = 9	4.89%, H ² =	19.58						
Test of $\theta_1 = \theta_1$: Q(14)	= 164.54	, p = 0.00							
Test of group differer	ices: Q _b (1) = 1.03, p =	0.31						
				1.0)				
andom-effects REM	_ model								

eFigure 37. Pooled Risk ratio of death in patients with liver dysfunction a) Forest plot b) Funnel Plot c) Subgroup analysis

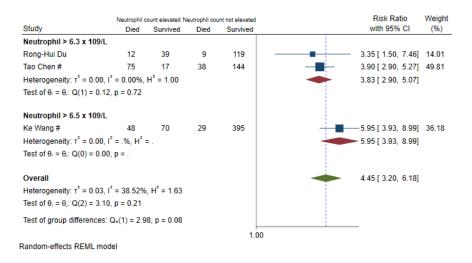

37a

	Liver D	ysfunction	No Liver [Dysfunction	Risk Ratio	Weight
Study	Died	Survived	Died	Survived	with 95% CI	(%)
					_	
Safiya Richardson	53	3	498	2,043	4.83 [4.37, 5.	34] 12.18
Tao Chen #	28	1	85	160	2.78 [2.31, 3.	35] 11.91
Xiaojing Zou #	13	2	39	100		31] 11.14
Ke Wang #	19	87	59	383	1.34 [0.84, 2.	15] 10.17
Rongrong Yang *	8	21	17	166	2.97 [1.41, 6.	25] 8.10
Jianlei Cao *	13	21	4	64	6.50 [2.29, 18.	43] 6.09
Wen-Jun Tu *	15	30	10	119	4.30 [2.08, 8.	88] 8.24
Lang Wang @	22	74	43	200	1.30 [0.82, 2.	04] 10.29
Heterogeneity: $\tau^2 = 0$).24, I ² =	91.17%, H	= 11.33		2.84 [1.94, 4.	17]
Test of $\theta_i = \theta_j$: Q(7) =	= 75.63, p	0 = 0.00				
Xiaobo Yang \$	9	6	23	14 -	0.97 [0.60, 1.	57] 10.08
Yang Wang #	45	9	88	202		39] 11.80
Heterogeneity: T ² = ().51, I ^z =	93.37%, H	= 15.08		1.67 [0.60, 4.	64]
Test of $\theta_i = \theta_i$: Q(1) =	= 15.08, p	00.0 = 0				
Overall					2.54 [1.77, 3.	66]
Heterogeneity: $\tau^2 = 0$).28, I ² =	93.14%, H	= 14.58			
Test of $\theta_1 = \theta_2$: Q(9) =	= 113.69,	p = 0.00				
Test of group differe	nces: Q₅(1) = 0.92, p) = 0.34	_		
					0	
andom-effects REM	L model					

eFigure 38. Pooled Risk ratio of death in patients with Decreased TLC - Forest plot



eFigure 39. Pooled Risk ratio of death in patients with Increased TLC - Forest plot

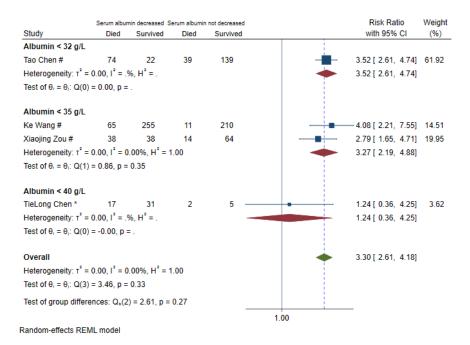

	TLC in	ncreased	TLC no	t increased		Risk Ratio	Weight
Study	Died	Survived	Died	Survived		with 95% CI	(%)
TLC > 10 x 109/L							
Fei Zhou \$	25	15	29	122		3.25 [2.17, 4.88]	14.18
Rong-Hui Du	7	20	14	138		2.81 [1.25, 6.33]	9.98
Tao Chen #	56	6	57	155	-	3.36 [2.65, 4.26]	15.63
Ke Wang #	34	29	43	436		6.01 [4.17, 8.66]	14.57
TieLong Chen *	4	6	15	30		1.20 [0.51, 2.85]	9.46
Qingchun Yao	9	3	3	93	_ _		7.04
Heterogeneity: T ² =	• 0.55, I [*]	= 90.80%,	$H^{2} = 10$.87	-	3.97 [2.06, 7.64]	
Test of $\theta_i = \theta_j$: Q(5)) = 24.70	, p = 0.00					
TLC > 9.5 x 109/L							
Yang-kai LI #	4	9	1	11	+ +	3.69 [0.48, 28.57]	3.19
Wen-Jun Tu *	10	10	15	139		5.13 [2.68, 9.84]	11.61
Xiaojing Zou #	23	10	29	92		2.91 [1.97, 4.29]	14.34
Heterogeneity: T ² =	: 0.06, I [*]	= 31.88%,	$H^2 = 1.4$	47	-	3.60 [2.22, 5.84]	
Test of $\theta_i = \theta_i$: Q(2)) = 2.17,	p = 0.34					
Overall					+	3.85 [2.56, 5.78]	
Heterogeneity: T ² =	: 0.26, I ²	= 80.87%,	$H^2 = 5.1$	23			
Test of $\theta_i = \theta_i$: Q(8)) = 27.18	, p = 0.00					
Test of group differ	ences: Q	s(1) = 0.06	6, p = 0.	81			
					1.00		
Random-effects RF	MI mode	a			1.00		

Random-effects REML model

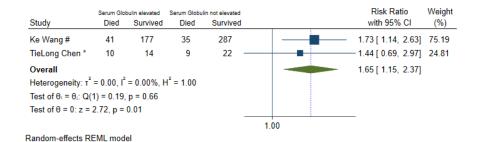
eFigure 40. Pooled Risk ratio of death in patients with Decreased Neutrophil - Forest plot

eFigure 41. Pooled Risk ratio of death in patients with Increased Neutrophil - Forest plot

eFigure 42. Pooled Risk ratio of death in patients with Decreased lymphocyte - Forest plot.

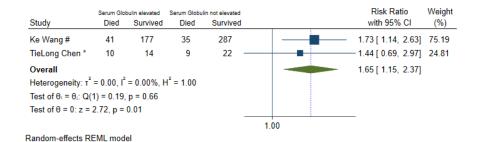

		ount decreasedyr				Risk Ratio	Weigh
Study	Died	Survived	Died	Survived		with 95% C	(%)
Lymphocyte count <0.8x 109/L							
Fei Zhou \$	41	36	13	101	-	4.67 [2.69,	8.12] 15.47
Qingchun Yao	5	18	5	78		3.61 [1.14, 1	1.40] 12.89
Heterogeneity: 7 ² = 0.00, 1 ² = 0.00	9%, H ² = 1.0	00			•	4.45 [2.70,	7.32]
Test of $\theta_i = \theta_i$: Q(1) = 0.16, p = 0.6	69						
Lymphocyte count <1 x 109/L							
Tao Chen #	103	74	10	85	-	5.53 [3.04, 1	0.07] 15.31
TieLong Chen *	15	30	4	6		0.83 [0.35,	1.98] 14.23
Heterogeneity: τ ² = 1.65, I ² = 91.9	16%, H ² = 1	2.43				2.20 [0.35, 1	4.07]
Test of $\theta_i = \theta_j$: Q(1) = 12.43, p = 0	.00						
Lymphocyte count <1·1 x 109/L							
Yang-kai LI #	4	18	1	2 —		0.55 [0.09,	3.40] 9.67
Wen-Jun Tu *	23	99	2	50		4.90 [1.20, 2	0.04] 11.63
Rong-Hui Du	19	11	2	147		-47.18 [11.60, 19	1.96] 11.65
Ke Wang #	76	413	1	52		8.24 [1.17, 5	8.03] 9.15
Heterogeneity: r ² = 2.68, I ² = 79.7	'7%, H ² = 4	.94				5.97 [0.98, 3	6.29]
Test of $\theta_i = \theta_i$: Q(3) = 14.84, p = 0	.00						
Overall					-	4.09 [1.69,	9.91]
Heterogeneity: $\tau^2 = 1.24$, $I^2 = 83.6$	3%, H ² = 6	.11					
Test of $\theta_i = \theta_j$: Q(7) = 31.14, p = 0	.00						
Test of group differences: Q _b (2) =	0.64, p = 0	.73		_			
and an effects DEMI and the					1.00		
andom-effects REML model							

eFigure 43. Pooled Risk ratio of death in patients with Decreased Platelet - Forest plot

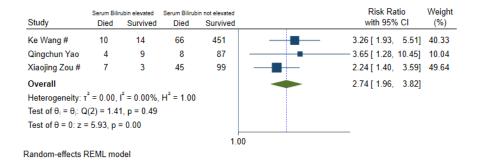

	Platelet co	unt decreased	Platelet coun	t not decreased		Risk Ratio	Weight
Study	Died	Survived	Died	Survived		with 95% CI	(%)
Platelet count < 100 x 109/L							
Fei Zhou \$	11	2	43	135		3.50 [2.47, 4.96]	24.57
TieLong Chen *	5	4	14	32		1.83 [0.88, 3.79]	11.90
Qingchun Yao	1	9	11	87 -		- 0.89 [0.13, 6.21]	2.35
Heterogeneity: $\tau^2 = 0.16$, $I^2 = 51$.	44%, H ² =	2.06				2.45 [1.30, 4.62]	
Test of $\theta_i = \theta_i$: Q(2) = 4.04, p = 0	.13						
Platelet count < 125 x 109/L							
Yanli Liu &	21	47	28	287		- 3.47 [2.10, 5.74]	18.38
Xiaojing Zou #	16	15	36	87		1.76 [1.14, 2.73]	20.79
Heterogeneity: $\tau^2 = 0.17$, $I^2 = 74$.	92%. H ² =	3.99				2.45 [1.26, 4.75]	
Test of $\theta_i = \theta_j$: Q(1) = 3.99, p = 0	1.1						
Platelet count < 150 x 109/L							
Ke Wang #	35	119	42	343		2.08 [1.39, 3.13]	22.01
Heterogeneity: $\tau^2 = 0.00$, $I^2 = .\%$,	H ² = .				-	2.08 [1.39, 3.13]	
Test of $\theta_i = \theta_j$: Q(0) = 0.00, p = .							
Overall						2.42 [1.78, 3.30]	
Heterogeneity: $\tau^2 = 0.07$, $I^2 = 51$.	04%. H ² =	2.04					
Test of $\theta_i = \theta_j$: Q(5) = 10.25, p =	1						
Test of group differences: $Q_b(2)$ =	= 0.27, p =	0.87		_		_	
					1.00		
Random-effects REML model							

Random-effects REML model

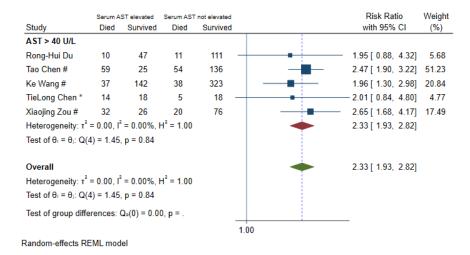
eFigure 44. Pooled Risk ratio of death in patients with Decreased Albumin - Forest plot



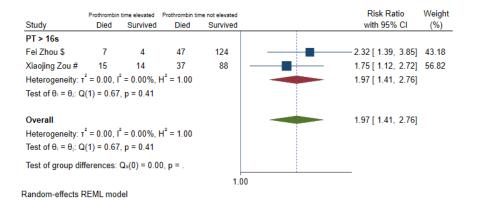
eFigure 45. Pooled Risk ratio of death in patients with Increased Globulin - Forest plot

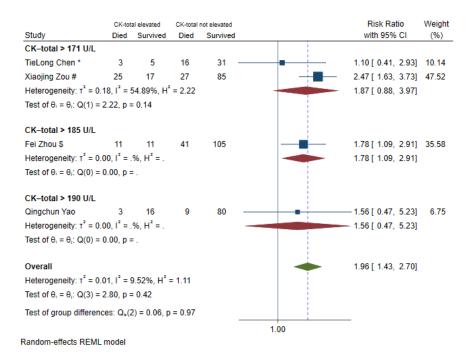

75

eFigure 46. Pooled Risk ratio of death in patients with Increased Globulin - Forest plot

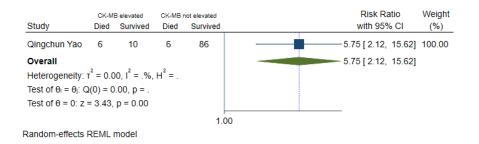


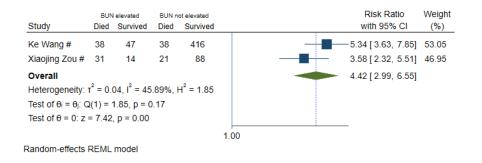
76

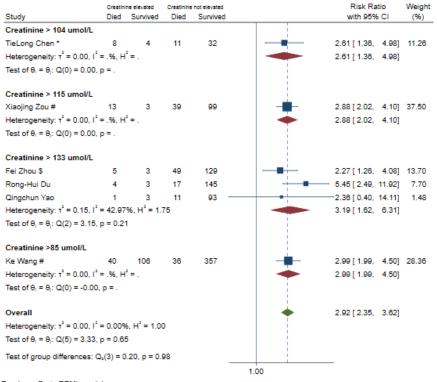

eFigure 48. Pooled Risk ratio of death in patients with Increased AST- Forest plot.


eFigure 49. Pooled Risk ratio of death in patients with Increased ALT- Forest plot.

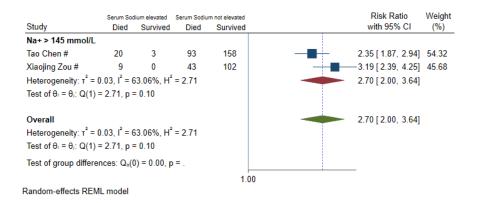
	Serum A	LT elevated	Serum ALT :	not elevated		Risk Ratio	Weight
Study	Died	Survived	Died	Survived		with 95% CI	(%)
ALT > 40 U/L							
Tao Chen #	30	30	83	131	- -	1.29 [0.95, 1.75]	36.79
Ke Wang #	21	104	55	361		1.27 [0.80, 2.02]	18.09
Xiaojing Zou #	11	14	41	88		1.38 [0.83, 2.30]	15.11
Heterogeneity: T ²	= 0.00, I	² = 0.00%, I	$H^2 = 1.00$		-	1.30 [1.04, 1.64]	
Test of $\theta_1 = \theta_1$: Q(2)	?) = 0.07	′, p = 0.97					
ALT > 50 U/L							
Fei Zhou \$	26	33	28	104		2.08 [1.34, 3.22]	19.94
TieLong Chen *	6	7	13	29		1.49 [0.71, 3.13]	7.48
Qingchun Yao	2	4	10	92		3.40 [0.95, 12.17]	2.60
Heterogeneity: T ² =	= 0.00, I	² = 0.00%, I	$H^2 = 1.00$		-	2.00 [1.39, 2.87]	
Test of $\theta_1 = \theta_1$: Q(2)	?) = 1.30), p = 0.52					
Overall					-	1.48 [1.20, 1.82]	
Heterogeneity: T ² =	= 0.01, I	² = 8.88%, I	$H^2 = 1.10$				
Test of $\theta_1 = \theta_2$: Q(5	5) = 5.22	2, p = 0.39					
Test of group diffe	rences:	Q ₀ (1) = 3.8	6, p = 0.0	5			
					1.00	-	
Random-effects RE	ML mod	del					


eFigure 50. Pooled Risk ratio of death in patients with Increased PT- Forest plot.

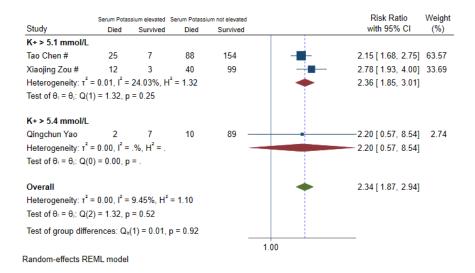

eFigure 51. Pooled Risk ratio of death in patients with Increased CK Total- Forest plot


eFigure 52. Pooled Risk ratio of death in patients with Increased CK MB- Forest plot

eFigure 53. Pooled Risk ratio of death in patients with Increased BUN- Forest plot



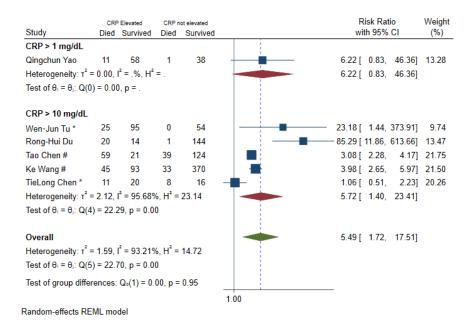
eFigure 54. Pooled Risk ratio of death in patients with Increased Creatinine- Forest plot



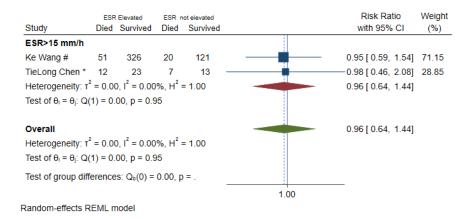
Random-effects REML model

eFigure 55. Pooled Risk ratio of death in patients with Increased Na⁺ - Forest plot

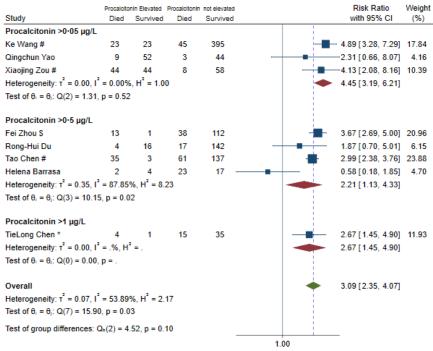
eFigure 56. Pooled Risk ratio of death in patients with Increased K⁺ - Forest plot


eFigure 57. Pooled Risk ratio of death in patients with Elevated LDH - Forest plot

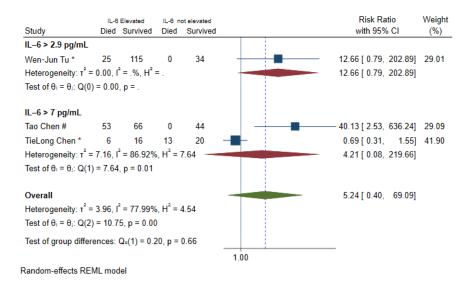
Study		Elevated Survived		ot elevated Survived					Risk R with 959		Weight
	Died	Survived	Died	Survived		-			with 95	/0 CI	(%)
LDH > 245U/L							_				
Fei Zhou \$	53	70	1	60		-		26	28 [3.72,	185.56]	12.55
TieLong Chen *	13	22	6	14				1.	24 [0.56,	2.74]	22.92
Xiaojing Zou #	48	67	4	35	- -			4.	07 [1.57,	10.56]	21.39
Heterogeneity: T	² = 1.5	9, I ² = 83.4	47%, H	² = 6.05				4.	19 [0.85,	20.66]	
Test of $\theta_i = \theta_i$: Q	(2) = 9	.56, p = 0.	01								
LDH > 250 U/L											
Ke Wang #	73	320	2	139		-		13	10 [3.26,	52.66]	17.13
Heterogeneity: T	^z = 0.0	0, I ² = .%,	H ² = .					13	10 [3.26,	52.66]	
Test of $\theta_i = \theta_i$: Q	(0) = 0	.00, p = .									
LDH > 350 U/L											
Tao Chen #	93	23	20	138		-		6.	33 [4.16,	9.63]	26.01
Heterogeneity: T	² = 0.0	0, I ² = .%,	H ² = .			- 🔶		6.	33 [4.16,	9.63]	
Test of $\theta_i = \theta_i$: Q	(0) = -(0.00, p = .									
Overall						-	-	5.	37 [2.10,	13.74]	
Heterogeneity: T	² = 0.8	4. 1 ² = 80.6	51%. H	² = 5.16		T				-	
Test of $\theta_1 = \theta_1$: Q			- C								
Test of group diff	erence	es: Q₅(2) =	1.28, [o = 0.53	_						
					1.00						
Random-effects R	EML r	nodel									


eFigure 58. Pooled Risk ratio of death in patients with Elevated D-Dimer - Forest plot

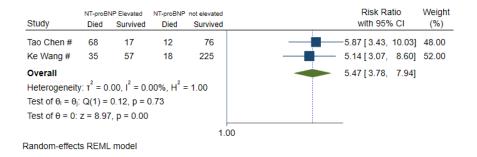
d-dime	r Elevated	d-dimer	not elevated	Risk Ratio	Weight
Died	Survived	Died	Survived	with 95% CI	(%)
24	89	1	60	12.96 [1.80, 93.46]	2.44
16	76	5	82	3.03 [1.16, 7.91]	7.58
8	11	11	25 ·	1.38 [0.67, 2.84]	10.59
46	45	6	57		9.63
		= 2.74		3.33 [1.48, 7.49]	
3.56, p	= 0.04				
44	28	10	90	6.11 [3.30, 11.32]	12.30
53	174	16	258	4.00 [2.35, 6.80]	13.86
9	31	3	65	5.10 [1.47, 17.75]	5.24
0, 1 [°] = (0.00%, H [°] =	1.00		4.82 [3.29, 7.07]	
1.05, p	= 0.59				
	1	55	275		18.66
				 5.54 [4.15, 7.39] 	
0.00, p	=.				
34	3	63	147	3.06 [2.44, 3.85]	19.72
0, 1 [°] = .	%, H ² = .			3.06 [2.44, 3.85]	
0.00, p	= .				
				3.98 [2.87, 5.52]	
		= 2.87			
22.50, p	o = 0.00				
es: Q ₆ (3) = 11.29, p	0.0 = 0.0	1		
				1.00	
	Died 24 16 8 46 1, l ² = (3, 56, p 44 53 9 0, l ² = (1, 05, p 12 1, 00, p 34 3, l ² = (12, 0, 0, p 34 1, 1 ² = (12, 0, 0, p 34 1, 1 ² = (12, 0, 0, p 1, 1 ² = (1, 1, 1 ² = (1, 1 ² =	24 89 16 76 8 11 46 45 1, $1^2 = 63.45\%$, H^2 5.56, $p = 0.04$ 44 28 53 174 9 31 0, $1^2 = 0.00\%$, $H^2 = 1.00\%$, $p = 1.00\%$,	Died Survived Died 24 89 1 16 76 5 8 11 11 40 45 6 1, 1 ² 63.45%, H ² = 2.74 8.56, p = 0.04 44 28 44 28 10 53 174 16 9 31 3 0, 1 ² 0.00%, H ² = 1.00 1.05, p = 0.59 12 55 12 1 55 0, 1 ² = .%, H ² = . 0.00, p = . 34 3 63 0, 1 ² = .%, H ² = . 0.00, p = . 3, 1 ² = 65.13%, H ² = 2.87 12.50, p = 0.00	Died Survived Died Survived 24 89 1 60 16 76 5 82 8 11 11 25 48 45 6 57 1, 1 ² 63.45%, H ² 2.74 8.56, p = 0.04 90 53 174 16 258 9 31 3 65 0, 1 ² 0.00%, H ² 1.00 1.05, p = 0.59 12 55 275 0, 1 ² 5.5 275 1.00, p = . 34 3 63 147 0, 1 ² .%, H ² = . 0.00, p = . 34 3 63 147 0.00, p = . 3, 1 ² 65.13%, H ² = 2.87 12.50, p = 0.00 28: $\Omega_4(3) = 11.29, p = 0.01$	Died Survived Died Survived with 95% Cl 24 89 1 60 12.96 [1.80, 93.46] 16 76 5 82 $3.03 [1.16, 7.91]$ 8 11 11 25 $1.38 [0.67, 2.84]$ 46 45 6 57 $5.31 [2.41, 11.67]$ $1, 1^2 = 63.45\%, H^2 = 2.74$ $3.33 [1.48, 7.49]$ $3.33 [1.48, 7.49]$ $8.56, p = 0.04$ 44 28 10 90 53 174 16 258 $4.00 [2.35, 6.80]$ 9 31 3 85 $5.10 [1.47, 17.75]$ $0, 1^2 = 0.00\%, H^2 = 1.00$ $0.05, p = 0.59$ $4.82 [3.29, 7.07]$ $4.82 [3.29, 7.07]$ $1.05, p = 0.59$ $5.54 [4.15, 7.39]$ $5.54 [4.15, 7.39]$ $5.54 [4.15, 7.39]$ $1.0, p = .$ 3.4 3 63 147 $3.06 [2.44, 3.86]$ $0.0, p = .$ $3.98 [2.87, 5.52]$ $3.98 [2.87, 5.52]$ $3.98 [2.87, 5.52]$


Random-effects REML model

eFigure 60. Pooled Risk ratio of death in patients with Elevated ESR - Forest plot



eFigure 61. Pooled Risk ratio of death in patients with Elevated Procalcitonin - Forest plot



Random-effects REML model

eFigure 62. Pooled Risk ratio of death in patients with Increased IL-6- Forest plot

eFigure 63. Pooled Risk ratio of death in patients with Increased NT ProBNP- Forest plot

eFigure 64. Pooled Risk ratio of death in patients with Elevated Troponin- Forest plot

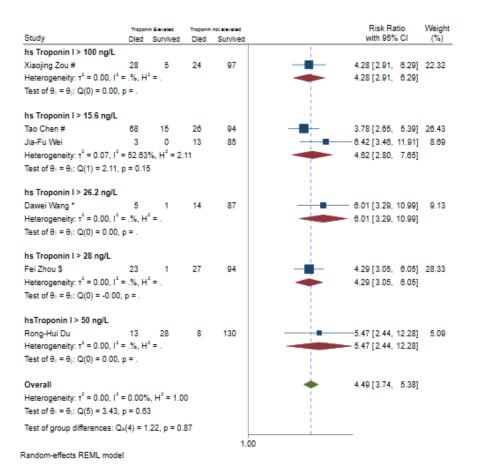
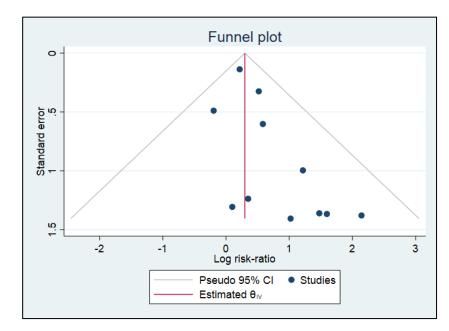
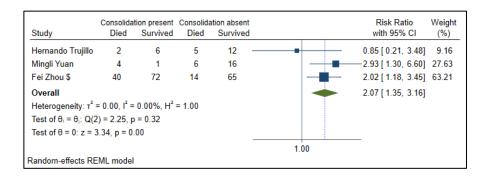
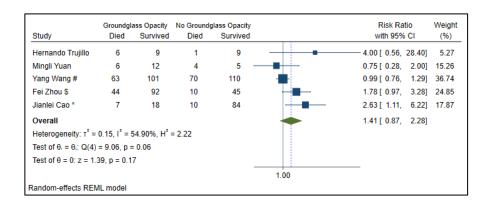
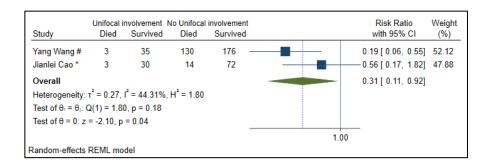



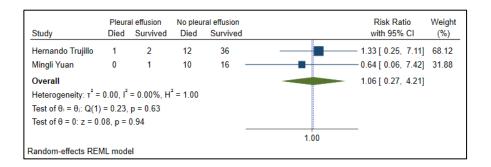
Figure 65. Pooled Risk ratio of death in patients with bilateral lung involvement a) Forest plot b) Funnel Plot.


65a

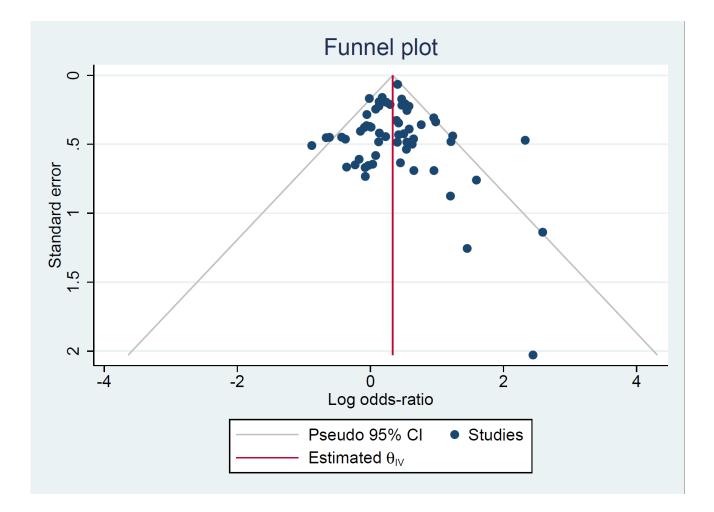
	Bilateral i	nvolvement	No Bilateral	involvement		Risk Ratio)	Weight
Study	Died	Survived	Died	Survived		with 95% C	CI	(%)
Hernando Trujillo	6	10	1	8		3.38 [0.48, 2	23.80]	1.37
Qingchun Yao	12	86	0	10		2.78 [0.18, 4	43.77]	0.69
Mingli Yuan	10	13	0	4		4.38 [0.30, 6	63.07]	0.73
Yang Wang #	49	61	84	150		1.24 [0.95,	1.63]	71.77
Xiaojing Zou #	52	96	0	6		4.93 [0.34, 7	71.93]	0.73
Tao Chen #	113	152	0	9		— 8.53 [0.57, 12	27.64]	0.71
Fei Zhou \$	45	98	9	39		1.68 [0.89,	3.17]	12.89
TieLong Chen *	19	35	0	1		1.42 [0.13, 1	16.06]	0.89
Dawei Wang *	19	86	0	2 -		1.10 [0.09, 1	14.30]	0.80
Jianlei Cao *	14	72	3	30		1.79 [0.55,	5.83]	3.75
J. Zhang @	20	530	5	108		0.82 [0.32,	2.14]	5.68
Overall					•	1.35 [1.07,	1.69]	
Heterogeneity: T ² =	= 0.00, I ² =	0.00%, H ² =	1.00					
Test of $\theta_i = \theta_j$: Q(1)	0) = 6.64, p) = 0.76						
Test of θ = 0: z = 2	.55, p = 0.0)1						
					1.00			
Random-effects RE	ML model							


65b

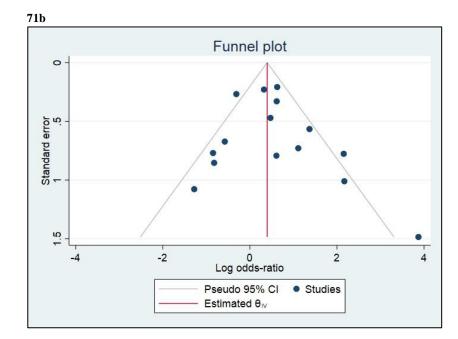

eFigure 66. Pooled Risk ratio of death in patients with consolidation -Forest plot


eFigure 67. Pooled Risk ratio of death in patients with ground glass opacity- Forest plot

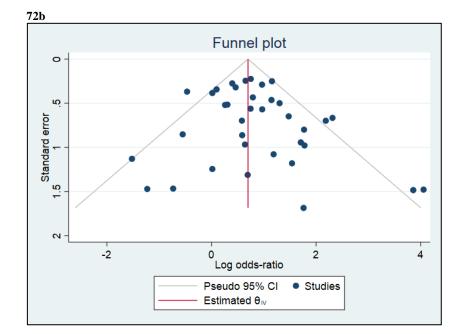
eFigure 68. Pooled Risk ratio of death in patients with unifocal involvement -Forest plot.


eFigure 69. Pooled Risk ratio of death in patients with pleural effusion- Forest plot

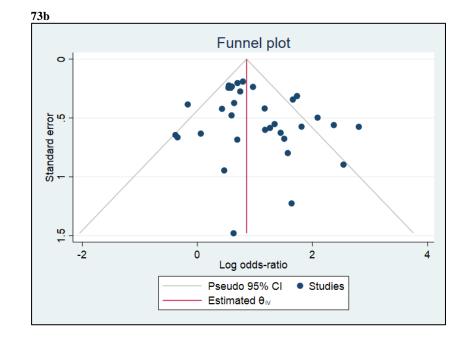
Association with Severe disease


eFigure 70. Pooled Odds ratio of severe disease in patients with male gender. a) Forest plot b) Funnel Plot

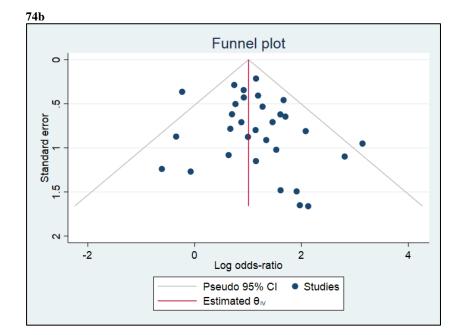
Chudu	Sauce	Male		emale		Odds Ratio	Weight
Study	Severe	Non-severe		Non-severe	1	with 95% CI	(%)
Fengjuan Shi	4	55	4	51		0.93 [0.22, 3.90]	
Xiaochen Li	153	126	116	153	*	1.60 [1.14, 2.24]	
Lian Chen	0	0	9	109			
Wei Zhao	8	48	6	39		1.08 [0.35, 3.39]	0.11
Guyi Wang	10	95	6	98		1.72 [0.60, 4.92]	
Xiuqi Wei	71	59	50	72		1.73 [1.05, 2.86]	
Yuan-Yuan Wei	20	75	10	62		1.65 [0.72, 3.79]	
Qingchun Yao	13 66	30 116	12 42	53 80	±	1.91 [0.78, 4.72] 1.08 [0.67, 1.75]	
	9	45	42	55			
Ruirui Wang	26	45	20	115	1	,,	
Sijia Tian Jia Ma	26	101	20	115		1.48 [0.78, 2.81] 0.70 [0.19, 2.58]	
Jia Ma Yun Feng	81	10	43	162			
-	13		43				
Marta Colaneri Jin-jin Zhang	33	15 38	25	12 44		2.60 [0.67, 10.06] 1.53 [0.78, 3.01]	1.83
Ming Ding	12	30	25	10		· 13.33 [1.43, 123.99]	
	10	31	14	18			
Kai-Cai Liu Gemin Zhang	32	21	14 31	18		0.41 [0.15, 1.13] 0.54 [0.22, 1.30]	
Juyi Li	32 97	21 92	31	97	- <u>L</u>	1.35 [0.89, 2.04]	
Fang Zheng	97	92	16	97		0.86 [0.39, 1.91]	
Liiun Sun	8	23	7	17		0.84 [0.26, 2.78]	
Xin Ying Zhao	14	35	16	26]	0.65 [0.27, 1.56]	
Shufa Zheng	49	9	17	32		10.25 [4.07, 25.78]	
Liang Shen	12	44	8	55		1.88 [0.70, 4.99]	1.01
Yu Shi	36	223	13	215		2.67 [1.38, 5.17]	
Yu-Huan Xu	7	22	6	15		0.80 [0.22, 2.84]	
Xiaojie Bi	13	51	9	40		1.13 [0.44, 2.92]	1.07
Yong Gao	9	17	6	11		0.97 [0.27, 3.50]	
Peijie Lyu	22	7	17	5		0.92 [0.25, 3.43]	
Fang Lei	656	2,068	530	2,517		1.51 [1.32, 1.71]	6.63
Kunhua Li	15	29	10	29		1.50 [0.58, 3.88]	1.06
Yafei Zhang	20	29	11	55		3.45 [1.46, 8.17]	1.25
Ying Zou	20	138	6	139		3.36 [1.31, 8.61]	1.08
Yang Yang !	22	7	14	7		1.57 [0.45, 5.45]	0.66
Qingzian Cai !	39	106	19	134		2.59 [1.42, 4.75]	2.16
Jing Yuan !	5	37	6	46		1.04 [0.29, 3.66]	0.64
Lu Huang #	15	52	11	48		1.26 [0.53, 3.01]	1.23
Guang Chen #	10	7	1	3		4.29 [0.37, 50.20]	0.18
Guangchang Pei #	115	67	74	77		1.79 [1.15, 2.77]	3.24
Yang-kai LI #	6	6	3	10		3.33 [0.60, 18.54]	0.36
H Hou #	126	74	95	94		1.68 [1.12, 2.52]	3.54
Chuan Qin #	155	80	131	86	+	1.27 [0.87, 1.87]	3.74
Jiaojiao Chu #	30	6	13	5		1.92 [0.50, 7.44]	0.56
Wei-jie Guan \$	100	537	73	386	#	0.98 [0.71, 1.37]	4.29
Hansheng Xie \$	18	26	10	25	-+ -	1.73 [0.67, 4.47]	1.06
Zhixian Yao \$	99	145	82	137	#	1.14 [0.78, 1.66]	3.82
Ling Hu %	91	75	81	76	+	1.14 [0.74, 1.76]	3.25
Huan Li %	47	28	25	32	<mark>-¦≡</mark>	2.15 [1.06, 4.33]	1.73
Qingqing Chen &	23	56	20	46		0.94 [0.46, 1.93]	1.69
Yufen Zheng &	16	58	13	54		1.15 [0.50, 2.60]	
Suxin Wan +	21	52	19	43		0.91 [0.44, 1.92]	1.60
J Zhang @	205	116	204	138	•	1.20 [0.87, 1.64]	
Rui Zhang @	13	30	17	60		1.53 [0.66, 3.56]	1.29
Rui Liu @	27	35	25	32	+	0.99 [0.48, 2.04]	
Qing Deng @	38	19	29	26	+=-	1.79 [0.84, 3.85]	
Luwen Wang @	33	34	24	25		1.01 [0.48, 2.11]	
Huan Han @	26	71	49	127		0.95 [0.54, 1.66]	2.42
Xiaohua Chen ^	24	13	3	8		4.92 [1.11, 21.82]	0.47
Fang Liu *	8	41	25	66		0.52 [0.21, 1.25]	1.19
Overall					•	1.38 [1.24, 1.53]	
Heterogeneity: $\tau^2 = 0$	0.04, I ² =	31.16%, H ² = 1	1.45				
Test of $\theta_i = \theta_j$: Q(58)							
Test of 0 = 0: z = 5.9	6, p = 0.0	00					
					1.00		
andom-effects REM	model						


eFigure 71. Pooled Odds ratio of severe disease in patients who was ever smoker. a) Forest plot b) Funnel Plot

	Ever	Smokers	Neve	r smokers		Odds Ra	itio	Weight
Study	Severe	Non-severe	Severe	Non-severe		with 95%	CI	(%)
Xiaochen Li	51	41	214	238		1.38 [0.88,	2.17]	11.98
Ruirui Wang	7	9	18	91	÷	3.93 [1.30,	11.93]	7.06
Yun Feng	17	27	104	306	-	1.85 [0.97,	3.54]	10.45
Jin-jin Zhang	6	3	52	79		3.04 [0.73,	12.69]	5.33
Yu Shi	6	34	43	391	-	1.60 [0.64,	4.04]	8.32
Xiaojie Bi	5	3	17	88		8.63 [1.88,	39.55]	4.92
Zheng Yi	2	6	28	37		0.44 [0.08,	2.35]	4.34
Ying Zou	2	12	24	265		1.84 [0.39,	8.71]	4.79
Yang-kai Ll #	5	2	4	14		8.75 [1.21,	63.43]	3.40
Chuan Qin #	3	4	283	162		0.43 [0.09,	1.94]	4.98
Wei-jie Guan \$	38	120	134	793		1.87 [1.25,	2.82]	12.28
Ling Hu %	34	38	138	113	-	0.73 [0.43,	1.24]	11.41
Qingqing Chen &	3	12	40	90	- -	0.56 [0.15,	2.10]	5.87
Suxin Wan +	1	8	39	87		0.28 [0.03,	2.31]	3.08
Rui Zhang @	6	0	24	90		48.02 [2.61,	882.27]	1.81
Overall					•	1.60 [1.05,	2.43]	
Heterogeneity: T ² =	0.33, I ² :	= 62.72%, H ^²	= 2.68					
Test of $\theta_i = \theta_j$: Q(14)	4) = 35.56	6, p = 0.00						
Test of $\theta = 0$: $z = 2$	19, p = 0	.03						
					1.00			

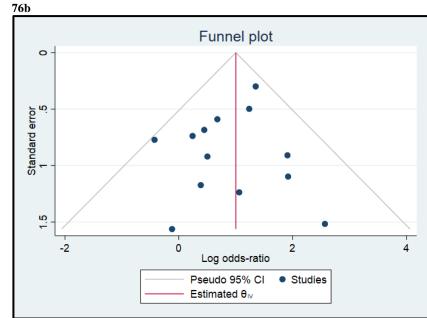

eFigure 72 Pooled Odds ratio of severe disease in patients with diabetes mellitus. a) Forest plot b) Funnel Plot

Study		es mellitus Non-severe		etes mellitus Non-severe		Odds R with 959		Weight (%)
Zhe Zhu	0	10	16	101		0.29 [0.02,		0.60
Xiaochen Li	52	31	217	248		1.92 [1.19,		6.42
Guyl Wang	0	11	16	182		0.48 [0.03,	8.53]	
Xluqi Wel	15	16	106	115		1.02 [0.48,	2.16]	
Yuan-Yuan Wel	7	4	23	133		10.12 [2.74,	37.35]	
Cingchun Yao	з	2	22	81		5.52 [0.87,	35.13]	
Yun Feng	17	32	107	320		1.59 [0.85,	2.98]	
Marta Colaneri	1	6	16	21		0.22 [0.02,	2.00]	
Jin jin Zhung	8	9	50	73		1.30 [0.47,		3.27
Juyi Li	76	51	97	138		2.12 [1.37,		6.72
Fang Zheng	2	5	28	126		1.80 [0.33,		1.55
Lijun Sun	2	3	13	37		1.90 [0.28,	12.65]	
Xin Ying Zhao	1	2	29	59		1.02 [0.09,	11.69]	
Shufa Zheng	10	1	64	21		3.28 [0.40,	27.17]	
Llang Shen	5	7	15	92		4.38 [1.23,	15.61]	
Yu Shi	7	22	42	416		3.15 [1.27,		3.76
Kunhus LI	7	0	18	58		47.43 [2.58,		
Zheng YI	з	1	27	42		4.67 [0.46,	47.21]	
Cingzian Cal !	8	10	50	230		3.68 [1.38,	9.79]	3.44
Jing Yuan !	2	3	9	80		5.93 [0.87,	40.31]	1.26
Lu Huang #	4	3	22	97		5.88 [1.23,	28.17]	
Guang Chen #	2	1	9	9	- <u>-</u>	2.00 [0.15,	26.19]	
Guangchang Pel#		20	132	124		2.63 [1.49,		5.80
Yang-kal LI #	1	0	8	16		5.82 [0.21,		0.47
H Hou #	23	16	198	152	- E	1.10 [0.56,		5.08
Chuan Qin #	53	22	233	144		1.49 [0.87,		5.99
Wel-Jie Guan S	28	53	145	873		3.18 [1.95,		6.34
Hansheng Xie Ş	2	6	26	45		0.58 [0.11,	3.07]	1.58
Ling Hu %	33	14	139	37		0.63 [0.30,		4.76
Cingoing Chen &	7	7	36	95		2.64 [0.86,	8.05]	
Suxin Wan +	9	3	31	92		8.90 [2.27,	34.99]	
Rul Zhang 😂		-	23	90				
Qing Deng 🚳	14	5	53	40		2.11 [0.70,		2.96
Luwen Wang 🚳	10	8	47	51		1.36 [0.49,		3.30
Xiaohua Chen ^	8	4	19	17		1.79 [0.46,		2.17
Fang Llu A	12	22	21	85		2.21 [0.94,		4.05
Overall	-	-				2.09 [1.66,	2.64]	
Heterogeneity: T	0.16, 1	40.35%, H	- 1.68					
Test of $\Theta_i = \Theta_j$: Q(35)								
Test of 0 = 0; z = 6.	23, p = 0.	00						
					1.00			


eFigure 73 Pooled Odds ratio of severe disease in patients with hypertension. a) Forest plot b) Funnel Plot

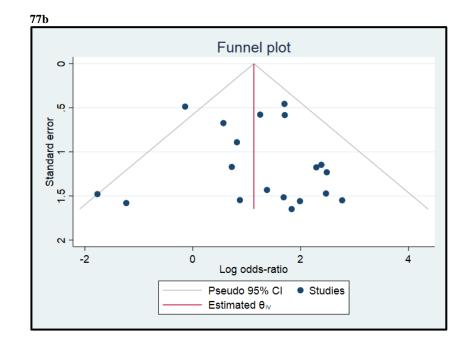
		nensive		ypertensive		Odds Ratio	Weight
Study	Severe	Non-severe	Severe	Non-severe		with 95% CI	(%)
Zhe Zhu	8	23	8	88		3.83 [1.30, 11.29]	2.61
Xlaochen Ll	104	62	165	217	-	2.21 [1.52, 3.21]	5.07
Guyl Wang	5	22	11	171		3.53 [1.12, 11.12]	2.45
Xluqi Wel	49	32	72	99		2.11 [1.23, 3.61]	4.46
Cingchun Yao	9	7	16	76		6.11 [1.98, 18.82]	2.50
Yun Feng	40	73	84	279	-	1.82 [1.15, 2.87]	4.77
Marta Colaneri	5	10	12	17		0.71 [0.19, 2.61]	2.09
Jin-Jin Zhang	22	20	36	62		1.89 [0.91, 3.94]	3.73
Fang Zheng	12	10	18	121		8.07 [3.04, 21.37]	2.92
Lijun Sun	6	2	9	38		- 12.67 [2.18, 73.44]	1.37
Shufa Zheng	31	4	43	18		3.24 [1.00, 10.53]	2.37
Llang Shen	13	10	7	89		16.53 [5.35, 51.05]	2.50
Yu Shi	26	73	23	365		5.65 [3.06, 10.45]	4.17
Yong Gao	6	7	9	21		2.00 [0.52, 7.65]	2.02
Kunhua Li	2	3	23	55		1.59 [0.25, 10.18]	1.27
Qingzian Cal !	22	25	36	215		5.26 [2.68, 10.30]	3.94
Jing Yuan !	з	6	8	77		4.81 [1.01, 23.03]	1.63
Lu Huang #	5	5	21	95		4.52 [1.20, 17.05]	2.05
Guang Chen #	4	1	7	9		5.14 [0.46, 56.90]	0.83
Guangchang Pel #	70	37	118	107	-	1.72 [1.07, 2.76]	4.70
Yang-kal Li #	1	1	8	15		1.88 [0.10, 34.13]	0.59
H Hou #	84	44	137	124	-	1.73 [1.11, 2.68]	4.84
Chuan Qin #	105	30	181	136	-	2.63 [1.66, 4.18]	4.75
Wel-jie Guan Ş	41	124	132	802	-	2.01 [1.35, 2.99]	4.98
Hansheng Xie Ş	4	10	24	41		0.68 [0.19, 2.42]	2.18
Ling Hu %	66	39	106	112	-	1.79 [1.11, 2.88]	4.70
Qingqing Chen &	9	13	34	89		1.81 [0.71, 4.63]	3.03
Suxin Wan +	4	9	36	86	-	1.06 [0.31, 3.67]	2.23
Rul Zhang 🚳	13	6	17	84		10.71 [3.57, 32.12]	2.57
Qing Deng 🚳	24	12	43	33		1.53 [0.67, 3.51]	3.39
Luwen Wang 🚳	20	23	37	36		0.85 [0.40, 1.80]	3.64
Xisohus Chen A	17	6	10	15		4.25 [1.25, 14.50]	2.26
Fang Liu ^	22	41	11	66		3.22 [1.42, 7.32]	3.41
Overall					L	2.63 [2.08, 3.33]	
Heterogeneity: T ² =	0.25.1° - 4	54.16%, H ² =	2.79		Ţ		
Test of 0, = 0; Q(32)							
Test of 0 = 0; z = 8.0							

	Cardiovasc	ualar disease	No Cardiovas	cualar disease		Odds Ra	tio	Weight
Btudy	Severe	Non-severe	Severe	Non-severe		with 95%	CI	(96)
Zhe Zhu	2	4	14	107		3.82 [0.64,	22.81]	1.74
Xlaochen Ll	28	6	241	273		5.29 [2.15,	12.98]	5.29
Guyl Wang	1	4	15	189		3.15 [0.33,	29.99]	1.14
Xluqi Wel	15	5	105	126		3.57 [1.25,	10.14]	4.26
Yuan-Yuan Wel	7	17	23	120		2.15 [0.80,	5.76]	4.63
Yun Feng	17	21	107	331		2.50 [1.27,	4.92]	7.57
Marta Colaneri	6	5	11	22		2.40 [0.60,	9.64]	2.70
Jin-jin Zhang	4	3	54	79		1.95 [0.42,	9.07]	2.27
Juyi Li	39	23	134	166		2.10 [1.20,	3.69]	9.12
Fang Zheng	2	2	28	129		4.61 [0.62,	34,11]	1.41
Lijun Sun	1	0	14	40		- 8.38 [0.32,	217.48]	0.56
Shufa Zheng	7	0	67	22		5.00 [0.27,	91.07]	0.70
Llang Shen	4	3	16	96		8.00 [1.64,	39.14]	2.15
Yu Shi	4	7	45	431		5.47 [1.54,	19.42]	3,15
Yong Geo	1	2	14	26		0.93 [0.08,	11,16]	0.94
Pelle Lyu	8	0	31	12		6.75 [0.36,	125.89]	0.69
Kunhua Li	1	0	24	58		7.16 [0.28,	182.02]	0.57
Yang Yang !	17	2	9	2		1.89 [0.23,	15.74]	1.27
Jing Yuan !	4	2	7	81		- 23.14 [3.59,	149.37]	1.61
Lu Huang #	3	4	23	96		3.13 [0.65,	14.97]	2.20
Yang-kal LI #	1	3	8	13		0.54 [0.05,	6.14]	0.99
H Hou #	17	16	204	152	-	0.79 [0.39,	1.62]	7.10
Chuan Qin #	24	3	262	163		4.98 [1.48,	16.79]	3.36
Wel-Je Guan Ş	10	17	163	909		3.28 [1.48,	7.29]	6.19
Hansheng Xie Ş	2	5	26	46		0.71 [0.13,	3.91]	1.88
Buxin Wan +	6	1	34	94		16.59 [1.93,	142.84]	1.24
J Zhang 🚳	131	33	278	221		3.16 [2.07,	4.81]	11.51
Rul Zhang 🙆	5	4	25	86		4.30 [1.07,	17.23]	2.70
Qing Deng 🚳	11	4	56	41		2.01 [0.60,	6.77]	3.37
Xlaohua Chen *	6	2	21	19		2.71 [0.49,	15.10]	1.87
Fong Liu A	13	22	20	85		2.51 [1.08,	5.82]	5.79
Overall					↓	2.83 [2.21,	3.63]	
Heterogeneity: 7	- 0.09, 1 ² - 22	1.33%, H ² = 1.25						
Test of 8. = 8.: Q(3			-					
Test of 0 = 0; z = 8								
					1.00	_		

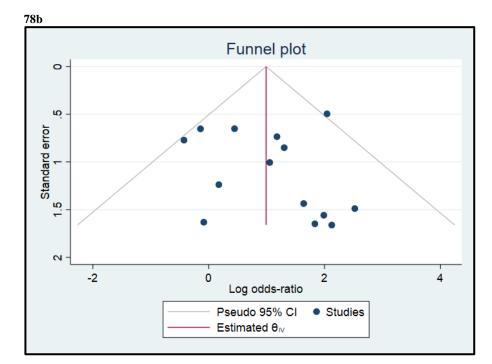


eFigure 75 Pooled Odds ratio of severe disease in patients with Congestive Heart Failure- Forest plot

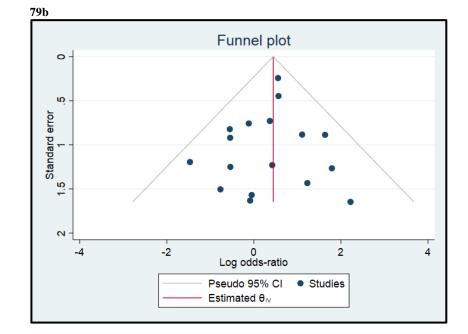
Study	Chronic I Severe	leart Failure Non-severe	No Chronic Severe	Heart Failure Non-severe		Odds Ratio with 95% Cl	Weigh (%)
Juyi Li	8	2	165	187		4.53 [0.95, 21.65]	66.07
Peijie Lyu	5	0	34	12 -	-	- 3.99 [0.21, 77.41]	18.36
Qingqing Chen &	1	0	42	102			15.57
Overall Heterogeneity: τ ^² =	= 0.00, I ² =	0.00%, H ² = 1	.00			4.76 [1.34, 16.97]	
Test of $\theta_i = \theta_i$: Q(2)) = 0.08, p	= 0.96					
Test of $\theta = 0$: $z = 2$.41, p = 0.	02		_			
					1.00		
andom-effects RE	MI model						


eFigure 76 Pooled Odds ratio of severe disease in patients with Cerebrovascular Disease a) Forest plot b) Funnel Plot

		cular diseases N				Odds Ra		Weigh
Study	Severe	Non-severe	Severe	Non-severe		with 95%	6 CI	(%)
Guyi Wang	2	4	14	189		6.75 [1.14,	40.11]	4.77
Yuan-Yuan Wei	0	2	30	135 —		0.89 [0.04,	18.98]	1.67
Lu Lu	3	0	105	196		— 13.04 [0.67,	254.80]	1.77
Yun Feng	9	8	113	346		3.44 [1.30,	9.14]	14.31
Jin-jin Zhang	2	1	56	81		2.89 [0.26,	32.68]	2.63
Juyi Li	50	18	123	171	-	3.86 [2.15,	6.94]	31.62
Fang Zheng	1	3	29	128		1.47 [0.15,	14.66]	2.92
H Hou #	5	3	216	165		1.27 [0.30,	5.40]	7.07
Chuan Qin #	8	3	278	163		1.56 [0.41,	5.98]	8.13
Wei-jie Guan \$	4	11	169	915		1.97 [0.62,	6.26]	10.63
Ling Hu %	3	4	169	147		0.65 [0.14,	2.96]	6.49
Luwen Wang @	6	1	51	58		6.82 [0.79,	58.59]	3.33
Xiaohua Chen ^	4	2	23	19		1.65 [0.27,	10.02]	4.66
Overall					•	2.62 [1.76,	3.90]	
Heterogeneity: T ² =	= 0.04, I ² = 7.	51%, H ² = 1.08						
Test of $\theta_i = \theta_i$: Q(1	2) = 10.89, p	= 0.54						
Test of $\theta = 0$: $z = 4$.73, p = 0.00							
				_	1.00	_		


eFigure 77 Pooled Odds ratio of severe disease in patients with Chronic Obstructive pulmonary disease a) Forest plot b) Funnel Plot

	(COPD	No	COPD		Odds Rati	in	Weigh
Study		Non-severe				with 95% ((%)
Xiaochen Li	13	4	256	275		3.49 [1.12,	10.85]	10.66
Yun Feng	14	8	110	344		5.47 [2.24,	13.39]	13.49
Marta Colaneri	0	2	17	25		0.29 [0.01,	6.45]	2.32
Jin-jin Zhang	2	0	56	82		7.30 [0.34, 1	54.96]	2.38
Juyi Li	8	10	165	179		0.87 [0.33,	2.25]	12.73
Fang Zheng	2	4	28	127		2.27 [0.40,	13.00]	6.05
Xin Ying Zhao	1	0	29	61		6.25 [0.25, 1	58.19]	2.15
Yong Gao	3	0	12	28		-15.96 [0.77, 3	32.61]	2.40
Peijie Lyu	3	0	36	12		2.40 [0.12,	49.72]	2.41
Kunhua Li	4	1	21	57		10.86 [1.15, 1	02.77]	4.05
Lu Huang #	1	1	25	99		3.96 [0.24,	65.53]	2.77
Yang-kai LI #	4	1	5	15		12.00 [1.07, 1	34.11]	3.59
H Hou #	3	0	218	168		5.40 [0.28, 1	05.22]	2.50
Chuan Qin #	9	3	277	163		1.77 [0.47,	6.61]	8.89
Wei-jie Guan \$	6	6	167	920		5.51 [1.76,	17.29]	10.56
Ling Hu %	6	0	166	151		11.83 [0.66, 2	11.75]	2.63
Qingqing Chen &	0	6	43	96		0.17 [0.01,	3.10]	2.61
Rui Zhang @	3	1	27	89		9.89 [0.99,	99.01]	3.89
Qing Deng @	3	1	64	44		2.06 [0.21,	20.48]	3.91
Overall					•	3.23 [1.97,	5.31]	
Heterogeneity: T ²	= 0.27, I ²	= 24.94%, H	² = 1.33					
Test of $\theta_i = \theta_i$: Q(1	18) = 22.4	43, p = 0.21						
Test of $\theta = 0$: $z = 4$	4.63, p =	0.00				_		
					1.00			
Random-effects RE	EML mod	el						


eFigure 78 Pooled Odds ratio of severe disease in patients with chronic kidney disease a) Forest plot b) Funnel Plot

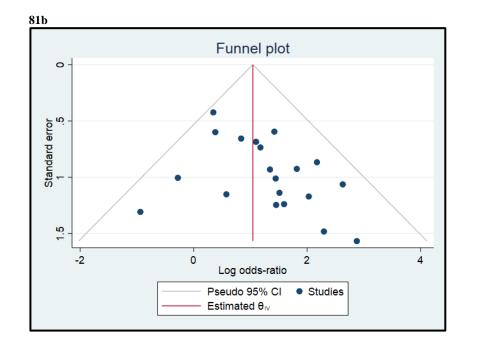
	Chronic r	enal disease	disease No chronic renal disease			Odds Ra	Odds Ratio	
Study	Severe	Non-severe	Severe	Non-severe		with 95%	CI	(%)
Xiaochen Li	6	4	263	274		1.56 [0.44,	5.60]	12.11
Yun Feng	2	2	122	350		2.87 [0.40,	20.59]	6.74
Jin-jin Zhang	2	0	56	82		- 7.30 [0.34,	154.96]	3.25
Juyi Li	30	5	143	184		7.72 [2.92,	20.40]	15.98
Lijun Sun	1	0	14	40		- 8.38 [0.32,	217.48]	2.90
Xin Ying Zhao	1	0	29	61		- 6.25 [0.25,	158.19]	2.94
Liang Shen	1	1	19	98		5.16 [0.31,	86.10]	3.75
Yu Shi	2	5	47	433		3.69 [0.70,	19.52]	8.61
Yang Yang !	2	0	24	4 -		0.92 [0.04,	22.49]	3.00
Chuan Qin #	6	4	280	162		0.87 [0.24,	3.12]	12.07
Wei-jie Guan \$	3	5	170	921		3.25 [0.77,	13.73]	10.46
Ling Hu %	3	4	169	147		0.65 [0.14,	2.96]	9.82
Qingqing Chen &	1	2	42	100		1.19 [0.11,	13.49]	4.83
Luwen Wang @	5	0	52	59		— 12.47 [0.67,	230.86]	3.52
Overall					•	2.62 [1.46,	4.71]	
Heterogeneity: T ² =	0.31, I ² = 27	7.28%, H ² = 1.3	8					
Test of $\theta_i = \theta_j$: Q(13)) = 15.07, p	= 0.30						
Test of $\theta = 0$: $z = 3.2$	23, p = 0.00							
				-	1.00	_		
Random-effects REM	IL model							

eFigure 79 Pooled Odds ratio of severe disease in patients with liver dysfunction a) Forest plot b) Funnel Plot

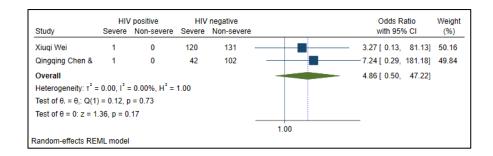
	Chronic Liver Disease		No Chronic Liver Disease			Odds R	atio	Weight
Study	Severe Non-sever		Severe Non-severe			with 95% CI		(%)
Zhe Zhu	2	5	14	106		3.03 [0.54,	17.12]	3.60
Qingchun Yao	1	1	24	82		3.42 [0.21,	56.69]	1.37
Jin-jin Zhang	4	4	54	78		1.44 [0.35,	6.03]	5.30
Fang Zheng	0	4	30	127 -		0.46 [0.02,	8.86]	1.2
Lijun Sun	2	1	13	39		6.00 [0.50,	71.73]	1.7
Shufa Zheng	2	1	72	21		0.58 [0.05,	6.75]	1.8
Liang Shen	0	2	20	97		0.95 [0.04,	20.56]	1.1
Yu Shi	2	20	47	418		0.89 [0.20,	3.92]	4.9
Fang Lei	25	56	1,161	4,529		1.74 [1.08,	2.80]	47.7
Yang Yang !	2	0	24	4		0.92 [0.04,	22.49]	1.0
Qingzian Cai !	8	20	50	220		1.76 [0.73,	4.22]	14.1
H Hou #	2	1	219	167		1.53 [0.14,	16.96]	1.8
Chuan Qin #	3	3	283	163		0.58 [0.11,	2.89]	4.1
Ling Hu %	2	3	170	148		0.58 [0.10,	3.52]	3.3
Qingqing Chen &	4	2	39	100		5.13 [0.90,	29.14]	3.5
Rui Zhang @	1	0	29	90			232.07]	1.0
Kiaohua Chen ^	1	3	26	18 -		0.23 [0.02,	2.40]	1.9
Overall					•	1.56 [1.12,	2.17]	
Heterogeneity: T ² =	0.00, I ² = 0.	00%, H ^z = 1.00						
Test of $\theta_i = \theta_j$: Q(16) = 12.46, p	= 0.71						
Test of $\theta = 0$: $z = 2$.	65, p = 0.01							
				-	1.00			

eFigure 80 Pooled Odds ratio of severe disease in patients with Hepatitis B infection - Forest plot

Study	Hepatiti Severe	s B positive Non-severe	Hepatitis Severe	B negative Non-severe		Odds Ratio with 95% Cl	Weight (%)
Xiaochen Li	2	3	267	276		0.69 [0.11, 4.16]	40.65
Qingzian Cai !	1	4	57	236			26.87
Wei-jie Guan \$	1	22	172	904		0.24 [0.03, 1.78]	32.48
Overall		0.000/ 112				0.54 [0.17, 1.71]	
Heterogeneity: τ [*] Test of θ ₁ = θ ₂ : Q(1	1.00				
Test of $\theta = 0$: z =	-1.04, p =	0.30					
					1.00		
andom-effects R	FMI mode	1					


eFigure 81 Pooled Odds ratio of severe disease in patients with malignancy a) Forest plot b) Funnel Plot

Weight


(%)

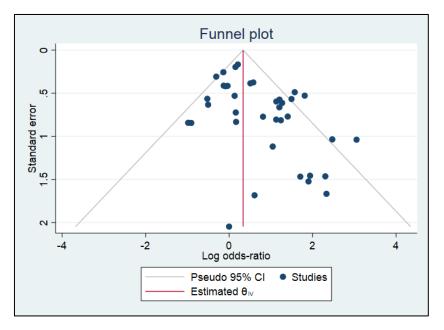
3.53

81a Malignancy No Malignancy Odds Ratio Study Severe Non-severe Severe Non-severe with 95% CI 1.78 [0.19, 17.04] 2.74 Zhe Zhu 1 15 107 4 Xiaochen Li 14 10 243 246 1.42 [0.62, 3.25] 17.40 Qingchun Yao 2 23 83 17.77 [0.82, 382.97] 1.50 0 Yun Feng 7 5 117 347 4.15 [1.29, 13.33] 9.59 Marta Colaneri 4 2 13 25 3.85 [0.62, 23.85] 4.14 3.01 [0.78, 11.52] 7.40 165 186 Juyi Li 8 3 4.29 [0.37, 49.27] 2.35 Xin Ying Zhao 2 28 60 1 Yu Shi 2 3 47 435 6.17 [1.01, 37.87] 4.19 3 23 0.39 [0.03, 5.08] 2.14 Yang Yang ! 1 3 Qingzian Cai ! 2 56 238 4.25 [0.59, 30.83] 2 H Hou # 166 0.76 [0.11, 5.44] 3.57 2 2 219 Chuan Qin # 10 276 162 1.47 [0.45, 4.75] 9.46 4 Wei-jie Guan \$ 3 5 170 921 3.25 [0.77, 13.73] 6.49 Ling Hu % 5 167 151 9.95 [0.55, 181.43] 1.68 0 Qingqing Chen & 2 41 101 4.93 [0.43, 55.84] 2.38 1 Suxin Wan + 3 37 94 7.62 [0.77, 75.63] 2.66 1 J Zhang @ 11 3 398 251 2.31 [0.64, 8.37] 8.02 Rui Zhang @ 5 25 88 8.80 [1.61, 48.12] 4.75 2 -Luwen Wang @ 11 1 46 58 13.87 [1.73, 111.39] 3.21 _ 4.55 [0.49, 42.31] 2.81 Xiaohua Chen ^ 5 1 22 20 Overall 2.90 [1.99, 4.24] Heterogeneity: $\tau^2 = 0.04$, $I^2 = 4.67\%$, $H^2 = 1.05$ Test of $\theta_1 = \theta_1$: Q(19) = 16.80, p = 0.60 Test of θ = 0: z = 5.51, p = 0.00 1.00 Random-effects REML model

eFigure 82 Pooled Odds ratio of severe disease in patients with HIV- Forest plot

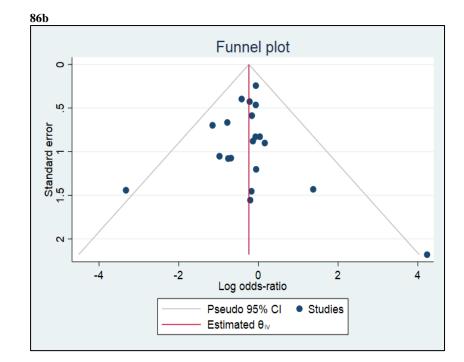
eFigure 83 Pooled Odds ratio of severe disease in patients with immunodeficiency- Forest plot

Study	Immun Severe	odeficiency Non-severe	No Immu Severe	nodeficiency Non-severe		Odds Ratio with 95% Cl	Weight
Sludy	Severe	Non-severe	Severe	Non-severe		WIII 95% CI	(%)
Yuan-Yuan Wei	0	2	30	135		0.89 [0.04, 18.98]	18.06
Yun Feng	5	2	119	350		- 7.35 [1.41, 38.40]	47.28
Shufa Zheng	1	0	73	22		0.92 [0.04, 23.34]	16.39
Wei-jie Guan \$	0	2	173	924		1.07 [0.05, 22.29]	18.27
Overall						2.51 [0.62, 10.10]	
Heterogeneity: T ²	= 0.36, I ²	= 16.45%, H ² =	1.20				
Test of $\theta_i = \theta_j$: Q(3) = 2.69,	p = 0.44					
Test of $\theta = 0$: z =	1.29, p = 0	.20					
					1.00	_	
andom-effects R	EMI mode						


eFigure 84 Pooled Odds ratio of severe disease in patients with other endocrine diseases -Forest plot

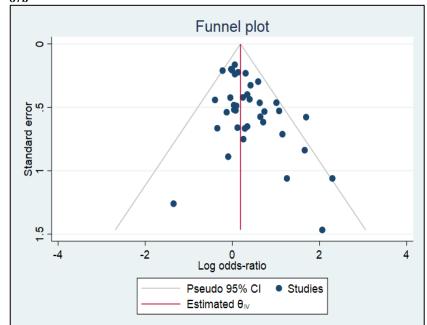
	Other Endo	ocrine disease	No Endo	crine disease		Odds Ratio	Weight
Study	Severe	Non-severe	Severe	Non-severe		with 95% CI	(%)
Xiuqi Wei	3	3	118	128 —		1.08 [0.21, 5.48]	9.54
Jin-jin Zhang	4	1	54	81			5.09
Ling Hu %	11	4	161	147		2.51 [0.78, 8.06]	18.41
J Zhang @	53	14	356	240		2.55 [1.38, 4.70]	66.97
Overall					+	2.45 [1.49, 4.04]	
Heterogeneity	: т ⁻ = 0.00, 1 ⁻	= 0.00%, H ² =	1.00				
Test of $\theta_i = \theta_i$:	Q(3) = 1.62,	p = 0.66					
Test of $\theta = 0$: 2	z = 3.51, p =	0.00		_			
					1.00		
andom-effects	s REML mode	el					

85a


		_		-			
Study	Severe	Non-severe		Non-severe		Odds Ratio with 95% CI	Weight (%)
Zhe Zhu	16	92	0	19		6.951 0.40, 120.94	0.52
Xisochen Li	225	245	12	12	-	0.92 (0.40, 2.09	4.10
Lian Chen	7	77	z	25		1.15 (0.22, 6.05	
Guyi Wang	14	122	z	71		4.07 [0.90, 18.44	2.21
Yuan-Yuan Wei	25	115	z	19		2.25 0.50, 10.25	2.20
Cingchun Yeo	19	61		22		1.14 [0.40, 3.23	3.37
Sijia Tian	37	178		35	-	0.55 (0.39, 1.97)	4.14
Jie Me	17	11	3		—	3.09 [0.64, 15.00	2.05
Yun Feng	112	277	4	60		6.12 2.17, 17.23	3.35
Marta Colaneri	17	23	0	4		6.70 0.34, 132.52	0.75
Jin-jin Zhang	51	59	z	8		3.46 [0.70, 17.03	2.05
Fang Zhang	29	93	1	35		11.85 (1.56, 90.12	1.44
Lijun Sun	12	22	1	7		2.54 [0.32, 25.47	1.25
Shufe Zheng	65	17		5		3.33 0.91, 12.24	2.65
Liang Shen	16	55	4	12		0.60 (0.17, 2.09	2.50
Yu-Hum Xu	10	23	3	4		0.40 (0.05, 2.12	1.95
Peție Lyu	39	11	0	1		- 10.30 [0.39, 270.39]	0.65
Konhos Li	22	50	3	8		1.17 [0.25, 4.55	2.39
Cingsian Call	53	165	5	75		4.82 [1.85, 12.54	3.63
Jing Yuan I	11	55	0	25		10.03 [0.57, 176.71]	0.81
Lu Huang #	25	91	0	9		5.50 (0.31, 97.65	0.51
Guang Chen #	10	10	•	0		1.00 [0.02, 55.27	0.44
Guangchang Pel #	175	126	14	15	-	1.79 (0.55, 3.72	4.41
Yang-kai Li #		15	0	1		1.84 [0.07, 49.90	0.63
H Hou #	174	126	47	32		0.87 (0.53, 1.44	5.29
Chuan Gin #	271	152	15	14	-	1.65 [0.75, 2.54	4.34
Jisojiso Chu #	27		16	2		0.35 [0.07, 1.95	1.95
Wei-jie Guan \$	52	291	91	525		1.23 (0.89, 1.71)	5.65
Hanaheng Xie \$	24	32	4	19		3.56 [1.07, 11.54]	
Ling Hu %	141	120	31	21	-	0.73 [0.40, 1.34	4.91
Cingging Chen &	39	70	4	32	+	4.46 [1.47, 13.53	3.16
Yulen Zheng &	25	73	4	39		3.34 [1.05, 10.25	
Sucin Wan 4	34	55	6	8		0.59 [0.20, 1.79	
J Zhang 🖸	329	195	80	55		1.16 [0.79, 1.71]	
Rui Zhang 🖸	29	52	1	35		21.19 [2.76, 162.47]	
Cing Deng (2)	62	35	5			3.10 [0.95, 9.97]	
Fang Liu *	21	69	12	35		0.95 [0.43, 2.17]	4.13
Overall					•	1.75 [1.32, 2.31]	1
Heterogeneity: 1 = 0	34,1 = 5	5.94%, H [°] = 2.3	17				
Test of $\theta_i = \theta_j$: C(36)	- 70.87, p	- 0.00					
Test of 9 = 0; z = 3.95	5, p = 0.00						
					1.00		
Random-effects REML	model						

	So	rethroat	No S	Sorethroat		Odds R	atio	Weight
Study	Severe	Non-severe	Severe	Non-severe		with 959	% CI	(%)
Zhe Zhu	1	13	15	98		0.50 [0.06,	4.13]	1.68
Xiaochen Li	11	17	258	262	-	0.66 [0.30,	1.43]	12.35
Guyi Wang	1	29	15	164		0.38 [0.05,	2.97]	1.76
Yuan-Yuan Wei	4	21	26	116	-	0.85 [0.27,	2.69]	5.64
Jia Ma	1	1	19	16		0.84 [0.05,	14.57]	0.92
Lijun Sun	2	6	13	34		0.87 [0.16,	4.88]	2.51
Liang Shen	1	10	19	89		0.47 [0.06,	3.88]	1.67
Yu-Huan Xu	1	3	12	34		0.94 [0.09,	9.97]	1.34
Xiaojie Bi	2	8	20	83	_ + _	1.04 [0.20,	5.27]	2.83
Kunhua Li	2	4	23	54		1.17 [0.20,	6.87]	2.39
Qingzian Cai !	0	2	58	238		0.82 [0.04,	17.21]	0.80
Jing Yuan !	2	16	9	67		0.93 [0.18,	4.73]	2.82
Lu Huang #	1	1	25	99		3.96 [0.24,	65.53]	0.95
H Hou #	3	7	218	161		0.32 [0.08,	1.24]	3.99
Chuan Qin #	14	10	272	156	+	0.80 [0.35,	1.85]	10.71
Jiaojiao Chu #	1	0	0	11			4951.16]	0.41
Wei-jie Guan \$	23	130	150	796		0.94 [0.58,	1.51]	32.89
Zhixian Yao \$	3	10	178	272		0.46 [0.12,	1.69]	4.39
Qingqing Chen &	8	20	35	82	- + -	0.94 [0.38,	2.33]	9.01
Suxin Wan +	0	24	40	71		0.04 [0.00,	0.61]	0.93
Overall					•	0.79 [0.60,	1.04]	
Heterogeneity: τ ² =	= 0.00, 1 [°] =	0.00%, H ² = 1	.00					
Test of $\theta_i = \theta_j$: Q(1)	9) = 14.60	, p = 0.75						
Test of $\theta = 0$: $z = -1$	1.71, p = 0	.09						
					1.00			

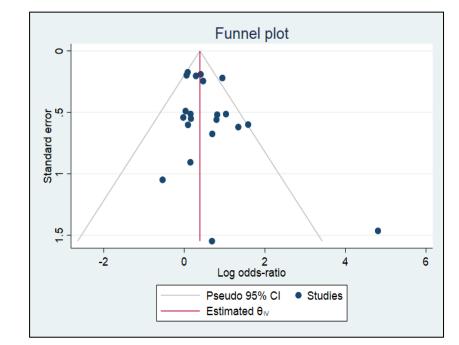
eFigure 86 Pooled Odds ratio of severe disease in patients with sore throat a) Forest plot b) Funnel Plot



eFigure 87 Pooled Odds ratio of severe disease in patients with cough a) Forest plot b) Funnel Plot

87a

		Dough	No	Cough		Odds Ratio	Weight
Study	Severe	Non-severe	Severe	Non-severe		with \$5% CI	(%)
Zhe Zhu	15	90	1	21		3.50 (0.44, 27.99)	0.35
Geochen Li	203	212	66	67	#	0.97 (0.65, 1.44)	5.45
Jan Chen		73	•	30		-7.85 [0.44, 139.75]	0.19
Suyi Wang		105	7	55		1.05 (0.39, 2.01)	1.42
Nan-Yuan Wei	26	106	4	21		1.90 [0.62, 5.86]	1.19
Dingchun Yao	12	65	•	15		0.85 (0.31, 2.52)	1.35
Sijis Tisn	25	25	21	121		1.52 [0.60, 2.67]	3.52
le Me	12			5		1.23 [0.36, 4.93]	0.59
Varta Colaneri	5	10	12	17		0.71 (0.19, 2.61)	0.59
in-jin Zhang	45	45	5	22		2.75 [1.11, 6.82]	1.50
Call-Call Liu	20	40	4			1.12 [0.31, 4.10]	0.91
ang Zhang	21	80		51		1.49 [0.63, 3.50]	2.02
Jun Sun		17	•	23		2.03 [0.61, 6.79]	1.04
Shufe Zheng	42	12	32	10		1.09 (0.42, 2.85)	1.63
Jang Shen	13	63	7	36		1.05 [0.39, 2.90]	1.45
fu-Huan Xu	•	14	7	23		1.41 [0.39, 5.05]	0.93
Cacjie 21	13	53		38		1.04 [0.40, 2.67]	1.67
Telifie Lynn	20	2	12	10		5.26 [1.02, 27.21]	0.57
Cunhum Li	24	41	1	17		9.95 [1.24, 79.55]	0.35
Dingsten Cel 1	27	78	21	162	-	1.61 [1.01, 2.24]	
ing Yuan I	•	38	3	45		3.16 [0.78, 12.75]	0.75
Lu Huang #	10	25	16	75		1.85 [0.75, 4.65]	1.50
Sump Chen #	7		3	1		0.26 (0.02, 2.06)	
Suangchang Pel #	121	95	55	46	-	1.05 [0.65, 1.65]	
fang-kai Li 🖷	•	44	3	5		0.91 (0.16, 5.20)	
H Hou #	129	107	92	61	-	0.80 [0.53, 1.21]	
Chuan Cin #	26	56	190	110	#	0.99 [0.66, 1.49]	
lisojiso Chu 🖷	14	3	29	5		1.29 [0.30, 5.61]	
Nel-jie Guan \$	•	47	167	579		0.67 [0.25, 1.60]	
tensheng Xie \$	20	26		15		1.04 [0.35, 2.55]	
Childian Yao Ş	145	211	36	71	<u>_</u>	1.36 [0.86, 2.13]	
ing Hu Vi	90	74	52	**	#	1.14 [0.74, 1.77]	
Dingging Chen &	38	80		22		2.09 [0.74, 5.94]	
fulen Zheng &	17	59	12	53		1.27 [0.56, 2.91]	
Sudin Wan 4	35	67	-	25		2.93 (1.04, 8.24)	
i Zhang 🔁	255	155	154	99		1.06 [0.77, 1.46]	
Rui Zhang 🔁	26	49	4	41		5.44 [1.75, 16.86]	
Ding Deng 🕰	47	32	20	12		0.95 [0.42, 2.19]	
Fing Liu *	17	45	16	61		1.41 [0.64, 3.05]	2.40
Overall		_			*	1.22 [1.05, 1.25]	1
feterogeneity: 1 = 0	uni, 1° - 3	1.10%, H = 1.	.05				
feat of 9, = 9 _{,2} C(35)							
Rest of 9 = 0; z = 3.1	5, p = 0.0	0				_	
					1.00		



eFigure 88 Pooled Odds ratio of severe disease in patients with expectoration a) Forest plot b) Funnel Plot

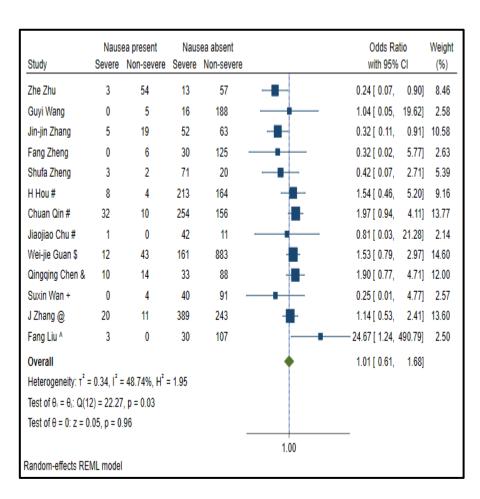
88a

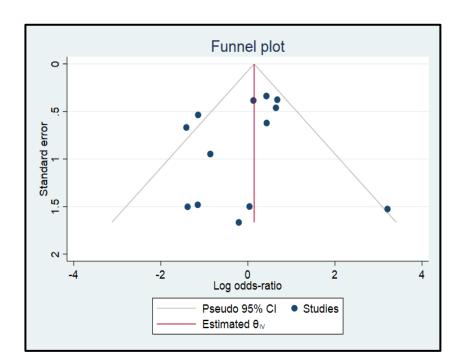
Study		ectoration Non-severe		pectoration Non-severe		Odds R with 95%		Weight (%)
Zhe Zhu	10	65	6	46		1.18 [0.40,	3.47]	2.96
Guyi Wang	4	45	12	148		1.10 [0.34,	3.57]	2.55
Qingchun Yao	8	26	17	57		1.03 [0.40,	2.69]	3.60
Yun Feng	61	100	56	236		2.57 [1.67,	3.96]	10.12
Kai-Cai Liu	16	23	8	26		2.26 [0.82,	6.25]	3.27
Lijun Sun	5	8	10	32		2.00 [0.53,	7.52]	2.08
Shufa Zheng	42	7	32	15		2.81 [1.03,	7.71]	3.32
Liang Shen	6	16	14	83		2.22 [0.74,	6.65]	2.89
Yu-Huan Xu	2	5	11	32		1.16 [0.20,	6.88]	1.22
Xiaojie Bi	7	26	15	65		1.17 [0.43,	3.19]	3.34
Kunhua Li	9	6	16	52		4.88 [1.51,	15.79]	2.57
Guang Chen #	2	3	8	7		0.58 [0.07,	4.56]	0.92
H Hou #	62	33	159	135	-	1.60 [0.99,	2.58]	9.12
Chuan Qin #	121	68	165	98		1.06 [0.72,	1.56]	11.09
Jiaojiao Chu #	3	0	40	11		1.99 [0.10,	41.33]	0.44
Wei-jie Guan \$	61	309	112	617		1.09 [0.77,	1.53]	12.24
Hansheng Xie \$	7	13	21	38		0.97 [0.34,	2.82]	3.05
Zhixian Yao \$	64	82	117	200		1.33 [0.90,	1.99]	10.85
Suxin Wan +	7	5	33	90		3.82 [1.13,	12.87]	2.42
J Zhang @	114	52	295	202		1.50 [1.03,	2.18]	11.44
Rui Zhang @	12	0	18	90		122.30 [6.93,	2158.25]	0.49
Overall					+	1.55 [1.27,	1.90]	
Heterogeneity: 7 ²	= 0.06, 1 [°]	= 32.09%, H ⁴	= 1.47					
Test of $\theta_i = \theta_j$: Q(20) = 33.0	87, p = 0.03						
Test of $\theta = 0$: z =	4.25, p =	0.00						
					1.00.00			
Random-effects R	EML mod	el						

eFigure 89 Pooled Odds ratio of severe disease in patients with vomiting- Forest plot

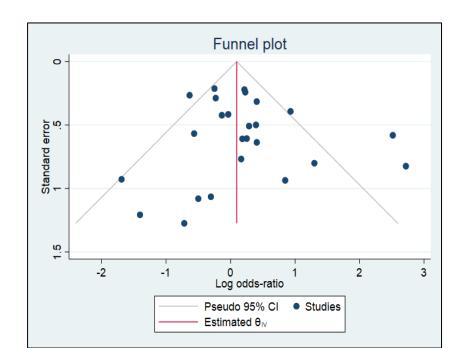
	V	omiting	No	Vomiting		Odds Ra	tio	Weight
Study	Severe	Non-severe	Severe	Non-severe		with 95%	CI	(%)
Xiaochen Li	20	25	249	254	-	0.82 [0.44,	1.51]	54.69
Guyi Wang	1	4	15	189		- 3.15 [0.33, 1	29.99]	4.05
Jin-jin Zhang	2	5	55	77		0.56 [0.10,	2.99]	7.33
Shufa Zheng	2	0	72	22 -		- 1.55 [0.07,	33.53]	2.18
Liang Shen	1	3	19	96		1.68 [0.17,	17.07]	3.84
Qingqing Chen &	3	3	40	99		2.48 [0.48,	12.78]	7.63
J Zhang @	11	6	398	248	-	1.14 [0.42,	3.13]	20.28
Overall					•	1.02 [0.65,	1.60]	
Heterogeneity: T ² =	= 0.00, I ² =	0.00%, H ² = ⁴	1.00					
Test of $\theta_i = \theta_j$: Q(6)) = 3.38, p	= 0.76						
Test of $\theta = 0$: $z = 0$.08, p = 0.	94		_		_		
					1.00	_		
Random-effects RE	ML model							

eFigure 90 Pooled Odds ratio of severe disease in patients with diarrhea a) Forest plot b) Funnel Plot


90a


Study Zhe Zhu Xiaochen Li Lian Chen Guyi Wang	8evere 5 85 2 1	es present Non-severe 38 94		Non-severe		Odds Ra with 95%		Weight (%)
Xlaochen Li Lian Chen	85 2							
Lian Chen	2	94		73		0.87 [0.28.	2.701	3.61
	_		184	185	-	0.91 [0.64.	1.301	8.46
Good Misson		6	7	97		4.62 [0.78,	27.24]	1.86
Condition and the second	1	13	15	180		0.92 [0.11,	7.55]	1.40
Yuan-Yuan Wel	6	50	24	87		0.43 [0.17,	1.14]	4.38
Qingchun Yao	2	6	23	77		1.12 [0.21,	5.91]	2.06
Jia Ma	3	1	17	16		2.82 [0.27,	30.02]	1.14
Marta Colaneri	2	1	15	26		3.47 [0.29,	41.53]	1.05
Jin-Jin Zhang	9	9	48	73		1.52 [0.56,	4.11]	4.21
Fang Zheng	1	16	29	115		0.25 [0.03,	1.95]	1.45
Lijun Sun	0	1	15	39		0.85 [0.03,	22.00]	0.64
Shufa Zheng	10	0	64	22		-7.33 [0.41, 1	130.15]	0.80
Liang Shen	3	11	17	88	-	1.41 [0.36,	5.60]	2.75
Yu-Huan Xu	0	1	13	36		0.90 [0.03,	23.50]	0.63
Kunhua Li	2	5	23	53		0.92 [0.17,	5.10]	1.97
Qingzian Cal !	4	5	54	235		3.48 [0.90,	13.40]	2.84
Jing Yuan !	3	5	8	78		5.85 [1.17,	29.14]	2.18
Lu Huang #	0	4	26	96		0.40 [0.02,	7.76]	0.76
Guang Chen #	1	3	9	7		0.26 [0.02,	3.06]	1.06
Guangchang Pel #	66	42	123	102	#	1.30 [0.82,	2.08]	7.64
Yang-kal Li #	1	4	8	12		0.38 [0.04,	4.00]	1.14
H Hou #	22	22	199	146	-	0.73 [0.39,	1.38]	6.44
Chuan Qin #	78	44	208	122		1.04 [0.68,	1.60]	7.91
Jiaojiao Chu #	3	0	40	11		1.99 [0.10,	41.33]	0.73
Wel-Je Guan \$	10	32	163	894	-	1.71 [0.83,	3.55]	5.74
Hansheng Xie 8	4	3	24	48		2.67 [0.55,	12.88]	2.25
Zhixian Yao Ş	4	9	177	273		0.69 [0.21,	2.26]	3.36
Qingqing Chen &	16	23	27	79	—	2.04 [0.94,	4.41]	5.45
Yuten Zheng &	2	6	27	106	-	1.31 [0.25,	6.85]	2.08
Suxin Wan +	13	5	27	90		8.67 [2.83,		3.65
J Zhang 🕥	36	25	373	229	-	0.88 [0.52,	1.51]	7.12
Rul Zhang 🚳	5	2	25	88		8.80 [1.61,	48.12]	2.00
Fang Liu *	1	4	32	103		0.80 [0.09,	7.46]	1.27
Overall					•	1.31 [1.00,	1.71]	
Heterogeneity: $\tau^2 = 0$.	.19, I [°] = -	43.04%, H ² = 1	1.76					
Test of $\theta_i = \theta_j; \; \Omega(32)$ -	49.78, (0.02						
Test of 0 = 0: z = 1.97	, p = 0.0	5				_		
					1.00	_		
Random-effects REML	model							

91a

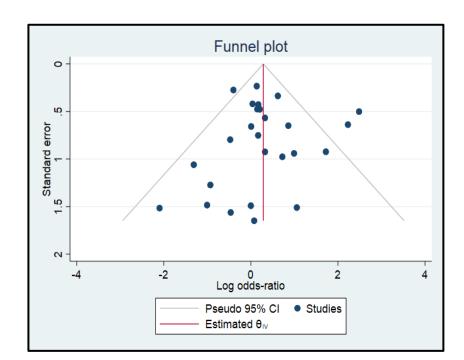

91b

121

eFigure 92 Pooled Odds ratio of severe disease in patients with myalgia a) Forest plot b) Funnel Plot

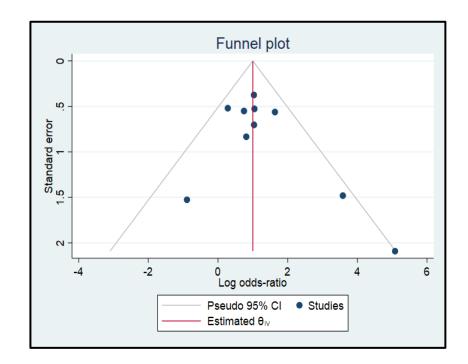
92a

	N	lyalgia	No	Myalgia	Odds Ratio Weig
Study	Severe	Non-severe			with 95% Cl (%)
Zhe Zhu	1	11	15	100	0.61 [0.07, 5.04] 1.63
Xiaochen Li	49	62	220	217	0.78 [0.51, 1.19] 7.05
Guyi Wang	1	16	15	177	0.74 [0.09, 5.95] 1.87
Qingchun Yao	8	20	17	63	- 1.48 [0.56, 3.95] 4.39
Jia Ma	1	3	19	14	0.25 [0.02, 2.82] 1.38
Yun Feng	17	38	88	295	
Jin-jin Zhang	39	51	14	16	
Fang Zheng	4	14	26	117	
Lijun Sun	3	7	12	33	1.18 [0.26, 5.31] 2.70
Shufa Zheng	13	6	61	16	0.57 [0.19, 1.73] 3.87
Yu-Huan Xu	4	4	9	33	3.67 [0.76, 17.62] 2.55
Kunhua Li	5	10	20	48	
Jing Yuan !	9	19	2	64	15.16 [3.01, 76.25] 2.45
Guang Chen #	5	3	5	7	2.33 [0.37, 14.61] 2.04
Yang-kai LI #	4	13	5	3	0.18 [0.03, 1.14] 2.07
H Hou #	14	11	207	157	
Chuan Qin #	66	32	220	134	1.26 [0.78, 2.02] 6.80
Jiaojiao Chu #	2	1	41	10	0.49 [0.04, 5.93] 1.24
Wei-jie Guan \$	30	134	143	792	1.24 [0.80, 1.91] 6.98
Zhixian Yao \$	21	40	160	242	
Qingqing Chen &	7	13	36	89	
Suxin Wan +	19	25	21	70	2.53 [1.17, 5.47] 5.33
J Zhang @	30	33	379	221	
Rui Zhang @	26	31	4	59	
Fang Liu ^	4	9	29	98	1.50 [0.43, 5.23] 3.41
Overall					1.22 [0.90, 1.65]
Heterogeneity: T ²	= 0.29, 1 [°]	= 61.73%, H	° = 2.61		
Test of $\theta_1 = \theta_1$: Q(2)	24) = 58.	51, p = 0.00			
Test of $\theta = 0$: $z = 1$	1.30, p =	0.20			
	-				1.00
Random-effects RE	ML mod	el			

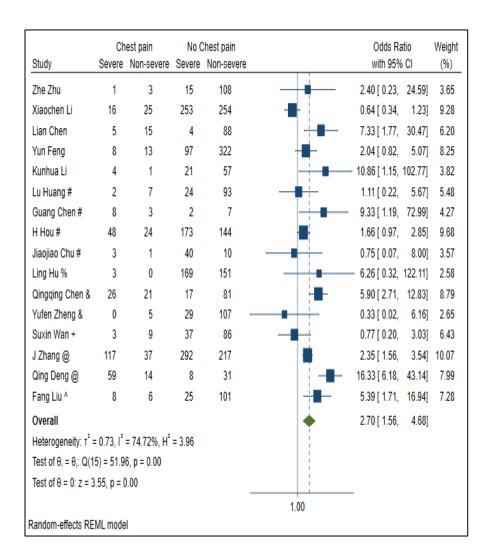


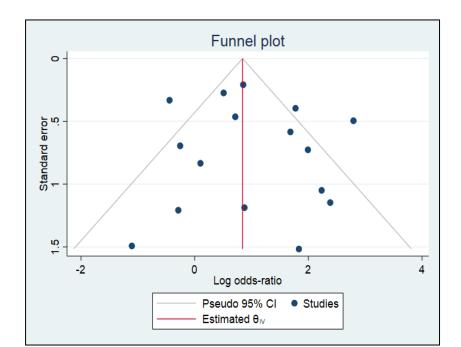
92b

122


eFigure 93 Pooled Odds ratio of severe disease in patients with headache a) Forest plot b) Funnel Plot

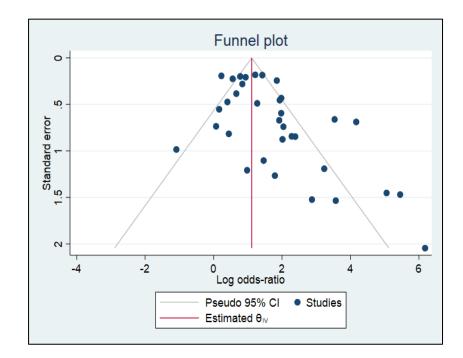
93a Headache No Headache Odds Ratio Weight with 95% CI Study Severe Non-severe Severe Non-severe (%) Zhe Zhu 0.27 [0.03, 2.15] 2.29 1 22 15 89 Xlaochen Ll 37 242 0.67 [0.39, 1.15] 7.73 25 244 Lian Chen 2 5 7 98 5.60 [0.92, 34.23] 2.80 5 9 11 184 9.29 [2.66, 32.47] 4.41 Guyi Wang Qingchun Yao 0 1 25 82 1.08 [0.04, 27.30] 1.11 Sijia Tian 3 14 43 202 1.01 [0.28, 3.66] 4.27 Jia Ma 2 19 15 0.39 [0.03, 4.78] 1.72 1 Fang Zheng 8 26 123 2.37 [0.66, 8.44] 4.33 4 Lijun Sun 4 13 36 1.38 [0.23, 8.48] 2.79 2 Shufa Zheng 70 22 2.87 [0.15, 55.43] 1.29 4 0 Llang Shen 2 15 18 84 0.62 [0.13, 2.96] 3.41 Yu-Huan Xu 2 3 11 34 2.06 [0.30, 13.97] 2.58 1.18 [0.27, 5.15] 3.66 Kunhua LI 3 6 22 52 5 58 235 0.37 [0.02, 6.71] 1.33 Qingzian Cal ! 0 -Lu Huang # 2 3 24 97 2.69 [0.43, 17.04] 2.73 Guang Chen # 1 1 9 9 1.00 [0.05, 18.57] 1.32 H Hou # 9 5 212 163 1.38 [0.46, 4.21] 4.96 Chuan Qin # 1.86 [0.96, 3.59] 7.12 39 13 247 153 Wel-Jle Guan \$ 26 124 147 802 1.14 [0.72, 1.81] 8.12 1.04 [0.46, 2.37] 6.29 Zhixian Yao Ş 10 15 171 267 0.12 [0.01, 2.40] 1.28 Ling Hu % 0 3 172 148 Qingging Chen & 8 16 35 86 1.23 [0.48, 3.13] 5.75 1.19[0.51, 2.74] 6.22 Suxin Wan + 11 23 29 72 7 J Zhang @ 13 396 247 1.16 [0.46, 2.94] 5.76 Rul Zhang @ 18 10 12 80 - 12.00 [4.49, 32.06] 5.53 Fang Llu ^ 0 2 33 105 0.63 [0.03, 13.45] 1.22 1.44 [1.00, 2.06] Overall Heterogeneity: 1³ = 0.37, 1³ = 53.25%, H³ = 2.14 Test of 0, = 0;: Q(25) = 48.73, p = 0.00 Test of 6 = 0: z = 1.96, p = 0.05 1.00 Random-effects REML model


94a


	A	norexia	No	Anorexia		Odds R	atio	Weight
Study	Severe	Non-severe	Severe	Non-severe		with 95%	6 CI	(%)
Zhe Zhu	10	49	6	62	-	2.11 [0.72,	6.21]	12.95
Guyi Wang	9	60	7	133	-	2.85 [1.01,	8.01]	14.12
Jin-jin Zhang	8	9	49	73		1.32 [0.48,	3.67]	14.53
Kai-Cai Liu	12	8	12	41		5.13 [1.70,	15.43]	12.42
Lijun Sun	3	4	12	36		2.25 [0.44,	11.52]	5.65
Jiaojiao Chu #	3	0	0	11		— 161.00 [2.67,	9699.91]	0.90
Qingqing Chen &	26	36	17	66		2.80 [1.35,	5.84]	28.00
Suxin Wan +	6	0	34	95		35.99 [1.97,	655.75]	1.79
Rui Zhang @	0	3	30	87 -		0.41 [0.02,	8.16]	1.69
Fang Liu ^	4	5	29	102		2.81 [0.71,	11.16]	7.94
Overall					٠	2.72 [1.84,	4.01]	
Heterogeneity: T ²	= 0.00, I ²	= 0.00%, H ² :	= 1.00					
Test of $\theta_i = \theta_i$: Q(9) = 11.86	, p = 0.22						
Test of $\theta = 0$: $z = 5$	i.05, p = (0.00						
				-	3.00	_		
Random-effects RE	ML mode)						

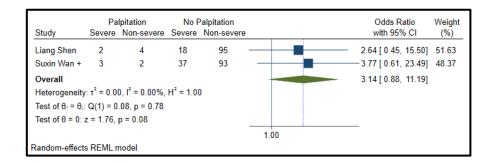
eFigure 95 Pooled Odds ratio of severe disease in patients with chest pain a) Forest plot b) Funnel Plot

95a



96a

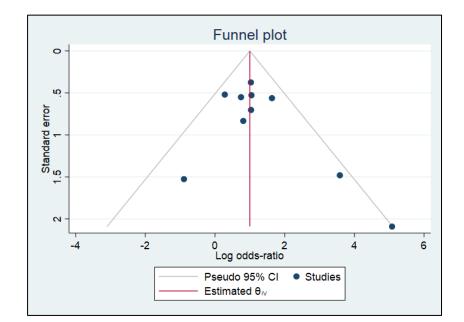
	Dy	spnea	No D	lyspnea		Odds R/	500	Weight
Study	Severe	Non-severe	Severe	Non-severe		with 959	6 CI	(96)
Zhe Zhu	3	1	13	110		25.38 [2.46,	262.22]	1.76
Xlaochen Ll	198	112	71	167		4.16 [2.90,	5.97]	4.39
Lian Chen	3	5	6	98		9.80 [1.88,	51.12]	2.54
Guyl Wang	4	9	12	184		6.81 [1.83,	25.37]	3.03
Yuan-Yuan Wel	22	39	8	98		6.91 [2.84,	16.83]	3.70
Qingchun Yao	9	6	16	77	-	7.22 [2.25,	23.14]	3.26
Sijia Tian	15	3	31	213		34.35 [9.40,	125.50]	3.06
Jia Ma	10	2	10	15		7.50 [1.35,	41.72]	2.45
Yun Feng	59	50	53	285		6.35 [3.94,	10.23]	4.27
Marta Colaneri	4	6	13	21		1.08 [0.25,	4.55]	2.84
Jin-Jin Zhang	24	20	29	47	-	1.94 [0.92,	4.13]	3.91
Fang Zheng	9	14	21	117		3.58 [1.37,	9.33]	3.59
Lijun Sun	2	1	13	39		6.00 [0.50,	71.73]	1.63
Shuta Zheng	10	2	64	20		1.56 [0.32,	7.73]	2.61
Yu-Huan Xu	4	0	9	37		35.53 [1.76,		1.25
Peljie Lyu	11	1	28	11		4.32 [0.50,	37.57]	1.93
Kunhua Li	7	2	18	56		10.89 [2.07,	57.20]	2.53
Lu Huang #	14	0	12	100		233.16 [13.09,	4152.84]	1.33
Guang Chen #	11	0	0	10		-483.00 [8.77,		0.80
Guangchang Pel#	119	71	70	73		1.75 [1.13,	2.71]	4.31
Yang-kai Li #	8	12	1	4		2.67 [0.25,	28.44]	1.73
H Hou #	55	21	166	147		2.32 [1.34,	4.02]	4.19
Chuan Qin #	167	65	119	101		2.18 [1.48,		4.35
Jisojiso Chu #	3	2	40	9		0.34 [0.05,	2.32]	2.19
Wel-Jie Guan Ş	65	140	108	786		3.38 [2.37,		4.39
Hansheng Xie Ş	16	24	12	27	-	1.50 [0.59,	3.80]	3.64
Zhixian Yao Ş	82	112	99	170		1.26 [0.86,	1.83]	4.37
Ling Hu %	8	6	164	145		1.18 [0.40,	3.48]	3.40
Qingqing Chen &	3	0	40	102		17.72 [0.89,	350.69]	1.27
Suxin Wan +	18	0	22	95		157.04 [9.12,		1.36
J Zhang 🚳	124	37	285	217		2.55 [1.70,	3.84]	4.34
Rul Zhang @	27	11	3	79		64.64 [16.77,		
Qing Deng 🚳	50	13	17	32		7.24 [3.10,	16.90]	
Fong Liu A	6	3	27	104		7.70 [1.81,	32.81]	2.83
Overall					•	4.72 [3.18,	7.01]	
Heterogeneity: T	0.90, 12 -	85.54%, H ^a	- 6.92					
Test of $\theta_i = \theta_j; \; \Omega(33)$) = 138.73	p = 0.00						
Test of 0 = 0: z = 7.8	68, p = 0.0	0						
					1.00			
Random-effects REM	(L model							


eFigure 97 Pooled Odds ratio of severe disease in patients with hemoptysis - Forest plot

eFigure 98 Pooled Odds ratio of severe disease in patients with abdominal pain - Forest plot

	Abdo	minal pain	No Abd	ominal pain		Odds Ratio	Weight
Study	Severe	Non-severe	Severe	Non-severe		with 95% CI	(%)
Kunhua Li	2	5	23	53		0.92 [0.17, 5.10]	9.89
Chuan Qin #	19	4	267	162		2.88 [0.96, 8.62]	24.14
Jin-jin Zhang	6	2	51	80		4.71 [0.91, 24.22]	10.80
Xiaochen Li	12	4	257	275		3.21 [1.02, 10.08]	22.13
J Zhang @	3	2	406	252		0.93 [0.15, 5.61]	8.98
Qingqing Chen &	2	6	41	96		0.78 [0.15, 4.03]	10.75
Zhe Zhu	1	3	15	108		2.40 [0.23, 24.59]	5.35
Fang Liu ^	1	2	32	105		1.64 [0.14, 18.69]	4.90
Guyi Wang	0	2	16	191			3.06
Overall					-	2.09 [1.22, 3.58]	
Heterogeneity: T ² =	= 0.00, I ² =	= 0.00%, H ² =	1.00				
Test of $\theta_i = \theta_j$: Q(8)) = 4.91, p) = 0.77					
Test of $\theta = 0$: $z = 2$.68, p = 0	.01					
					1.00		
Random-effects RE	ML model						

eFigure 99 Pooled Odds ratio of severe disease in patients with palpitations - Forest plot


eFigure 100 Pooled Odds ratio of severe disease in patients with rhinorrhea - Forest plot

	Rhinorr	hea present	Rhinor	rhea absent		Odds Ratio	Weigh
Study	Severe	Non-severe	Severe	Non-severe		with 95% CI	(%)
Zhe Zhu	1	6	15	105		1.17 [0.13, 10.	37] 16.83
Chuan Qin #	6	2	280	164		1.76 [0.35, 8.	30.92
Jiaojiao Chu #	1	0	42	11 -		- 0.81 [0.03, 21.	28] 7.53
Zhixian Yao \$	3	8	178	274		0.58 [0.15, 2.3	21] 44.72
Overall					-	0.94 [0.38, 2.	30]
Heterogeneity: 1	² = 0.00, 1 ²	= 0.00%, H ² =	1.00				
Test of $\Theta_i = \Theta_i$: O	(3) = 1.13,	p = 0.77					
Test of $\theta = 0$: z =	= -0.13, p =	0.89					
				-	1.00		
andom-effects F	REML mode	al.					

eFigure 101 Pooled Odds ratio of severe disease in patients with fever a) Forest plot b) Funnel Plot

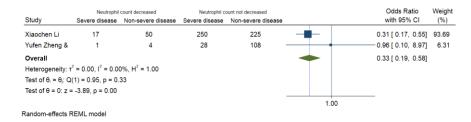
101a

01-1		norexia	No Anorexia		Odds R		Weight	
Study	Severe	Non-severe	Severe	Non-severe		with 95%	b Cl	(%)
Zhe Zhu	10	49	6	62	+	2.11 [0.72,	6.21]	12.95
Guyi Wang	9	60	7	133	+	2.85 [1.01,	8.01]	14.12
Jin-jin Zhang	8	9	49	73	- -	1.32 [0.48,	3.67]	14.53
Kai-Cai Liu	12	8	12	41	+	5.13 [1.70,	15.43]	12.42
Lijun Sun	3	4	12	36	-	2.25 [0.44,	11.52]	5.65
Jiaojiao Chu #	3	0	0	11		— 161.00 [2.67,	9699.91]	0.90
Qingqing Chen &	26	36	17	66		2.80 [1.35,	5.84]	28.00
Suxin Wan +	6	0	34	95		35.99 [1.97,	655.75]	1.79
Rui Zhang @	0	3	30	87 -		0.41 [0.02,	8.16]	1.69
Fang Liu ^	4	5	29	102	+	2.81 [0.71,	11.16]	7.94
Overall					•	2.72 [1.84,	4.01]	
Heterogeneity: T ² :	= 0.00, I ²	= 0.00%, H ² :	= 1.00					
Test of $\theta_i = \theta_j$: Q(9) = 11.86	, p = 0.22						
Test of $\theta = 0$: $z = 5$.05, p = (0.00						
					3.00	_		
Random-effects RE	ML mode							

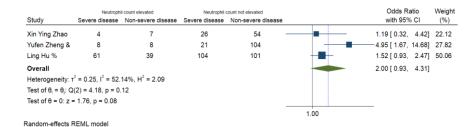
101b

1.0

eFigure 102. Pooled Odds of severity in patients with Decreased TLC- Forest plot


	TLC	decreased	TLC No	ot decreased		Odds Ratio	Weight
Study	Severe disease	Non-severe disease	Severe disease	Non-severe disease		with 95% CI	(%)
TLC < 3.5 x 109/L	-						
Suxin Wan +	4	24	36	71		0.33 [0.11, 1.02]	7.73
Jin-jin Zhang	9	18	47	64		0.68 [0.28, 1.65]	9.25
Huan Li %	17	14	55	56		1.24 [0.56, 2.75]	9.80
Yufen Zheng &	1	7	28	105		- 0.54 [0.06, 4.54]	3.72
Heterogeneity: T ² :	= 0.12, I ² = 29.06	3%, H ² = 1.41				0.70 [0.37, 1.33]	
Test of $\theta_1 = \theta_1$: Q(3)	3) = 3.68, p = 0.3	0					
TLC <4 x 109/L							
Wei-jie Guan \$	102	228	65	583		4.01 [2.84, 5.68]	12.50
Fang Zheng	9	57	21	74		0.56 [0.24, 1.31]	9.44
Xiaochen Li	46	84	221	191		0.47 [0.31, 0.71]	12.20
Yun Feng	24	67	100	284		1.02 [0.61, 1.71]	11.58
Qingchun Yao	5	27	20	56		0.52 [0.18, 1.53]	8.02
Xin Ying Zhao	7	20	23	41		0.62 [0.23, 1.70]	8.51
Heterogeneity: T ²	= 0.67, I ² = 88.86	3%, H [°] = 8.98				0.89 [0.43, 1.82]	
Test of $\theta_i = \theta_j$: Q(5)	5) = 73.60, p = 0.0	00					
TLC <5 x 109/L							
Marta Colaneri	9	13	8	14		- 1.21 [0.36, 4.08]	7.26
Heterogeneity: T ²	= 0.00, I [°] = .%, H	r [°] = .				1.21 [0.36, 4.08]	
Test of $\theta_1 = \theta_1$: Q(0)	0) = 0.00, p = .						
Overall					+	0.84 [0.52, 1.37]	
Heterogeneity: T ²	= 0.46, I ² = 78.58	3%, H ² = 4.67					
Test of $\theta_1 = \theta_1$: Q(1	10) = 81.09, p = 0	0.00					
Test of group diffe	rences: Q ₆ (2) = 0	0.67, p = 0.72					
					1.00		

Random-effects REML model

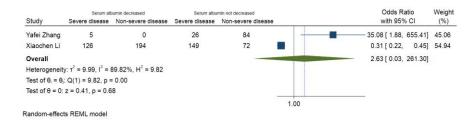

eFigure 103. Pooled Odds of severity in patients with Increased TLC- Forest plot

	TLC	increased	TLC n	ot increased		Odds Ra		Weight
Study	Severe disease	Non-severe disease	Severe disease	Non-severe disease		with 95%	CI	(%)
TLC > 10 x 109/L								
Fang Zheng	0	3	30	128		0.60 [0.03,	11.96]	2.23
Xiaochen Li	55	8	212	267		8.66 [4.04,	18.57]	13.70
Yun Feng	26	23	98	328	-	3.78 [2.07,	6.93]	15.81
Qingchun Yao	11	1	14	82		-64.43 [7.70,	538.98]	4.01
Xin Ying Zhao	5	6	25	55		1.83 [0.51,	6.58]	8.33
Ling Hu %	18	5	147	135		3.31 [1.19,	9.15]	10.72
Heterogeneity: T ² =	= 0.49, I ² = 63.09	%, H ^² = 2.71			-	4.65 [2.17,	9.98]	
Test of $\theta_i = \theta_i$: Q(5) = 13.14, p = 0.0	2						
TLC > 11 x 109/L								
Wei-jie Guan \$	19	39	148	772		2.54 [1.43,	4 501	16.20
Heterogeneity: T ² =			140	112		2.54 [1.43,		10.20
Test of $\theta_i = \theta_i$: Q(0						2.34[1.43,	4.52]	
1051 01 01 - 01. 02(0) = 0.00, p = .							
TLC > 9.5 x 109/L								
Suxin Wan +	3	6	37	89	-	1.20 [0.29,	5.07]	7.16
Jin-jin Zhang	13	4	43	78		5.90 [1.81,	19.20]	9.14
Huan Li %	15	2	57	58		7.63 [1.67,	34.89]	6.65
Yufen Zheng &	2	7	27	105		1.11 [0.22,	5.66]	6.04
Heterogeneity: T ² =	= 0.47, I ² = 47.12	%, H ² = 1.89			-	2.94 [1.10,	7.85]	
Test of $\theta_i = \theta_i$: Q(3)) = 5.68, p = 0.13	1						
Overall					•	3.70 [2.31,	5.93]	
Heterogeneity: T ² =	= 0.27, I ² = 49.71	%, H ^² = 1.99						
Test of $\theta_i = \theta_i$: Q(1	0) = 21.90, p = 0.	02						
Test of group differ	rences: Q ₆ (2) = 1	.56, p = 0.46						
					1.00			
Random-effects RE	ML model							

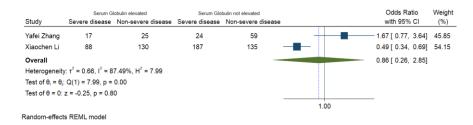
eFigure 104. Pooled Odds of severity in patients with Decreased neutrophil- Forest plot

eFigure 105. Pooled Odds of severity in patients with Increased neutrophil- Forest plot

eFigure 106. Pooled Odds of severity in patients with Decreased lymphocyte- Forest plot


	Lymphocyte count decreased			ount not decreased		Odds Ratio		Weight
Btudy	Severe disease	Non-severe disease	Severe disease	Non-severe disease		with 959	% CI	(%)
Lymphocyte count <0.8x 109/L								
Qingchun Yao	13	10	12	73		7.91 [2.84,	22.06]	8.25
Zheng Yi	8	10	22	33		1.20 [0.41,	3.52]	8.11
Heterogeneity: τ ² = 1.49, 1 ² = 83.84%,	H ² = 6.19					3.10 [0.49,	19.69]	
Test of $\theta_1 = \theta_1$: Q(1) = 6.19, p = 0.01								
Lymphocyte count <1 x 109/L								
r'un Feng	89	136	35	216	-	4.04 [2.59,	6.31]	9.67
Heterogeneity: $\tau^{2} = 0.00$, $I^{2} = .%$, $H^{2} = .$					•	4.04 [2.59,	6.31]	
Test of $\theta_i = \theta_i$: $Q(0) = 0.00$, $p = .$								
Lymphocyte count <1·1 x 109/L								
Kin Ying Zhao	11	36	19	25		0.40 [0.16,	0.99]	8.61
Yufen Zheng &	24	42	5	70		8.00 [2.84,	22.56]	8.22
Heterogeneity: τ ² = 4.23, l ² = 94.51%,	H [°] = 18.21			-		1.77 [0.09,	33.23]	
Test of $\theta_i = \theta_i$: Q(1) = 18.21, p = 0.00								
Lymphocyte count <1.5 x 109/L								
Marta Colaneri	17	22	0	5		8.56 [0.44,	165.38]	3.55
Heterogeneity: $\tau^2 = 0.00$, $I^2 = .%$, $H^2 = .$						8.56 [0.44,	165.38]	
Test of $\theta_1 = \theta_1$: $\Omega(0) = 0.00$, $p = .$								
Lymphocyte count <2 x 109/L								
Ling Hu %	109	72	56	68	-	1.84 [1.16,	2.92]	9.64
Heterogeneity: $\tau^{2} = 0.00$, $I^{2} = .%$, $H^{2} = .$					-	1.84 [1.16,	2.92]	
Test of $\theta_i = \theta_j$: Q(0) = 0.00, p = .								
Dverall					-	2.64 [1.12,	6.23]	
Heterogeneity: τ ² = 1.04, l ² = 87.02%,	H ² = 7.71							
Test of $\theta_1 = \theta_1$: Q(6) = 34.03, p = 0.00								
Test of group differences: $Q_b(4) = 6.43$, p = 0.17							
					1.00			
andom-effects REML model								

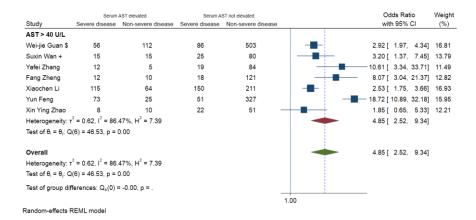
eFigure 107. Pooled Odds of severity in patients with Decreased platelet- Forest plot


	Platelet count decreased		Platelet co	unt not decreased		Odds Ra	atio	Weigh
Study	Severe disease	Non-severe disease	Severe disease	Non-severe disease		with 95%	CI	(%)
Platelet count < 100 x 109/L								
Fang Zheng	3	8	27	123		1.71 [0.43,	6.86]	4.98
Qingchun Yao	4	6	21	77		2.44 [0.63,	9.47]	5.22
Ling Hu %	12	4	153	134		2.63 [0.83,	8.34]	6.83
Heterogeneity: T ² = 0.00, I ² = 0	.00%, H ² = 1.00					2.27 [1.08,	4.78]	
Test of $\theta_i = \theta_i$: Q(2) = 0.23, p =	0.89							
Platelet count < 125 x 109/L								
Suxin Wan +	12	11	28	84		3.27 [1.30,	8.24]	9.71
Huan Li %	12	7	60	53		1.51 [0.56,	4.13]	8.56
Yufen Zheng &	7	5	21	107			24.63]	6.07
Heterogeneity: $\tau^2 = 0.23$, $I^2 = 4$	5.21%, H ² = 1.83					3.09 [1.37,	6.99]	
Test of $\theta_i = \theta_i$: Q(2) = 3.70, p =	0.16							
Platelet count < 150 x 109/L								
Wei-jie Guan \$	90	225	66	488		2.96 [2.07,	4.22]	26.78
Xiaochen Li	89	68	176	206		1.53 [1.05,	2.23]	25.89
Marta Colaneri	10	9	7	18		2.86 [0.82,	10.01]	5.95
Heterogeneity: $T^2 = 0.13$, $I^2 = 6$	7.23%, H ² = 3.05				-	2.22 [1.32,	3.73]	
Test of $\theta_i = \theta_i$: Q(2) = 6.43, p =	0.04							
Overall					-	2.39 [1.72,	3.34]	
Heterogeneity: T ² = 0.07, I ² = 3	4.31%, H ² = 1.52							
Test of $\theta_i = \theta_i$: Q(8) = 11.24, p	= 0.19							
Test of group differences: Q _b (2	e) = 0.48, p = 0.79							
					1.00			

Random-effects REML model

eFigure 108. Pooled Odds of severity in patients with Decreased Albumin- Forest plot

eFigure 109. Pooled Odds of severity in patients with Increased globulin- Forest plot

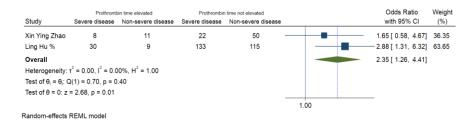


eFigure 110. Pooled Odds of severity in patients with Increased Total bilirubin- Forest plot

	Serum B	Serum Bilirubin elevated		ubin not elevated		Odds Ratio	Weight
Study	Severe disease	Non-severe disease	Severe disease	Non-severe disease		with 95% CI	(%)
T. Bilirubin > 20 umol/L							
Wei-jie Guan \$	17	59	111	535		1.39 [0.78, 2.47]	40.64
Yafei Zhang	5	3	26	81			10.21
Fang Zheng	3	6	27	125		2.31 [0.54, 9.84]	10.85
Xiaochen Li	17	7	249	268		2.61 [1.07, 6.41]	23.41
Qingchun Yao	6	7	19	76		3.43 [1.03, 11.39]	14.89
Heterogeneity: $\tau^2 = 0.08$,	l ² = 23.14%, H ² =	1.30			-	2.23 [1.34, 3.71]	
Test of $\theta_i = \theta_j$: Q(4) = 4.2	4, p = 0.37						
Overall					-	2.23 [1.34, 3.71]	
Heterogeneity: $\tau^2 = 0.08$,	I ² = 23.14%, H ² =	1.30					
Test of $\theta_i = \theta_j$: Q(4) = 4.2	4, p = 0.37						
Test of group differences	: Q _b (0) = 0.00, p =	·.					
					1.00		

Random-effects REML model

eFigure 111. Pooled Odds of severity in patients with Increased AST- Forest plot

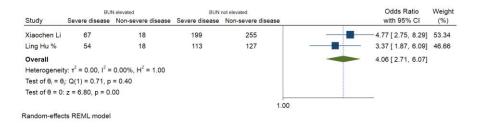


eFigure 112. Pooled Odds of severity in patients with Increased ALT- Forest plot

	Serum	ALT elevated	Serum A	LT not elevated		Odds R	atio	Weight
Study	Severe disease	Non-severe disease	Severe disease	Non-severe disease		with 95%	6 CI	(%)
ALT > 40 U/L								
Wei-jie Guan \$	38	120	97	486		1.59 [1.04,	2.43]	15.98
Fang Zheng	5	8	25	123		3.08 [0.93,	10.18]	12.10
Xiaochen Li	61	64	214	202		0.90 [0.60,	1.34]	16.07
Yun Feng	67	23	57	329		16.81 [9.69,	29.17]	15.49
Ling Hu %	32	26	136	119		1.08 [0.61,	1.91]	15.40
Heterogeneity: 1	r ² = 1.37, I ² = 94.	87%, H ² = 19.51				2.36 [0.81,	6.89]	
Test of $\theta_i = \theta_j$: Q	0(4) = 78.69, p = 0	0.00						
ALT > 50 U/L								
Yafei Zhang	1	0	30	84		- 8.31 [0.33,	209.54]	4.42
Qingchun Yao	2	4	23	79		1.72 [0.30,	9.98]	9.15
Xin Ying Zhao	5	5	25	56		2.24 [0.59,	8.44]	11.39
Heterogeneity: 1	$r^2 = 0.00, I^2 = 0.00$	0%, H ² = 1.00			-	2.33 [0.85,	6.38]	
Test of $\theta_i = \theta_j$: Q	0(2) = 0.72, p = 0.	70						
Overall						2.40 [1.09.	5.291	
Heterogeneity: 1	r ² = 0.97, I ² = 89.0	$03\% H^2 = 9.11$			Ī			
• •	(7) = 79.55, p = 0							
Test of group dit	fferences: Q _b (1) =	= 0.00, p = 0.99						
					1.00			

Random-effects REML model

eFigure 113. Pooled Odds of severity in patients with Increased PT- Forest plot


eFigure 114. Pooled Odds of severity in patients with Elevated CK Total- Forest plot

	CK-to	tal elevated	CK-tota	al not elevated		Odds Ratio	Weight
Study	Severe disease	Non-severe disease	Severe disease	Non-severe disease		with 95% CI	(%)
CK-total > 190 U/L							
Fang Zheng	9	8	21	123		6.59 [2.29, 19.00]	17.62
Qingchun Yao	7	12	18	71		2.30 [0.79, 6.68]	17.48
Xin Ying Zhao	8	6	22	55		3.33 [1.04, 10.72]	15.63
Heterogeneity: T ² =	0.01, I ² = 2.42%, H	2 = 1.02			-	3.73 [1.97, 7.07]	
Test of $\theta_i = \theta_j$: Q(2)	= 1.93, p = 0.38						
CK-total > 200 U/L							
Wei-jie Guan \$	23	67	98	469		1.64 [0.98, 2.77]	31.71
Suxin Wan +	7	3	33	92		- 6.51 [1.59, 26.64]	12.13
Jin-jin Zhang	3	1	22	34			5.43
Heterogeneity: $\tau^2 =$	0.42, I ² = 49.25%, H	H ² = 1.97				2.87 [1.03, 8.00]	
Test of $\theta_i = \theta_j$: Q(2)	= 3.74, p = 0.15						
Overall					-	3.11 [1.74, 5.55]	
Heterogeneity: T ² =	0.21, I ² = 41.86%, H	H ² = 1.72					
Test of $\theta_i = \theta_j$: Q(5)	= 8.00, p = 0.16						
Test of group differe	ences: Q _b (1) = 0.18,	p = 0.67					
					1.00		
Random-effects REM	IL model						

eFigure 115. Pooled Odds of severity in patients with Elevated CK MB- Forest plot

	CK-I	MB elevated	CK-ME	3 not elevated		Odds Ratio	Weight
Study	Severe disease	Non-severe disease	Severe disease	Non-severe disease		with 95% CI	(%)
CK MB >24 U/L							
Qingchun Yao	6	10	19	73		2.31 [0.74, 7.14]	27.63
Xin Ying Zhao	3	1	27	60		6.67 [0.66, 67.05]	15.55
Heterogeneity: T ²	= 0.00, I ² = 0.00	%, H ² = 1.00				2.83 [1.03, 7.82]	
Test of $\theta_i = \theta_j$: Q(1) = 0.66, p = 0.4	2					
CK MB >5 U/L							
Huan Han @	4	6	71	192		1.80 [0.49, 6.58]	25.68
Ling Hu %	23	27	35	14		0.34 [0.15, 0.78]	31.13
Heterogeneity: T ²	= 1.08, I ² = 77.7	9%, H ² = 4.50				0.73 [0.14, 3.69]	
Test of $\theta_i = \theta_j$: Q(1) = 4.50, p = 0.0	3					
Overall						1.41 [0.42, 4.67]	
Heterogeneity: T ²	= 1.02, I ² = 72.2	3%, H ² = 3.60					
Test of $\theta_i = \theta_j$: Q(3) = 11.86, p = 0.	01					
Test of group diffe	erences: Q _b (1) =	1.94, p = 0.16					
					1.00		
andom-effects R	EML model						

eFigure 116. Pooled Odds of severity in patients with Increased BUN- Forest plot

eFigure 117. Pooled Odds of severity in patients with Increased creatinine- Forest plot

	Creatin	Ine elevated	Creatinir	ne not elevated		Odds Ra	atio	Weight
Study S	evere disease	Non-severe disease	Severe disease	Non-severe disease		with 95%	6 CI	(%)
Creatinine > 144 umol/L								
Ling Hu %	5	2	164	143		2.18 [0.42,	11.41]	9.89
Heterogeneity: $\tau^2 = 0.00$, $I^2 = .9$	6, H ² = .					2.18 [0.42,	11.41]	
Test of $\theta_i = \theta_i$: Q(0) = 0.00, p =								
Creatinine >133 umol/L								
Wei-jie Guan \$	6	6	132	608		4.61 [1.46,	14.51]	17.43
Qingchun Yao	1	3	24	80		1.11 [0.11,	11.18]	5.54
Marta Colaneri	2	0	15	27		8.87 [0.40,	196.82]	3.21
Heterogeneity: $\tau^2 = 0.00$, $I^2 = 0$.	.00%, H ² = 1.0	0				3.81 [1.44,	10.11]	
Test of $\theta_i = \theta_j$: Q(2) = 1.49, p =	0.48							
Creatinine >87 umol/L								
Fang Zheng	1	1	29	130		4.48 [0.27,	73.78]	3.88
Xiaochen Li	85	61	181	212		1.63 [1.11,	2.40]	46.51
Heterogeneity: $\tau^2 = 0.00$, $I^2 = 0$.	.00%, H ² = 1.0	0			•	1.66 [1.14,	2.43]	
Test of $\theta_1 = \theta_1$: Q(1) = 0.49, p =	0.48							
Creatinine >97 umol/L								
Suxin Wan +	3	3	37	92		2.49 [0.48,	12.88]	9.99
Xin Ying Zhao	5	0	25	61			497.65]	3.56
Heterogeneity: $\tau^2 = 1.33$, $I^2 = 47$	7.51%, H ² = 1.	91				5.88 [0.63,	54.73]	
Test of $\theta_i = \theta_i$: Q(1) = 1.91, p =	0.17							
Overall					+	2.49 [1.41,	4.41]	
Heterogeneity: $\tau^2 = 0.14$, $I^2 = 21$ Test of $\theta_i = \theta_i$: $Q(7) = 7.61$, $p = 1$		28						
Test of group differences: Q _b (3)	= 3.44, p = 0.	33						
					1.00			
andom-effects REML model								

eFigure 118. Pooled Odds of severity in patients with Elevated LDH- Forest plot

	LDH	H Elevated	LDH	not elevated			Odds Ratio	Weight
Study	Severe disease	Non-severe disease	Severe disease	Non-severe disease			with 95% CI	(%)
LDH > 225 U/L								
Fang Zheng	15	23	15	108			4.70 [2.02, 10.94]	14.24
Heterogeneity:	$r^2 = 0.00, 1^2 = .\%$, H ² = .					4.70 [2.02, 10.94]	
Test of $\theta_i = \theta_i$: C	Q(0) = -0.00, p = .							
LDH > 243 U/L								
Yafei Zhang	17	9	24	75			5.90 [2.33, 14.95]	13.58
Heterogeneity:	r ² = 0.00, 1 ² = .%	, H ² = .					5.90 [2.33, 14.95]	
Test of $\Theta_i = \Theta_i$: C	Q(0) = 0.00, p = .							
LDH > 250 U/L								
Wei-jie Guan \$	72	205	52	346			2.34 [1.57, 3.47]	17.41
Suxin Wan +	30	28	10	67			7.18 [3.10, 16.64]	14.28
Xiaochen Li	106	25	154	247			6.80 [4.21, 10.99]	16.92
Ling Hu %	10	12	39	26		_	0.56 [0.21, 1.47]	13.23
Heterogeneity:	r ² = 1.18, I ² = 92.	.70%, H ² = 13.69			-		2.92 [0.95, 8.93]	
Test of $\theta_i = \theta_i$: C	Q(3) = 27.73, p =	0.00						
LDH > 300 U/L								
Marta Colaneri	10	5	7	22			-6.29 [1.60, 24.73]	10.33
Heterogeneity:	$r^2 = 0.00, I^2 = .\%$, H ² = .					- 6.29 [1.60, 24.73]	
Test of $\Theta_i = \Theta_i$: C	Q(0) = 0.00, p = .							
Overall						-	3.77 [1.95, 7.30]	
Heterogeneity:	r ² = 0.61, I ² = 82.	.69%, H ² = 5.78						
Test of $\Theta_i = \Theta_i$: O	Q(6) = 30.10, p =	0.00						
Test of group di	fferences: Q _b (3) :	= 1.10, p = 0.78					_	
Random-effects	PEMI model				1.0	0		
tandonn-ellects	CEME MOUEI							

eFigure 119. Pooled Odds of severity in patients with Elevated D-Dimer- Forest plot

	d-dim	er Elevated	d-dimer	not elevated		Odds Ratio	Weight
Study	Severe disease	Non-severe disease	Severe disease	Non-severe disease		with 95% CI	(%)
D-Dimer > 0.25 mg/	/L						
Jin-jin Zhang	23	12	15	31		3.96 [1.56, 10.05]	12.04
Xin Ying Zhao	2	2	28	50		- 1.79 [0.24, 13.38]	3.01
Heterogeneity: $\tau^2 = 0$	0.00, I ² = 0.00%, H ² =	1.00				3.44 [1.48, 8.02]	
Test of $\theta_i = \theta_j$: Q(1) =	0.50, p = 0.48						
D-Dimer > 0.5 mg/L							
Wei-jie Guan \$	65	195	44	256	- -	1.94 [1.27, 2.97]	33.98
Heterogeneity: $\tau^2 = 0$	0.00, I ² = .%, H ² = .				-	1.94 [1.27, 2.97]	
Test of $\theta_i = \theta_j$: Q(0) =	0.00, p = .						
D-Dimer > 1 mg/L							
Xiaochen Li	149	78	98	176		3.43 [2.37, 4.96]	38.60
Qingchun Yao	14	26	11	57		2.79 [1.12, 6.97]	12.37
Heterogeneity: $\tau^2 = 0$	0.00, I ² = 0.00%, H ² =	1.00			-	3.33 [2.37, 4.69]	
Test of $\theta_i = \theta_j$: Q(1) =	0.17, p = 0.68						
Overall					-	2.75 [1.92, 3.93]	
Heterogeneity: $\tau^2 = 0$	0.05, I ² = 32.40%, H ² =	= 1.48					
Test of $\theta_1 = \theta_j$: Q(4) =	4.73, p = 0.32						
Test of group differer	nces: Q _b (2) = 4.07, p =	= 0.13					
					1.00		
and any other the DEM	and shall						

Random-effects REML model

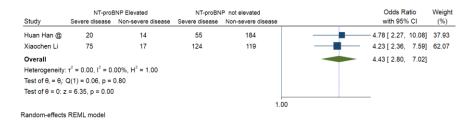
eFigure 120. Pooled Odds of severity in patients with Increased CRP- Forest plot

	CRF	Elevated	CRP r	not elevated		Odds Ra	atio	Weight
Study	Severe disease	Non-severe disease	Severe disease	Non-severe disease		with 95%	i Cl	(%)
CRP > 10 mg/dL								
Wei-jie Guan \$	110	371	25	287	-	3.40 [2.15,	5.40]	11.30
Xiaochen Li	98	40	170	232		3.34 [2.20,	5.08]	11.45
Yun Feng	97	169	11	138		7.20 [3.71,	13.97]	10.46
Fengjuan Shi	5	31	3	43		2.31 [0.51,	10.40]	6.55
Xin Ying Zhao	10	25	20	36		0.72 [0.29,	1.80]	9.26
Marta Colaneri	5	3	12	24		3.33 [0.68,	16.35]	6.21
Heterogeneity: τ ² :	= 0.43, I [°] = 77.529	%, Н [°] = 4.45			-	2.92 [1.55,	5.51]	
Test of $\theta_1 = \theta_1$: Q(5	i) = 16.20, p = 0.0	1						
CRP > 3 mg/dL								
Jin-jin Zhang	53	72	2	9		3.31 [0.69,	15.97]	6.28
Huan Li %	70	54	2	6		3.89 [0.75,	20.03]	6.03
Ling Hu %	148	128	17	13		0.88 [0.41,	1.89]	10.01
Heterogeneity: +	= 0.45, I ² = 50.779	6, Н [°] = 2.03				1.82 [0.63,	5.24]	
Test of $\theta_1 = \theta_j$: Q(2) = 4.04, p = 0.13							
CRP > 5 mg/dL								
Qingchun Yao	23	46	2	37		9.25 [2.05,	41.80]	6.54
Heterogeneity: τ ² :	= 0.00, I ² = .%, H ²	=.				9.25 [2.05,	41.80]	
Test of $\theta_1 = \theta_2$: Q(0) = 0.00, p = .							
CRP > 8 mg/dL								
Fang Zheng	30	91	0	40		27.00 [1.61,	452.44]	3.03
Fang Liu ^	31	60	2	47		12.14 [2.76,	53.34]	6.65
Heterogeneity: τ ² :	= 0.00, I [°] = 0.00%	, H ² = 1.00				14.43 [3.89,	53.50]	
Test of $\theta_1 = \theta_1$: Q(1) = 0.24, p = 0.62							
Overall						3.32 [1.93,	5.711	
Heterogeneity: T ² :	= 0.55 1 ² = 73.749	$6 H^2 = 3.81$						
Test of $\theta_i = \theta_j$: Q(1								
Test of group diffe	rences: Q ₅ (3) = 7.	83, p = 0.05						
					1.00			

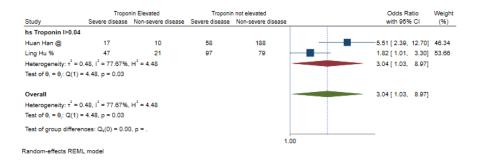
Random-effects REML model

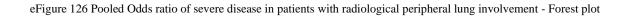
eFigure 121. Pooled Odds of severity in patients with Elevated Procalcitonin- Forest plot

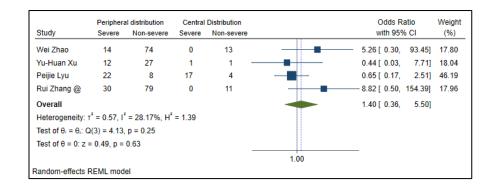
	Procalcit	onin Elevated	Procalcitor	nin not elevated		Odds Ratio	Weight
Study	Severe disease	Non-severe disease	Severe disease	Non-severe disease		with 95% CI	(%)
Procalcitonin >0.05 µg/L							
Huan Li %	15	57	5	55		2.89 [0.99, 8.51]	12.70
Qingchun Yao	20	41	5	42		4.10 [1.41, 11.95]	12.82
Heterogeneity: T ² = 0.00, I	² = 0.00%, H ² = 1.	00				3.45 [1.61, 7.37]	
Test of $\theta_1 = \theta_1$: Q(1) = 0.20	, p = 0.65						
Procalcitonin >0·1 µg/L							
Suxin Wan +	19	6	21	89		13.42 [4.77, 37.73]	13.38
Jin-jin Zhang	25	16	25	52		3.25 [1.48, 7.15]	17.93
Heterogeneity: r ² = 0.79, I	^a = 78.13%, H ^a = 4	.57				6.34 [1.58, 25.38]	
Test of $\theta_1 = \theta_2$: Q(1) = 4.57	, p = 0.03						
Procalcitonin >0·5 µg/L							
Wei-jie Guan \$	16	19	101	497		4.14 [2.06, 8.33]	19.96
Xiaochen Li	43	3	194	246		- 18.18 [5.55, 59.47]	11.23
Fang Liu ^	5	3	28	104		6.19 [1.39, 27.49]	8.08
Xin Ying Zhao	3	1	27	58		- 6.44 [0.64, 64.84]	3.91
Heterogeneity: r ² = 0.26, I	² = 39.61%, H ^² = 1	.66				6.97 [3.12, 15.58]	
Test of $\theta_1 = \theta_1$: Q(3) = 4.44	, p = 0.22						
Overall					-	5.50 [3.38, 8.93]	
Heterogeneity: T ² = 0.18, I	² = 38.70%, H ² = 1	.63					
Test of $\theta_1 = \theta_2$: Q(7) = 10.6	9, p = 0.15						
Test of group differences:	Q₀(2) = 1.69, p = 0).43				_	
Random-effects REML mod					1.00		
andom-enects REIVL mod	161						

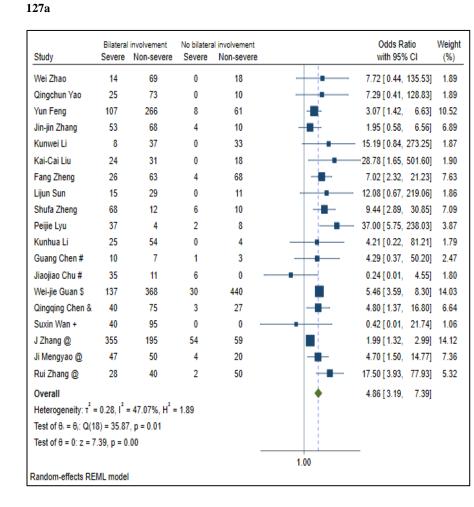

eFigure 122. Pooled Odds of severity in patients with Increased SAA- Forest plot

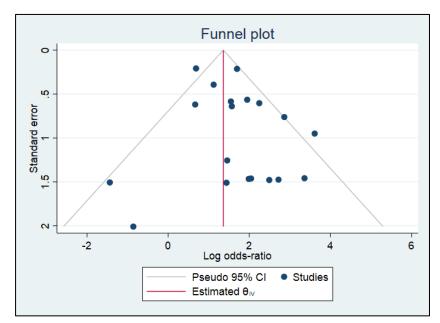
	Serum Am	voloid elevated	Serum Amy	loid not elevated		Odds F	tatio	Weight
Study	Severe disease	Non-severe disease	Severe disease	Non-severe disease		with 95	% CI	(%)
Serum Amyloid A > 1 mg/L								
Ji Mengyao @	14	19	55	69		0.92 [0.43,	2.01]	37.85
Heterogeneity: $\tau^2 = 0.00$, $I^2 = .%$	H ² = .				-	0.92 [0.43,	2.01]	
Test of $\theta_i = \theta_j$: Q(0) = 0.00, p = .								
Serum Amyloid A > 10mg/L								
Jin-jin Zhang	17	29	0	5		- 6.53 [0.34,	125.28]	4.06
Huan Li %	70	53	2	7		4.62 [0.92,	23.16]	12.44
Fengjuan Shi	8	58	0	16		4.79 [0.26,	87.49]	4.20
Ling Hu %	21	14	135	122		1.36 [0.66,	2.78]	41.46
Heterogeneity: $\tau^2 = 0.28$, $I^2 = 27$.	08%, H ² = 1.37					2.39 [0.92,	6.22]	
Test of $\theta_i = \theta_j$: Q(3) = 3.07, p = 0.	38							
Overall					-	1.54 [0.84,	2.82]	
Heterogeneity: $\tau^2 = 0.10$, $I^2 = 19$.	73%, H ² = 1.25							
Test of $\theta_i = \theta_j$: Q(4) = 4.95, p = 0.	29							
Test of group differences: Q _b (1) :	= 2.30, p = 0.13							
					1.00	_		
Random-effects REML model								


eFigure 123. Pooled Odds of severity in patients with Increased IL-6- Forest plot


	IL-6	Elevated	IL-6 r	not elevated		Odds Ratio	Weight
Study	Severe disease	Non-severe disease	Severe disease	Non-severe disease		with 95% CI	(%)
IL-6 > 7 pg/mL							
Xiaochen Li	114	107	23	63		2.92 [1.69, 5.04	40.73
Fang Liu ^	32	63	1	44		22.35 [2.94, 169.70	24.20
Xin Ying Zhao	6	12	24	49		1.02 [0.34, 3.05	35.07
Heterogeneity: T	² = 1.38, I ² = 82.00	0%, H ² = 5.55				3.30 [0.73, 14.93]
Test of $\theta_i = \theta_j$: Q	(2) = 7.28, p = 0.0	3					
Overall						3.30 [0.73, 14.93]
Heterogeneity: т	² = 1.38, I ² = 82.00	0%, H ² = 5.55					
Test of $\theta_i = \theta_j$: Q	(2) = 7.28, p = 0.0	3					
Test of group dif	ferences: Q _b (0) =	0.00, p = .					
					1.00		
Random-effects F	REML model						


eFigure 124. Pooled Odds of severity in patients with Increased NT-ProBNP- Forest plot


eFigure 125. Pooled Odds of severity in patients with Elevated troponin- Forest plot



eFigure 127 Pooled Odds ratio of severe disease in patients with radiological bilateral lung involvement a) Forest plot b) Funnel Plot

127b

eFigure 128 Pooled Odds ratio of severe disease in patients with consolidation - Forest plot

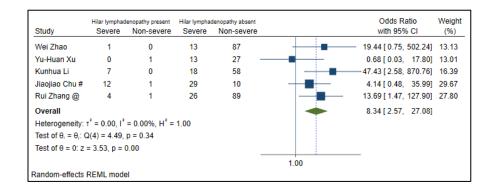
Study	Consolid Severe	ation present Non-severe	Consolio Severe	lation absent Non-severe		Odds Ratio with 95% CI	Weight (%)
Wei Zhao	8	36	6	51		1.89 [0.60, 5.91]	12.41
Yun Feng	19	68	96	259	-	0.75 [0.43, 1.32]	15.14
Kai-Cai Liu	8	0	16	49		51.00 [2.79, 932.53]	5.39
Yu-Huan Xu	9	6	4	22		8.25 [1.87, 36.38]	10.67
Peijie Lyu	36	7	3	5		8.57 [1.66, 44.38]	9.89
Kunhua Li	22	31	3	27		6.39 [1.72, 23.72]	11.53
Jiaojiao Chu #	4	2	37	9 -		0.49 [0.08, 3.08]	8.97
Ji Mengyao @	8	10	43	60		1.12 [0.41, 3.06]	13.09
Rui Zhang @	25	37	5	53	- -	7.16 [2.51, 20.43]	12.89
Overall Heterogeneity: T Test of $\theta_i = \theta_i$: Q Test of $\theta = 0$: z =	(8) = 34.92	2, p = 0.00	= 4.10	-	•	3.01 [1.32, 6.88]	
					1.00		
Random-effects F	REML mod	el					

eFigure 129 Pooled Odds ratio of severe disease in patients with ground glass opacity - Forest plot

	-	glass Opacity		dglass Opacity		Odds R		Weight
Study	Severe	Non-severe	Severe	Non-severe		with 959	% CI	(%)
Wei Zhao	14	73	0	14		—5.72 [0.32,	101.40]	0.98
Guyi Wang	10	81	6	112		2.30 [0.81,	6.60]	6.67
Yun Feng	114	311	1	16		5.86 [0.77,	44.73]	1.93
Kai-Cai Liu	19	31	5	18		2.21 [0.70,	6.92]	5.73
Fang Zheng	20	62	10	69		2.23 [0.97,	5.12]	10.03
Lijun Sun	4	5	11	35		2.55 [0.58,	11.17]	3.55
Yu-Huan Xu	9	21	4	7		0.75 [0.17,	3.22]	3.66
Peijie Lyu	36	8	3	4		6.00 [1.12,	32.24]	2.78
Kunhua Li	25	56	0	2		2.26 [0.10,	48.72]	0.86
Jiaojiao Chu #	32	7	9	4		2.03 [0.48,	8.52]	3.76
Wei-jie Guan \$	101	449	66	359	H	1.22 [0.87,	1.72]	34.32
Qingqing Chen &	29	60	14	42		1.45 [0.69,	3.07]	11.95
Ji Mengyao @	19	25	32	45		1.07 [0.51,	2.26]	11.97
Rui Zhang @	29	78	1	12		4.46 [0.56,	35.86]	1.83
Overall					•	1.63 [1.22,	2.17]	
Heterogeneity: T ² =	= 0.03, I ² =	= 10.96%, H ² =	1.12					
Test of $\theta_1 = \theta_1$: Q(1)	3) = 11.94	, p = 0.53						
Test of $\theta = 0$: $z = 3$.34, p = 0.	.00						
					1.00			
Random-effects RE	ML model							

eFigure 130 Pooled Odds ratio of severe disease in patients with mixed GGO - Forest plot

	Mixed	involvement	No mixed	l involvement		Odds Ratio	Weight
Study	Severe	Non-severe	Severe	Non-severe		with 95% CI	(%)
Wei Zhao	9	56	5	31		1.00 [0.31, 3.24]	53.72
Yu-Huan Xu	10	15	3	13		- 2.89 [0.65, 12.80]	33.64
Ji Mengyao @	2	1	49	69		2.82 [0.25, 31.93]	12.64
Overall						1.63 [0.69, 3.85]	
Heterogeneity: 1	² = 0.00, I	² = 0.00%, H ² :	= 1.00				
Test of $\theta_1 = \theta_1$: C	(2) = 1.43	, p = 0.49					
Test of $\theta = 0$: z =	= 1.10, p =	0.27					
					1.00		
andom-effects F	REML mod	lel					


eFigure 131 Pooled Odds ratio of severe disease in patients with air bronchogram - Forest plot

	Air-broncho	gram present	Air-bronch	ogram absent			Odds Ratio	Weight
Study	Severe	Non-severe	Severe	Non-severe			with 95% CI	(%)
Yu-Huan Xu	7	15	6	13 -	_	-	1.01 [0.27, 3.78]	24.10
Peijie Lyu	29	3	10	9			8.70 [1.96, 38.65]	22.85
Ji Mengyao @	28	25	23	45		_	2.19 [1.05, 4.58]	27.88
Rui Zhang @	19	5	11	85				25.17
Overall							4.79 [1.11, 20.61]	
Heterogeneity:	r ² = 1.85, I ² :	= 84.80%, H ² =	6.58					
Test of $\theta_i = \theta_i$: 0	Q(3) = 18.95,	p = 0.00						
Test of $\theta = 0$: z	= 2.10, p = 0	.04						
					1.00			
andom-effects	REMI mode							

eFigure 132 Pooled Odds ratio of severe disease in patients with nodular infilterates - Forest plot

	Nodul	ar infiltrates	No Nodi	ular infiltrates		Odds Ratio	Weight
Study	Severe	Non-severe	Severe	Non-severe		with 95% CI	(%)
Wei Zhao	3	20	11	67		0.91 [0.23, 3.60]	26.48
Kunhua Li	3	1	22	57			13.45
Jiaojiao Chu #	10	2	31	9		1.45 [0.27, 7.87]	20.83
Rui Zhang @	12	53	18	37		0.47 [0.20, 1.08]	39.24
Overall					-	1.03 [0.39, 2.73]	
Heterogeneity: 1	r ² = 0.45, I	² = 46.18%, H ²	= 1.86				
Test of $\theta_i = \theta_j$: C	Q(3) = 5.80	, p = 0.12					
Test of $\theta = 0$: z :	= 0.06, p =	0.95					
					1.00		
Random-effects I	REMI mod	1el					

eFigure 133 Pooled Odds ratio of severe disease in patients with consolidation - Forest plot

eFigure 134 Pooled Odds ratio of severe disease in patients with radiological unifocal involement - Forest plot

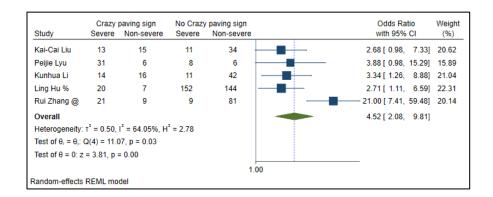
	Unifocal	involvement	No Unifoc	al involvement		Odds Ratio	Weight
Study	Severe	Non-severe	Severe	Non-severe		with 95% CI	(%)
Wei Zhao	0	6	14	81		-0.43 [0.02, 8.10]	8.24
Fang Zheng	19	94	11	37		0.68 [0.30, 1.57]	38.64
Wei-jie Guan \$	92	317	75	491	-	1.90 [1.36, 2.66]	53.12
Overall						1.13 [0.46, 2.81]	
Heterogeneity: T	= 0.38, I ²	= 65.88%, H ² =	2.93				
Test of $\theta_i = \theta_j$: Q(2) = 5.81,	p = 0.05					
Test of θ = 0: z = 0.26, p = 0.79							
					1.00	_	
andom-effects R	EML mode	4					

eFigure 135 Pooled Odds ratio of severe disease in patients with pleural effusion - Forest plot

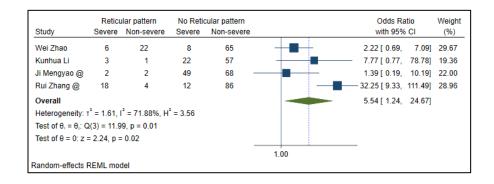
	Pleur	al effusion	No Pleu	Iral effusion		Odds R	atio	Weight
Study	Severe	Non-severe	Severe	Non-severe		with 959	6 CI	(%)
Wei Zhao	5	9	9	78		4.81 [1.32,	17.54]	26.16
Kai-Cai Liu	3	0	21	49		16.12 [0.80,	325.69]	4.84
Yu-Huan Xu	2	2	11	26		2.36 [0.29,	18.97]	10.08
Peijie Lyu	10	0	29	12		8.90 [0.48,	163.86]	5.15
Kunhua Li	7	0	18	58		- 47.43 [2.58,	870.76]	5.16
Jiaojiao Chu #	4	1	37	10 –		1.08 [0.11,	10.78]	8.26
Ji Mengyao @	12	5	39	65		4.00 [1.31,	12.21]	35.09
Rui Zhang @	9	0	21	90			1428.19]	5.26
Overall					-	5.30 [2.74,	10.26]	
Heterogeneity:	r ^a = 0.00,	I ² = 0.00%, H ²	= 1.00					
Test of $\theta_i = \theta_i$: O	Q(7) = 8.9	1, p = 0.26						
Test of $\theta = 0$: z =	= 4.94, p	= 0.00						
				-	1.00			
Random-effects I	REML mo	del						

eFigure 136 Pooled Odds ratio of severe disease in patients with interlobular septal thickening - Forest plot

Study	Interlobula Severe	r Thickening Non-severe	No Interlobu Severe	lar Thickening Non-severe		Odds Ratio with 95% Cl	Weight (%)
Yu-Huan Xu	13	20	0	8			11.45
Kunhua Li	19	33	6	25		2.40 [0.84, 6.89]	88.55
Overall Heterogeneity Test of $\theta_1 = \theta_1$ Test of $\theta = 0$:	Q(1) = 0.94		= 1.00			2.86 [1.06, 7.72]	
					1.00		
andom-effect	s REML mo	del					


eFigure 137 Pooled Odds ratio of severe disease in patients with bronchiectasis- Forest plot

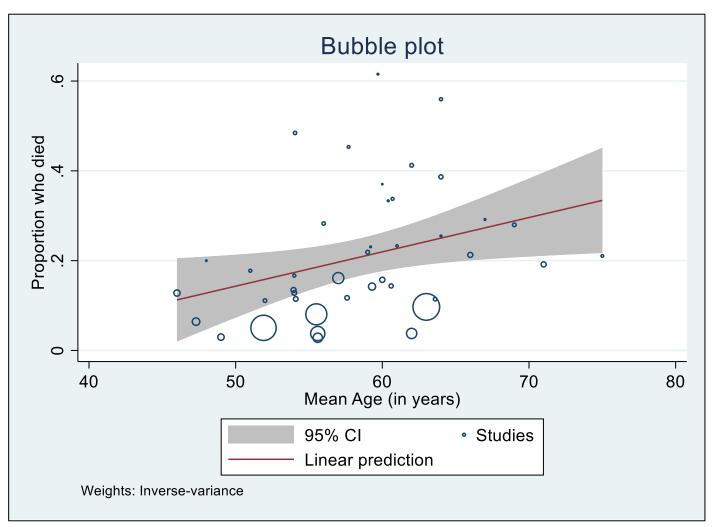
Study		chiectasis Non-severe		nchiectasis Non-severe			Odds Ratio with 95% CI	Weight (%)
Wei Zhao	12	41	2	46				35.67
Rui Zhang @	8	6	22	84		<u> </u>	5.09 [1.60, 16.21]	64.33
Overall							5.62 [2.22, 14.24]	
Heterogeneity	τ ² = 0.00), I ² = 0.00%,	H ² = 1.00					
Test of $\theta_1 = \theta_1$:	Q(1) = 0	.08, p = 0.78						
Test of $\theta = 0$: z	2 = 3.64,	p = 0.00						
				1.	00			
Random-effects	REML n	nodel						

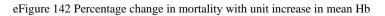

eFigure 138 Pooled Odds ratio of severe disease in patients with Linear opacity - Forest plot

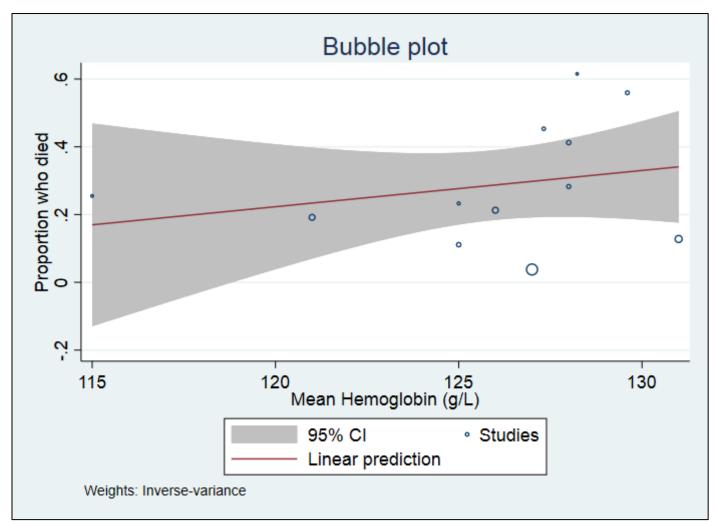
	Line	ar opacity	No Lin	ear opacity		Odds Ratio	Weight
Study	Severe	Non-severe	Severe	Non-severe		with 95% CI	(%)
Kunhua Li	23	31	2	27			25.95
Ji Mengyao @	32	40	19	30		1.26 [0.60, 2.65]	39.80
Rui Zhang @	25	50	5	40		4.00 [1.40, 11.39]	34.25
Overall						3.21 [1.00, 10.25]	
Heterogeneity: 1	² = 0.74, I	² = 71.79%, H	² = 3.55				
Test of $\theta_i = \theta_i$: C	(2) = 7.13	, p = 0.03					
Test of $\theta = 0$: z =	= 1.97, p =	0.05					
					1.00		
andom-effects F	REML mod	lel					

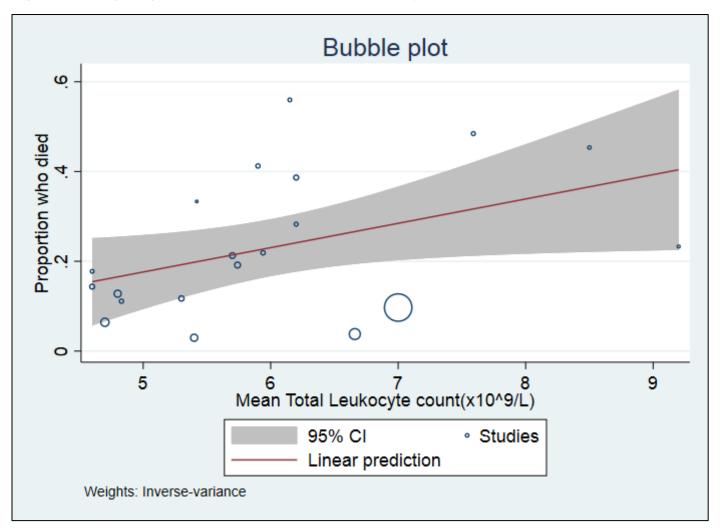
eFigure 139 Pooled Odds ratio of severe disease in patients with crazy pavement sign - Forest plot

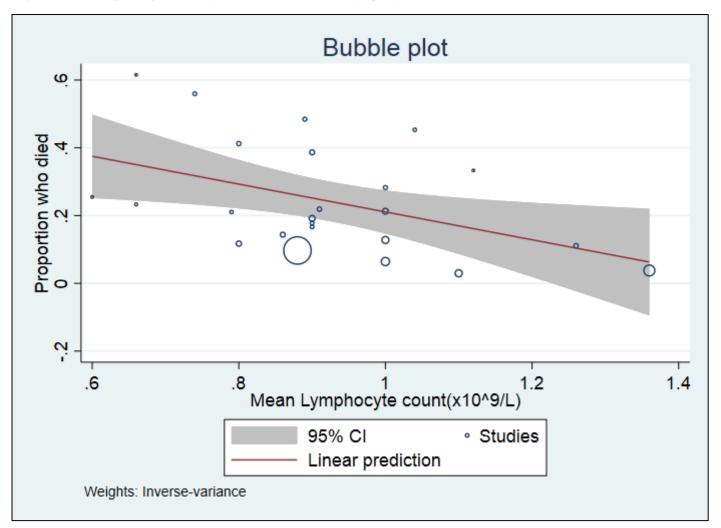
eFigure 140 Pooled Odds ratio of severe disease in patients with reticular pattern - Forest plot

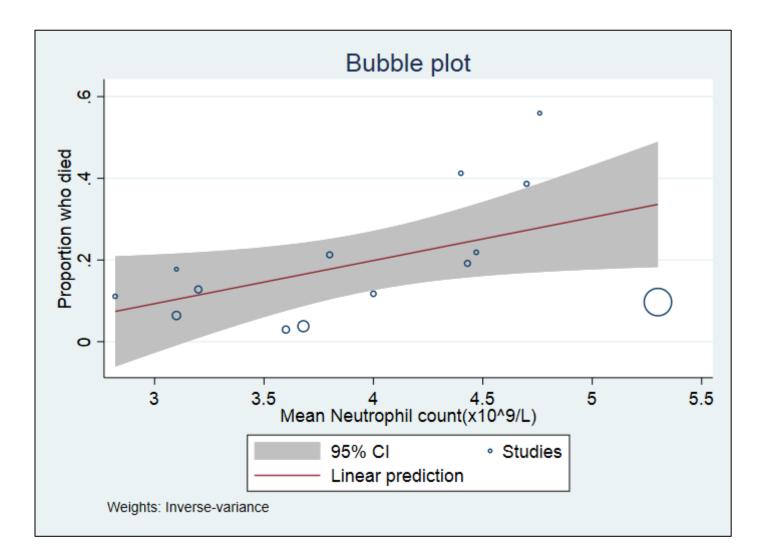


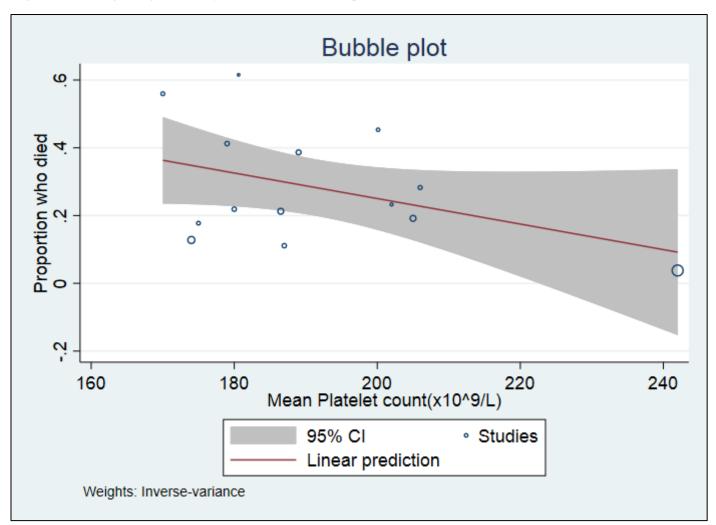

Section VII

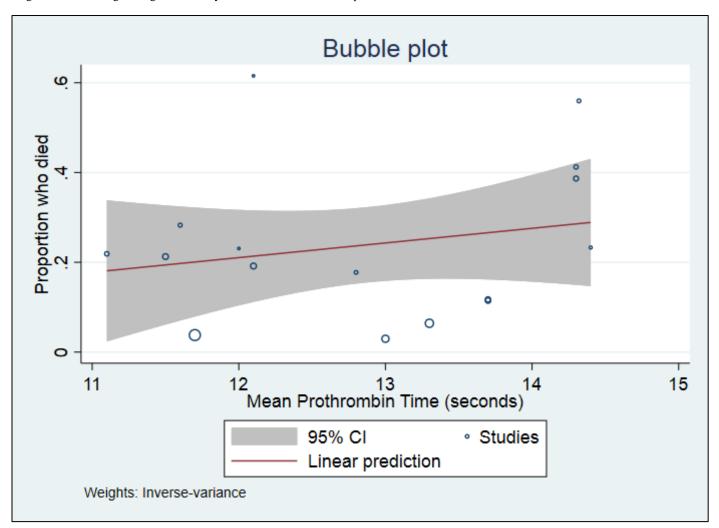

Supplementary figures


Association of clinical and laboratory characteristics as continuous variables with mortality and severe disease in patients with COVID 19

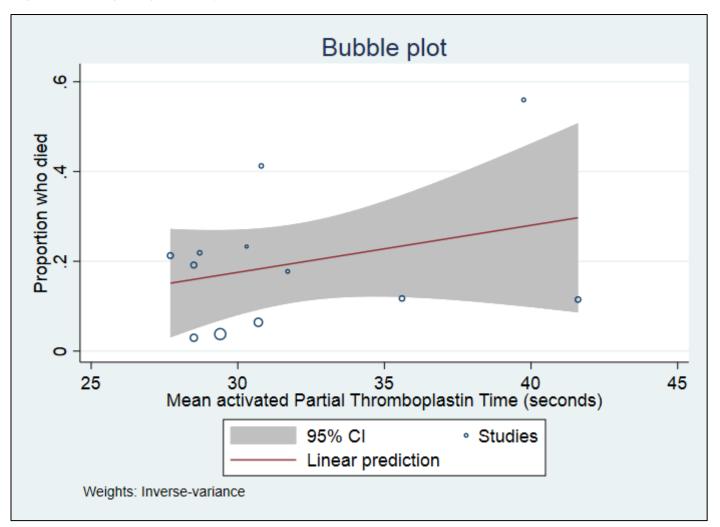


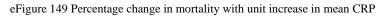



eFigure 143 Percentage change in mortality with unit increase in mean Total leukocyte count

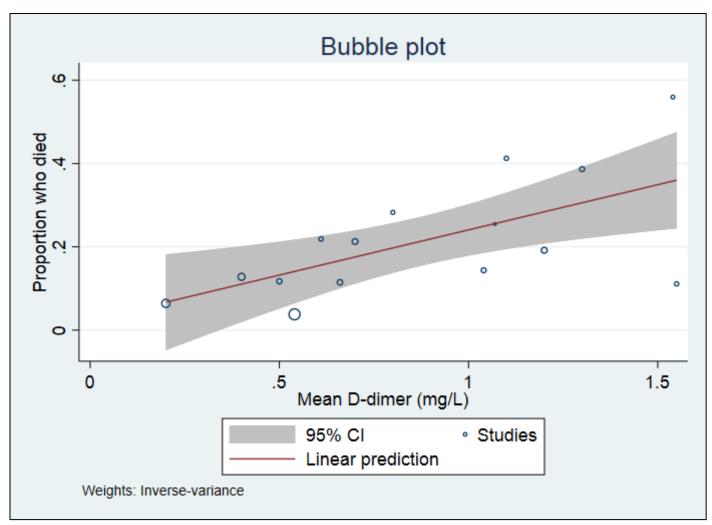

eFigure 144 Percentage change in mortality with unit increase in mean lymphocyte count

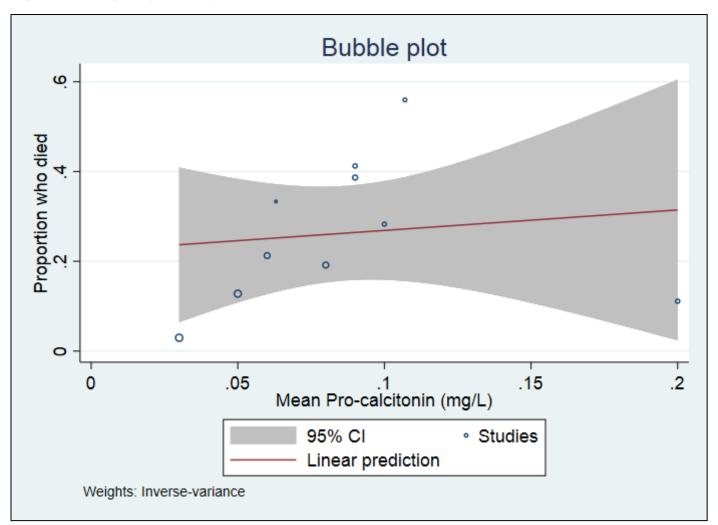
eFigure 145 Percentage change in mortality with unit increase in mean neutrophil count

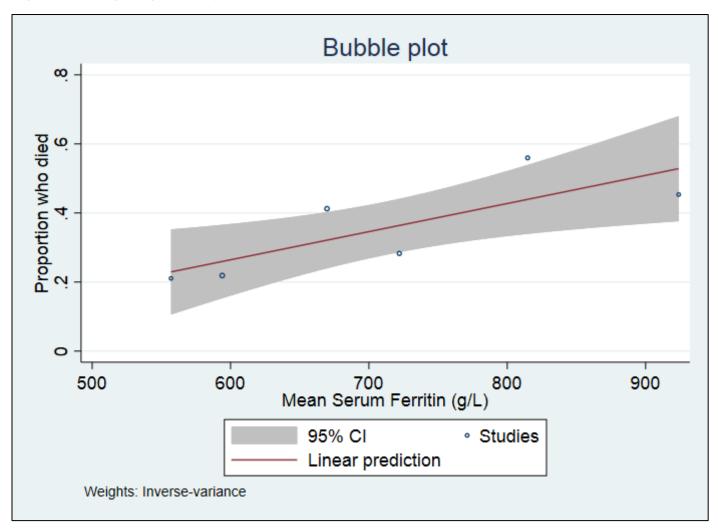


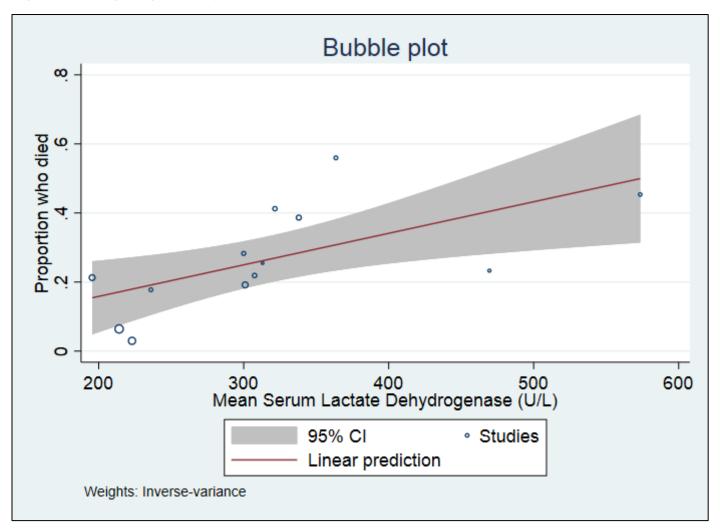

eFigure 146 Percentage change in mortality with unit increase in mean platelet count

eFigure 147 Percentage change in mortality with unit increase in mean prothrombin time

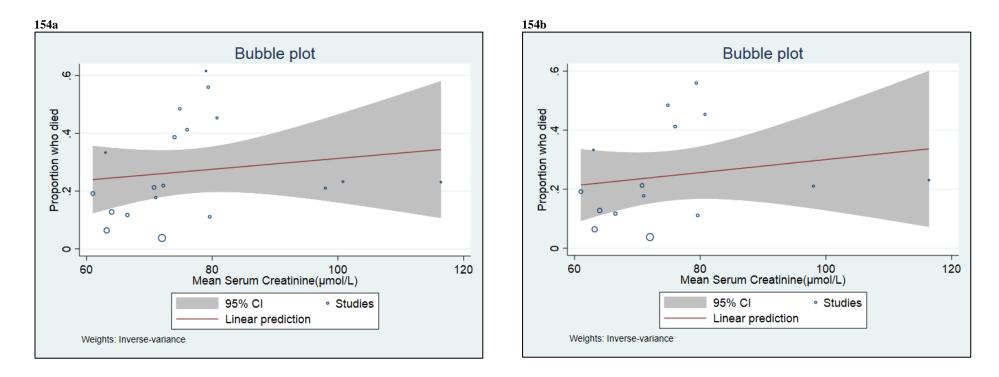

eFigure 148 Percentage change in mortality with unit increase in mean aPTT

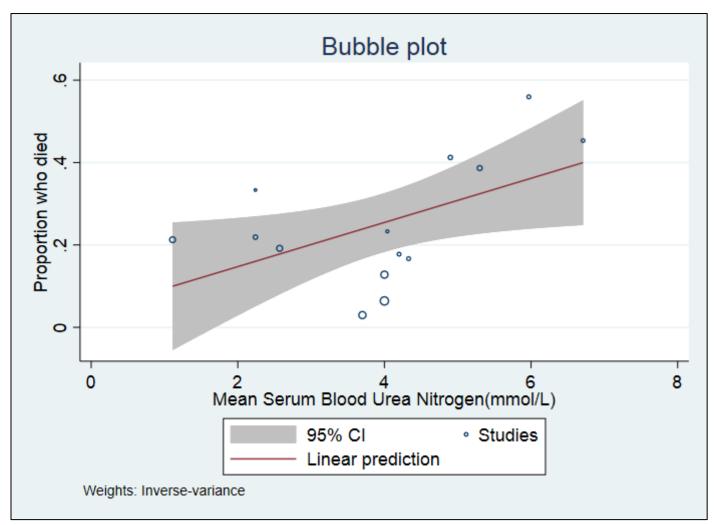


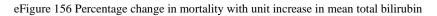


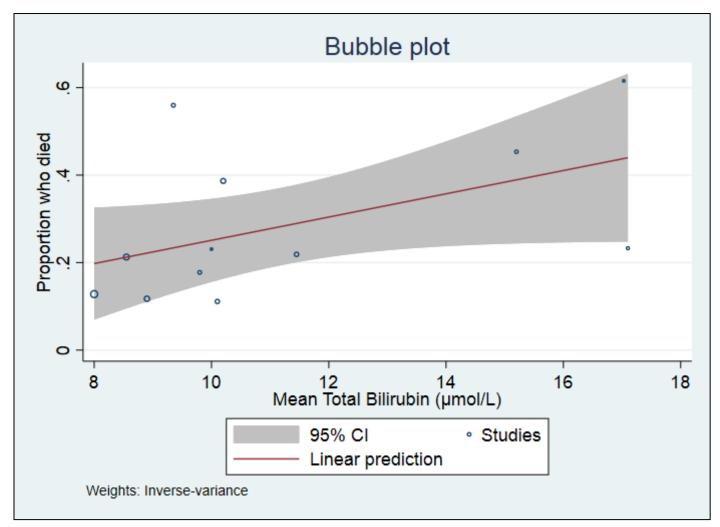


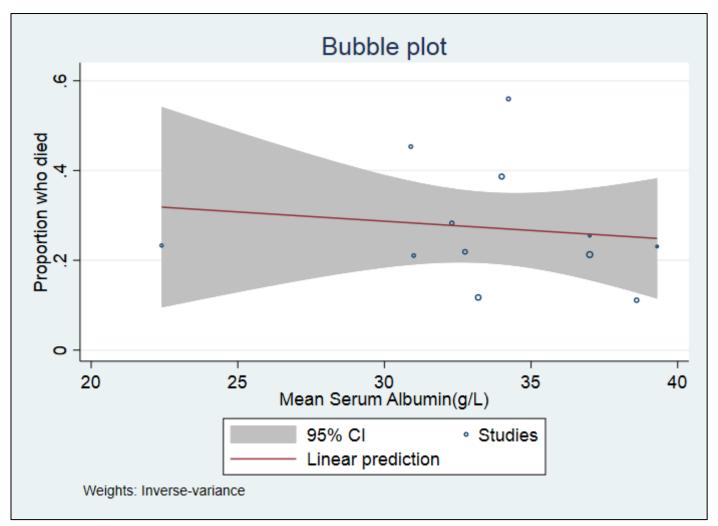
eFigure 151 Percentage change in mortality with unit increase in mean Pro-calcitonin

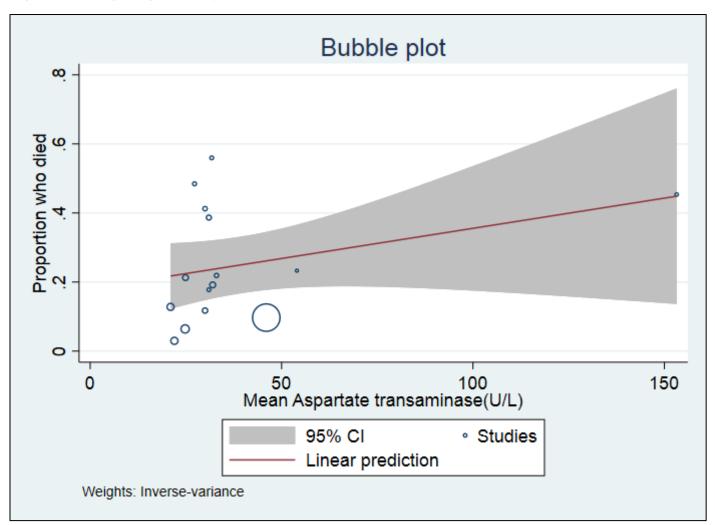

eFigure 152 Percentage change in mortality with unit increase in mean serum ferritin

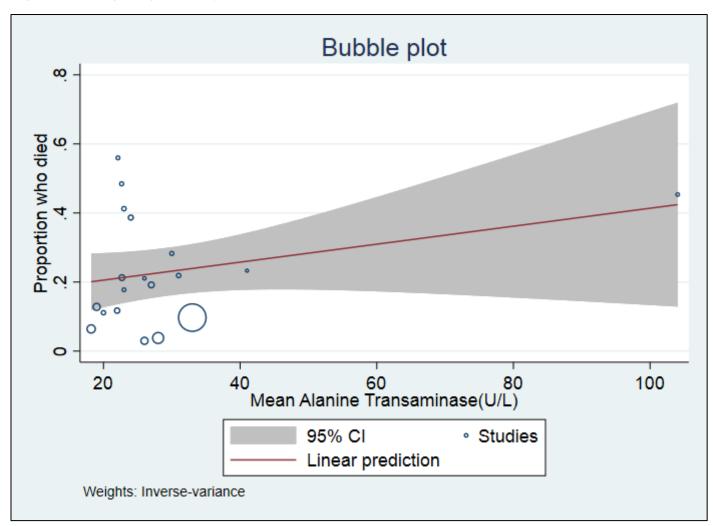

eFigure 153 Percentage change in mortality with unit increase in mean serum LDH

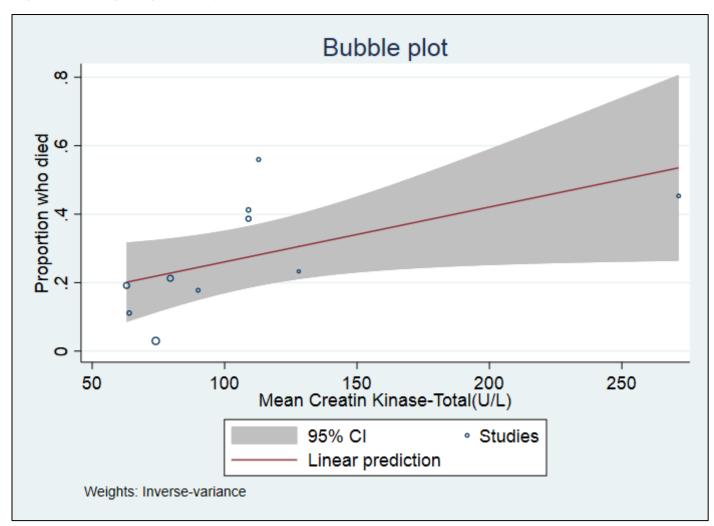


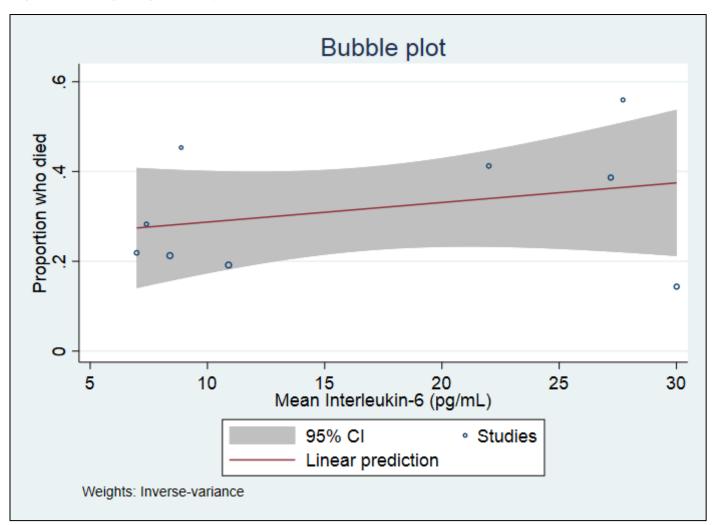

eFigure 154 Percentage change in mortality with unit increase in mean a) Serum creatinine b) Serum creatinine excluding critical patients

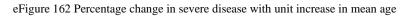


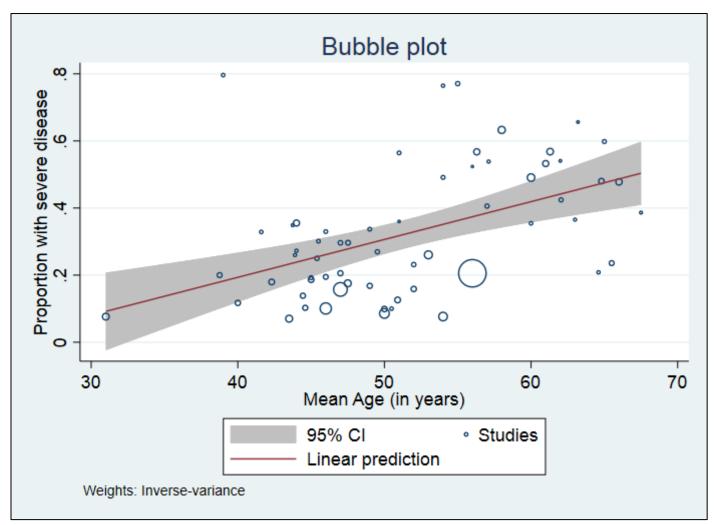


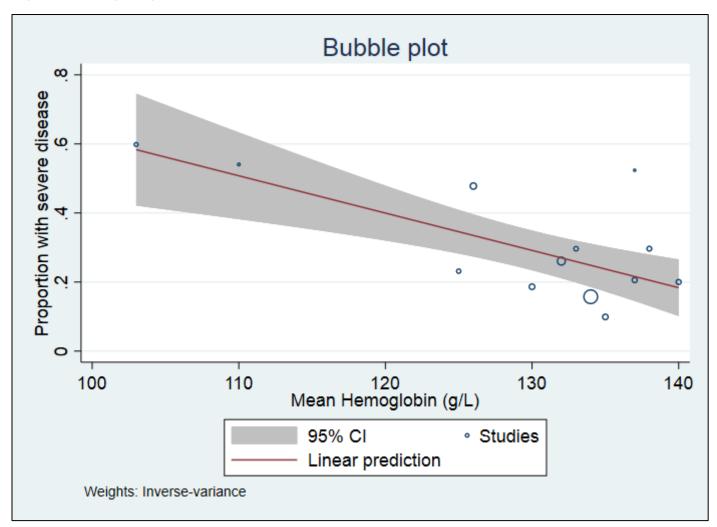


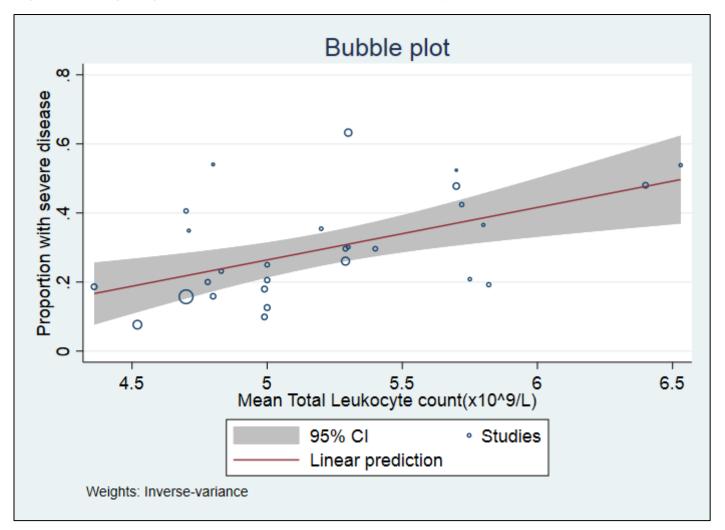

eFigure 158 Percentage change in mortality with unit increase in mean AST

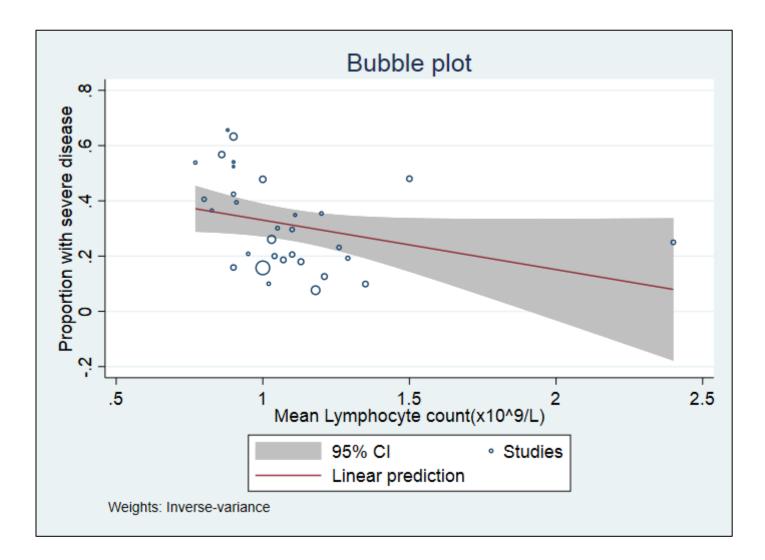

eFigure 159 Percentage change in mortality with unit increase in mean ALT

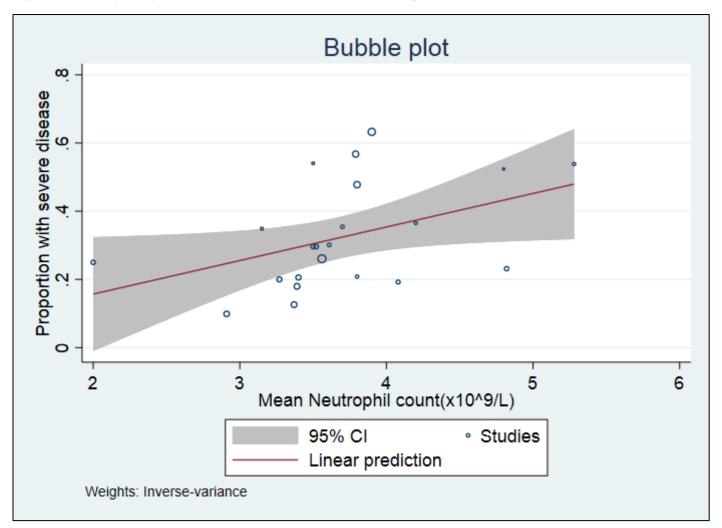


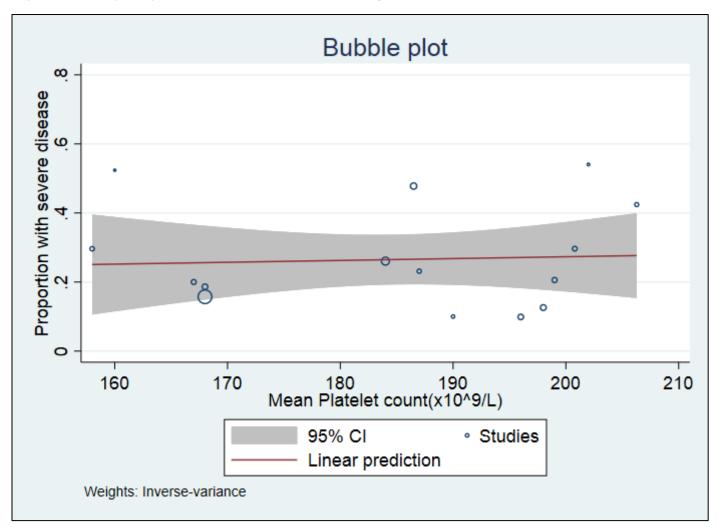

eFigure 160 Percentage change in mortality with unit increase in mean CK Total


eFigure 161 Percentage change in mortality with unit increase in mean IL6

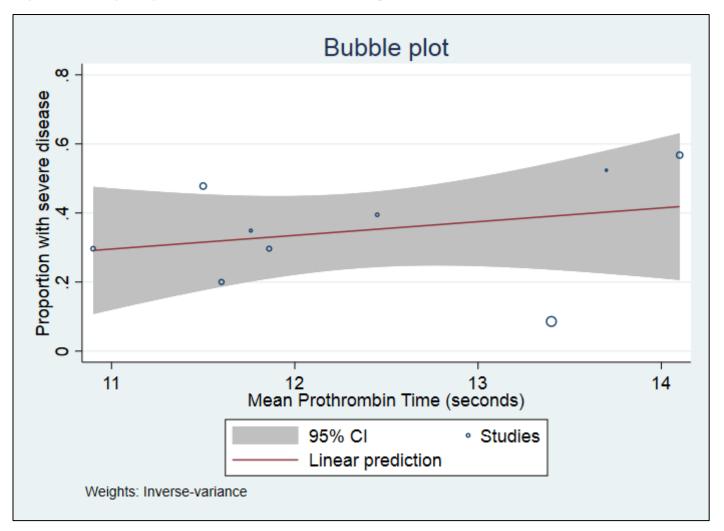



eFigure 163 Percentage change in severe disease with unit increase in mean Hb

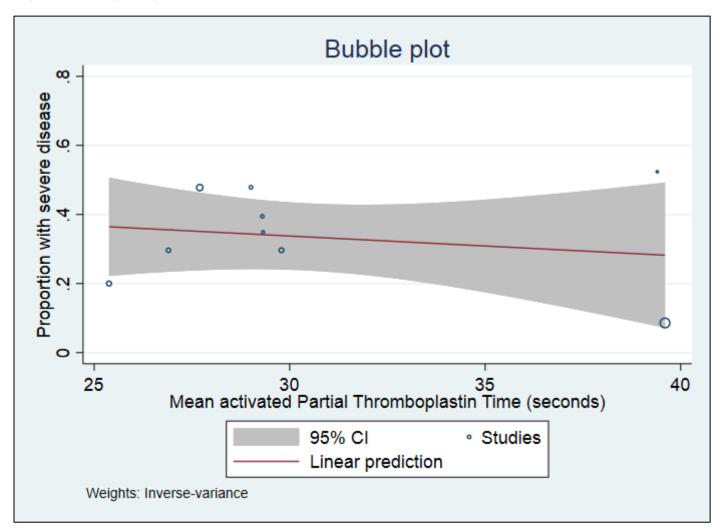


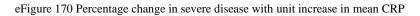

eFigure 164 Percentage change in severe disease with unit increase in mean Total Leukocyte count

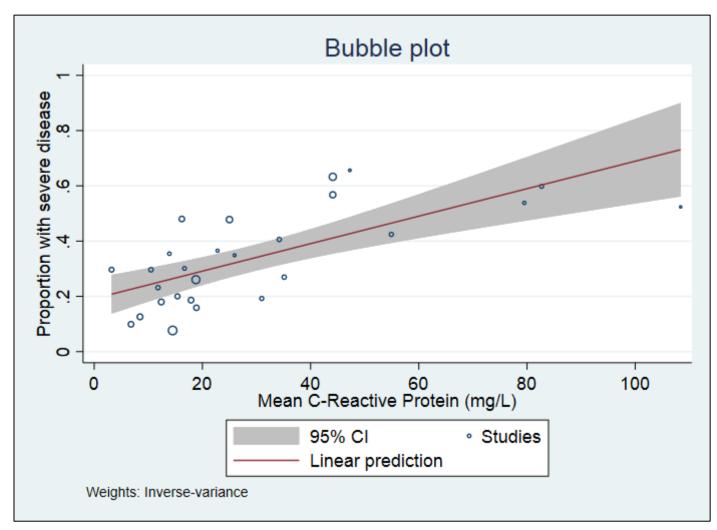
eFigure 165 Percentage change in severe disease with unit increase in mean Lymphocyte count

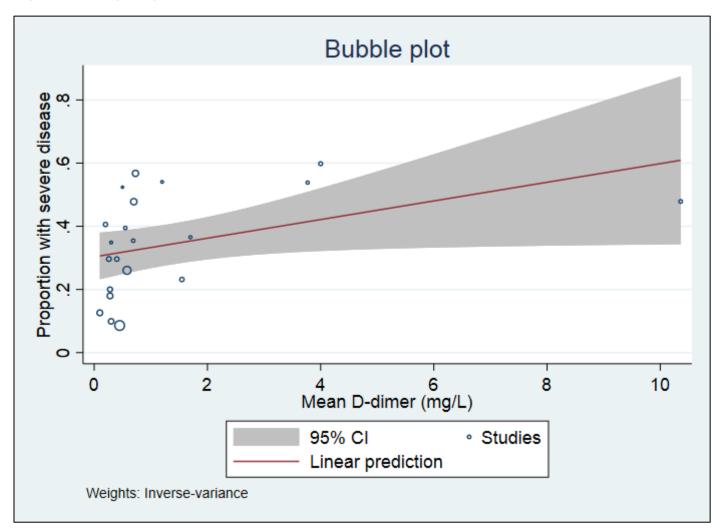


eFigure 166 Percentage change in severe disease with unit increase in mean Neutrophil count

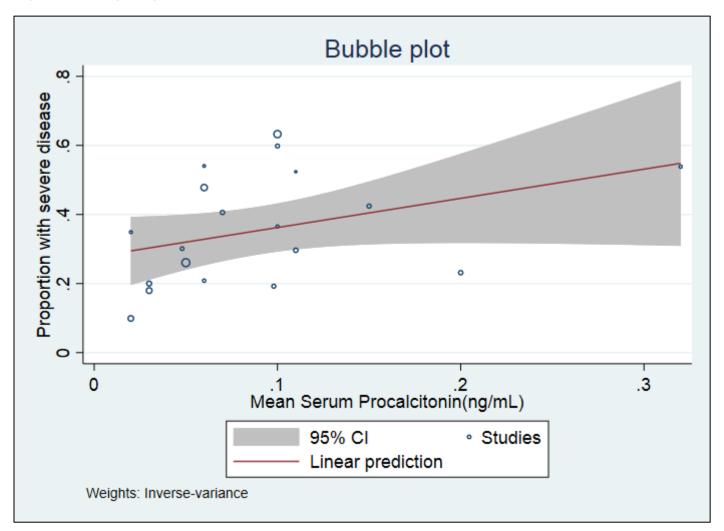


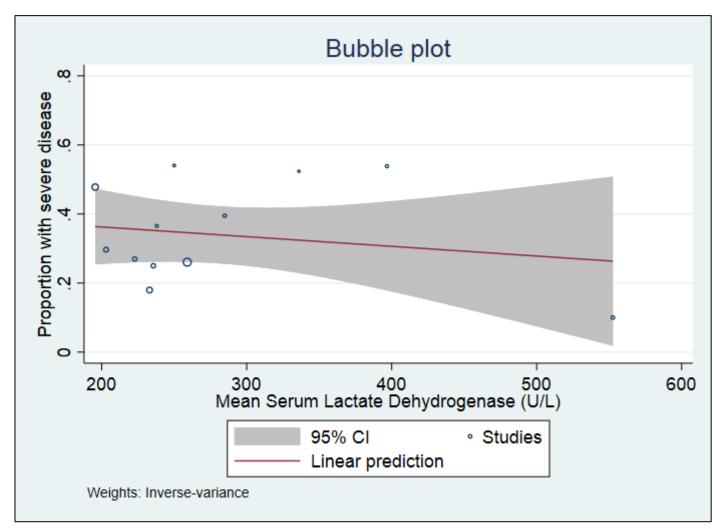

eFigure 167 Percentage change in severe disease with unit increase in mean platelet count

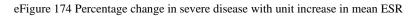


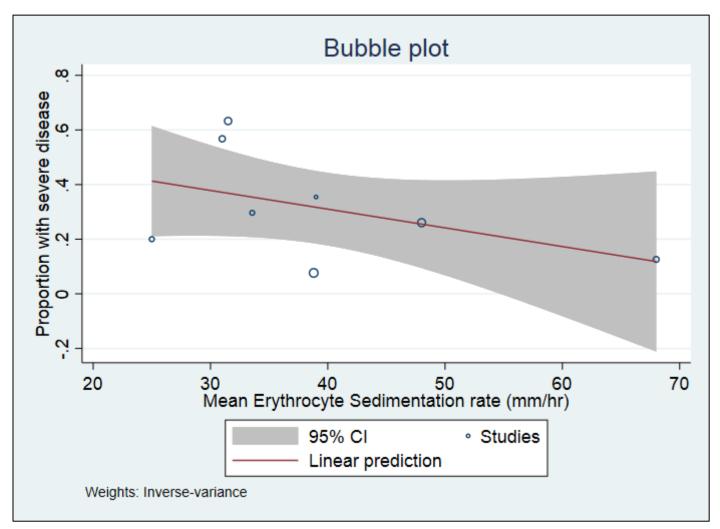

eFigure 168 Percentage change in severe disease with unit increase in mean prothrombin time

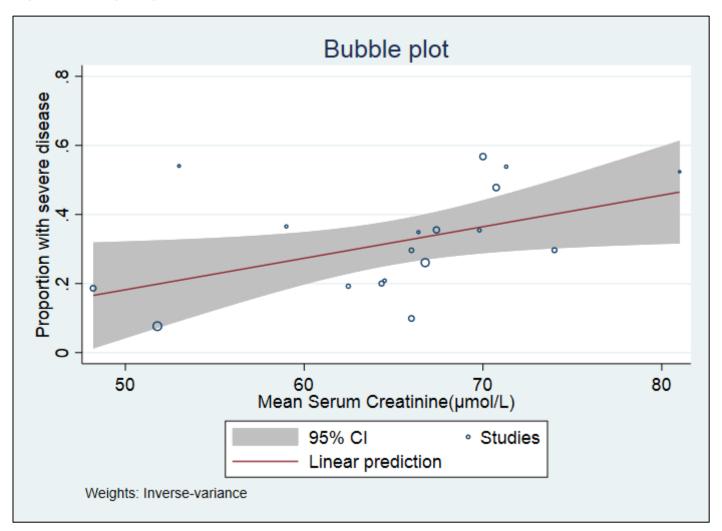
eFigure 169 Percentage change in severe disease with unit increase in mean aPTT

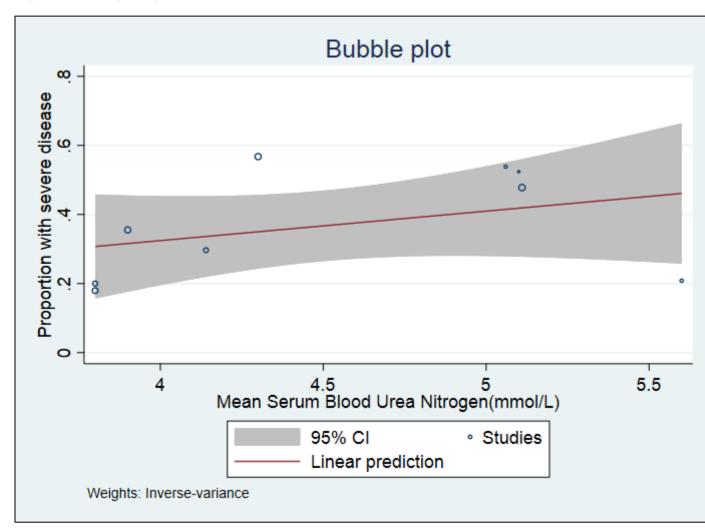


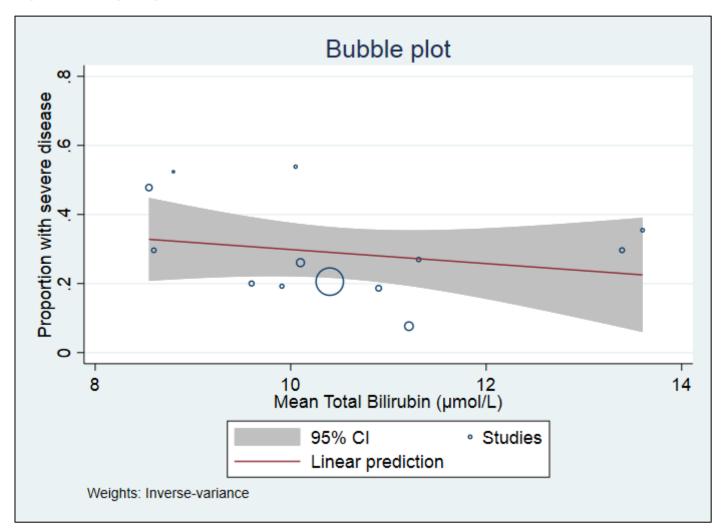



eFigure 171 Percentage change in severe disease with unit increase in mean D Dimer

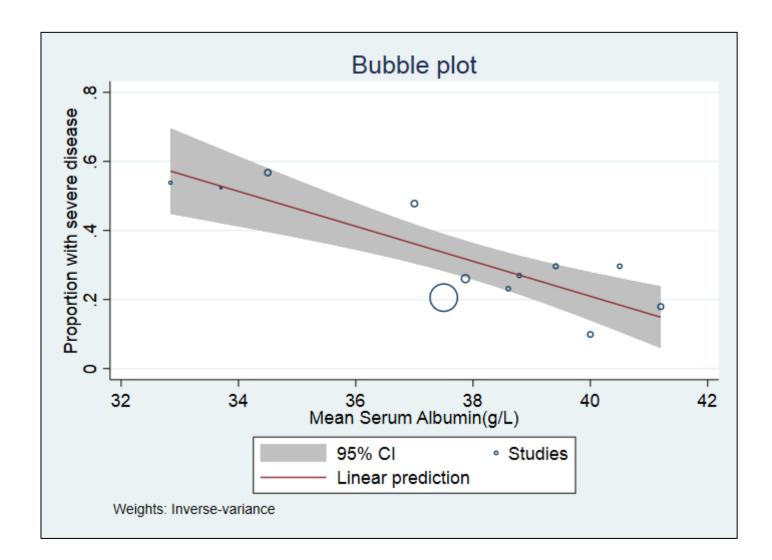



eFigure 172 Percentage change in severe disease with unit increase in mean Pro-calcitonin

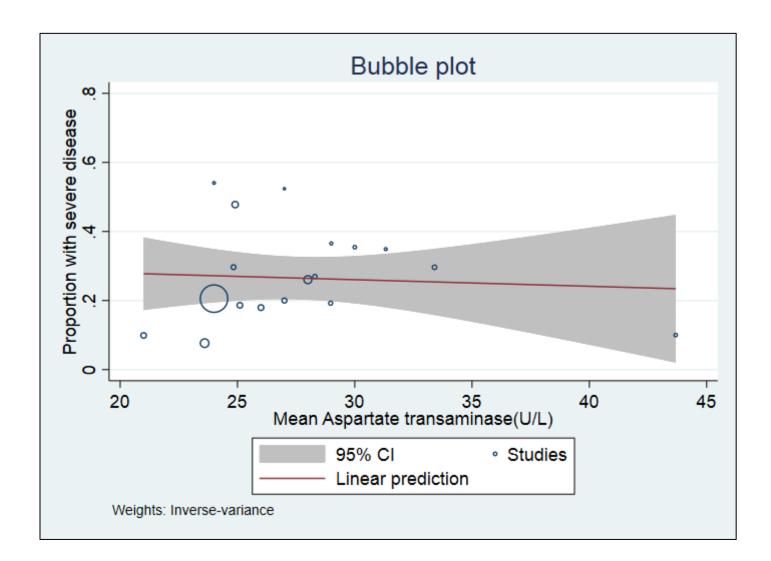




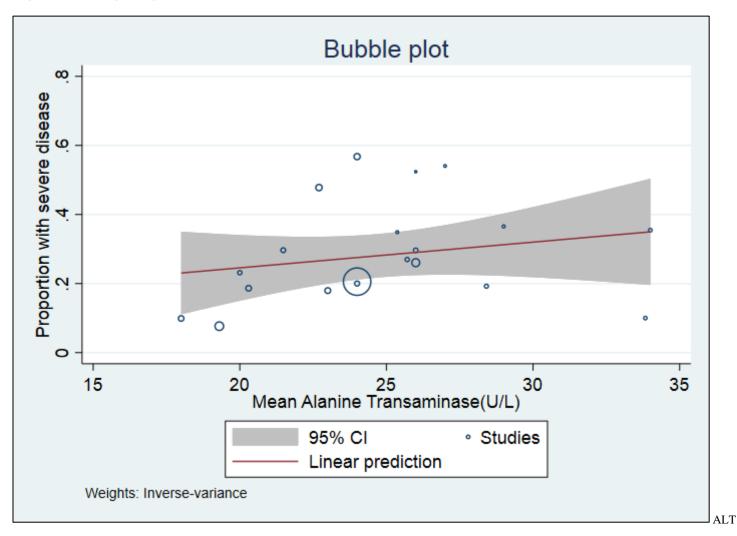
eFigure 175 Percentage change in severe disease with unit increase in mean serum creatinine

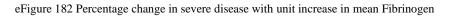


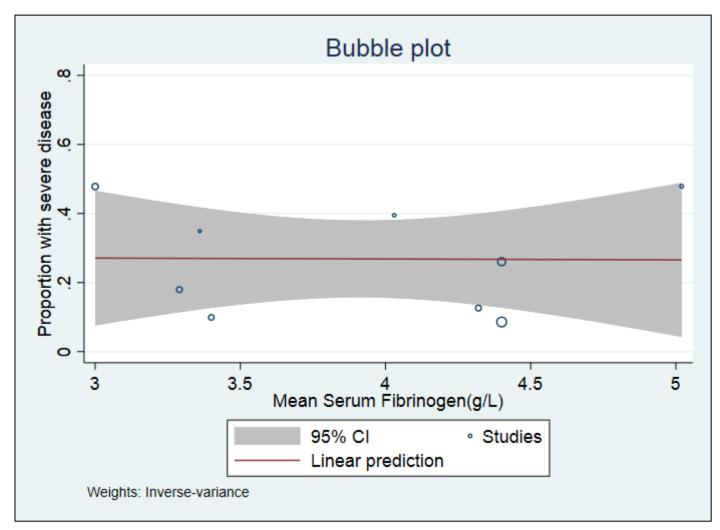
eFigure 176 Percentage change in severe disease with unit increase in mean serum BUN

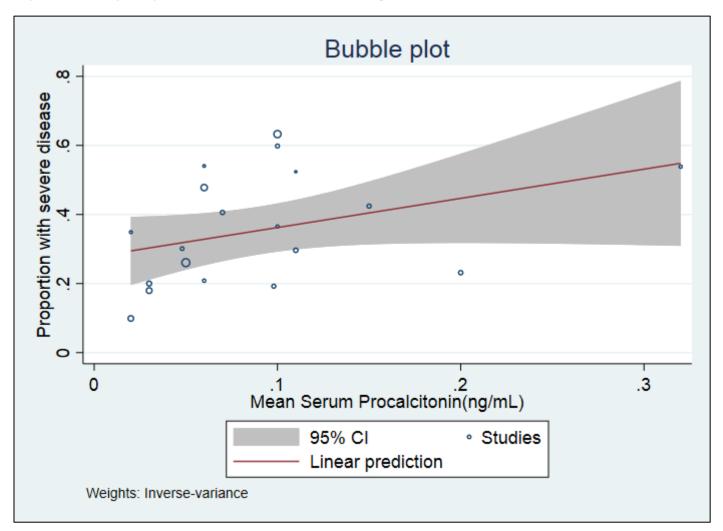


eFigure 178 Percentage change in severe disease with unit increase in mean total bilirubin

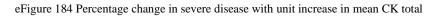

eFigure 179 Percentage change in severe disease with unit increase in mean serum albumin

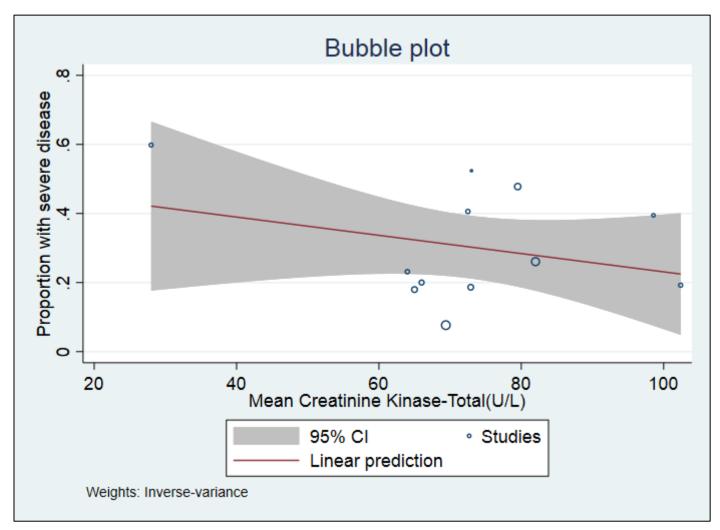


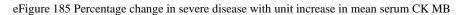

eFigure 180 Percentage change in severe disease with unit increase in mean AST

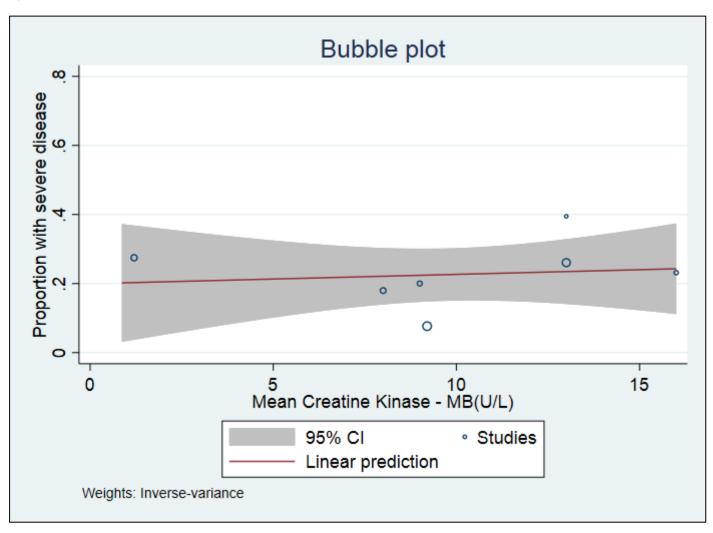


eFigure 181 Percentage change in severe disease with unit increase in mean ALT









eFigure 183 Percentage change in severe disease with unit increase in mean procalcitonin

Section VII

Supplementary table 6A: Definitions of "severe disease"

Source	Definition
American Thoracic Society guidelines for community-acquired pneumonia(110)	 Validated definition includes either one major criterion or three or more minor criteria Minor criteria Respiratory rate > 30 breaths/min PaO2/FIO2 ratio < 250 Multi lobar infiltrates Confusion/disorientation Uremia (blood urea nitrogen level > 20 mg/dl) Leukopenia* (white blood cell count, 4,000 cells/ml) Thrombocytopenia (platelet count, 100,000/ml) Hypothermia (core temperature, 368C) Hypotension requiring aggressive fluid resuscitation Major criteria Septic shock with need for vasopressors Respiratory failure requiring mechanical ventilation
Chinese National Health Commission guidelines(111)	Severe patients met any of the following condition:
Severe disease in our review had features of "severe" or "critical" patients according to the CNHC guidelines.	 respiratory rate ≥30 breaths per minute. oxygen saturation≤93% in a resting state; arterial oxygen tension (PaO₂)/inspiratory oxygen fraction (FiO₂) ≤300 mmHg; respiratory failure respiratory failure and requiring mechanical ventilation shock patients with other organ failure needing intensive care unit monitoring and treatment.

Supplementary table 6B: Definitions of complications assessed for association with mortality

Definitions of variables	Source
Sepsis and Shock	Third International Consensus Definition for Sepsis and Septic Shock(112)
Acute cardiac injury	Fourth universal definition of myocardial infarction Consensus Document(113)
Acute Respiratory Distress Syndrome (ARDS)	The Berlin Definition of Acute Respiratory Distress Syndrome(114)
Acute Kidney Injury (AKI)	KDIGO definition for AKI(115)

Section VIII

References for the supplementary document:

- 1. Yang X, Yu Y, Xu J, Shu H, Xia J, Liu H, et al. Clinical course and outcomes of critically ill patients with SARS-CoV-2 pneumonia in Wuhan, China: a single-centered, retrospective, observational study. The Lancet Respiratory Medicine. 2020 May;8(5):475–81.
- 2. Chen T, Wu D, Chen H, Yan W, Yang D, Chen G, et al. Clinical characteristics of 113 deceased patients with coronavirus disease 2019: retrospective study. BMJ. 2020 Mar 26;m1091.
- 3. Tang N, Li D, Wang X, Sun Z. Abnormal coagulation parameters are associated with poor prognosis in patients with novel coronavirus pneumonia. Journal of Thrombosis and Haemostasis. 2020 Apr;18(4):844–7.
- 4. Ruan Q, Yang K, Wang W, Jiang L, Song J. Clinical predictors of mortality due to COVID-19 based on an analysis of data of 150 patients from Wuhan, China. Intensive Care Medicine. 2020 May;46(5):846–8.
- 5. Wu C, Chen X, Cai Y, Xia J, Zhou X, Xu S, et al. Risk Factors Associated With Acute Respiratory Distress Syndrome and Death in Patients With Coronavirus Disease 2019 Pneumonia in Wuhan, China. JAMA Internal Medicine [Internet]. 2020 Mar 13 [cited 2020 May 25]; Available from: https://jamanetwork.com/journals/jamainternalmedicine/fullarticle/2763184
- 6. Li Y, Peng S, Li L, Wang Q, Ping W, Zhang N, et al. Clinical and Transmission Characteristics of Covid-19 A Retrospective Study of 25 Cases from a Single Thoracic Surgery Department. Current Medical Science. 2020 Apr;40(2):295–300.
- 7. Deng Y, Liu W, Liu K, Fang Y-Y, Shang J, zhou L, et al. Clinical characteristics of fatal and recovered cases of coronavirus disease 2019 (COVID-19) in Wuhan, China: a retrospective study. Chinese Medical Journal. 2020 Mar;1.
- 8. Yuan M, Yin W, Tao Z, Tan W, Hu Y. Association of radiologic findings with mortality of patients infected with 2019 novel coronavirus in Wuhan, China. PLOS ONE. 2019;10.
- 9. Zhou F, Yu T, Du R, Fan G, Liu Y, Liu Z, et al. Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: a retrospective cohort study. The Lancet. 2020 Mar;395(10229):1054–62.

- Cao J, Tu W-J, Cheng W, Yu L, Liu Y-K, Hu X, et al. Clinical Features and Short-term Outcomes of 102 Patients with Corona Virus Disease 2019 in Wuhan, China. Clinical Infectious Diseases [Internet]. 2020 Apr 2 [cited 2020 May 25]; Available from: https://academic.oup.com/cid/advance-article/doi/10.1093/cid/ciaa243/5814897
- 11. Du R-H, Liang L-R, Yang C-Q, Wang W, Cao T-Z, Li M, et al. Predictors of mortality for patients with COVID-19 pneumonia caused by SARS-CoV-2: a prospective cohort study. European Respiratory Journal. 2020 May;55(5):2000524.
- 12. Tu W-J, Cao J, Yu L, Hu X, Liu Q. Clinicolaboratory study of 25 fatal cases of COVID-19 in Wuhan. Intensive Care Medicine [Internet]. 2020 Apr 6 [cited 2020 May 25]; Available from: http://link.springer.com/10.1007/s00134-020-06023-4
- 13. Wang L, He W, Yu X, Hu D, Bao M, Liu H, et al. Coronavirus disease 2019 in elderly patients: Characteristics and prognostic factors based on 4-week follow-up. Journal of Infection. 2020 Jun;80(6):639–45.
- 14. Wang Y, Lu X, Chen H, Chen T, Su N, Huang F, et al. Clinical Course and Outcomes of 344 Intensive Care Patients with COVID-19. American Journal of Respiratory and Critical Care Medicine [Internet]. 2020 Apr 8 [cited 2020 May 25]; Available from: https://www.atsjournals.org/doi/10.1164/rccm.202003-0736LE
- 15. Dai M, Liu D, Liu M, Zhou F, Li G, Chen Z, et al. Patients with cancer appear more vulnerable to SARS-COV-2: a multi-center study during the COVID-19 outbreak. Cancer Discovery. 2020 Apr 28;CD-20-0422.
- 16. Ding M, Zhang Q, Li Q, Wu T, Huang Y. Correlation analysis of the severity and clinical prognosis of 32 cases of patients with COVID-19. Respiratory Medicine. 2020 Jun;167:105981.
- 17. Barrasa H, Rello J, Tejada S, Martín A, Balziskueta G, Vinuesa C, et al. SARS-CoV-2 in Spanish Intensive Care Units: Early experience with 15-day survival in Vitoria. Anaesthesia Critical Care & Pain Medicine [Internet]. 2020 Apr [cited 2020 May 25]; Available from: https://linkinghub.elsevier.com/retrieve/pii/S2352556820300643
- Chen T, Dai Z, Mo P, Li X, Ma Z, Song S, et al. Clinical Characteristics and Outcomes of Older Patients with Coronavirus Disease 2019 (COVID-19) in Wuhan, China: A Single-Centered, Retrospective Study. Newman A, editor. The Journals of Gerontology: Series A [Internet]. 2020 Apr 11 [cited 2020 May 25]; Available from: https://academic.oup.com/biomedgerontology/advancearticle/doi/10.1093/gerona/glaa089/5819242
- Trujillo H, Caravaca-Fontán F, Sevillano Á, Gutiérrez E, Caro J, Gutiérrez E, et al. SARS-CoV-2 Infection in Hospitalized Patients With Kidney Disease. Kidney International Reports [Internet]. 2020 May [cited 2020 May 25]; Available from: https://linkinghub.elsevier.com/retrieve/pii/S2468024920312274

- 20. Webb GJ, Moon AM, Barnes E, Barritt AS, Marjot T. Determining risk factors for mortality in liver transplant patients with COVID-19. The Lancet Gastroenterology & Hepatology [Internet]. 2020 Apr [cited 2020 May 25]; Available from: https://linkinghub.elsevier.com/retrieve/pii/S2468125320301254
- 21. Yao Q, Wang P, Wang X, Qie G, Meng M, Tong X, et al. Retrospective study of risk factors for severe SARS-Cov-2 infections in hospitalized adult patients. Polish Archives of Internal Medicine [Internet]. 2020 Apr 24 [cited 2020 May 25]; Available from: https://www.mp.pl/paim/issue/article/15312
- 22. Wei F, Wang H, Huang H, Luo C, Zhou X, Xu N, et al. Acute myocardial injury is common in patients with covid-19 and impairs their prognosis. :6.
- 23. Tomlins J, Hamilton F, Gunning S, Sheehy C, Moran E, MacGowan A. Clinical features of 95 sequential hospitalised patients with novel coronavirus 2019 disease (COVID-19), the first UK cohort. Journal of Infection [Internet]. 2020 Apr [cited 2020 May 25]; Available from: https://linkinghub.elsevier.com/retrieve/pii/S0163445320302322
- 24. Yang X, Yang Q, Wang Y, Wu Y, Xu J, Yu Y, et al. Thrombocytopenia and its association with mortality in patients with COVID-19. Journal of Thrombosis and Haemostasis [Internet]. 2020 May 4 [cited 2020 May 25]; Available from: https://onlinelibrary.wiley.com/doi/abs/10.1111/jth.14848
- 25. Yang R, Gui X, Zhang Y, Xiong Y. The role of essential organ-based comorbidities in the prognosis of COVID-19 infection patients. Expert Review of Respiratory Medicine. 2020 Apr 28;1–4.
- 26. Richardson S, Hirsch JS, Narasimhan M, Crawford JM, McGinn T, Davidson KW, et al. Presenting Characteristics, Comorbidities, and Outcomes Among 5700 Patients Hospitalized With COVID-19 in the New York City Area. JAMA [Internet]. 2020 Apr 22 [cited 2020 May 25]; Available from: https://jamanetwork.com/journals/jama/fullarticle/2765184
- 27. Gold JAW, Wong KK, Szablewski CM, Patel PR, Rossow J, da Silva J, et al. Characteristics and Clinical Outcomes of Adult Patients Hospitalized with COVID-19 — Georgia, March 2020. MMWR Morbidity and Mortality Weekly Report. 2020 May 8;69(18):545–50.
- 28. Gao L, Jiang D, Wen X, Cheng X, Sun M, He B, et al. Prognostic value of NT-proBNP in patients with severe COVID-19. Respiratory Research [Internet]. 2020 Dec [cited 2020 May 25];21(1). Available from: https://respiratory-research.biomedcentral.com/articles/10.1186/s12931-020-01352-w

- 29. Singh S, Khan A. Clinical Characteristics and Outcomes of COVID-19 Among Patients with Pre-Existing Liver Disease in United States: A Multi-Center Research Network Study. Gastroenterology [Internet]. 2020 May [cited 2020 May 25]; Available from: https://linkinghub.elsevier.com/retrieve/pii/S0016508520305850
- 30. Zangrillo A, Beretta L, Scandroglio AM, Monti G, Fominskiy E, Colombo S, et al. Characteristics, treatment, outcomes and cause of death of invasively ventilated patients with COVID-19 ARDS in Milan, Italy. Critical Care and Resuscitation. :12.
- 31. Yan Y, Yang Y, Wang F, Ren H, Zhang S, Shi X, et al. Clinical characteristics and outcomes of patients with severe covid-19 with diabetes. BMJ Open Diabetes Research & Care. 2020 Apr;8(1):e001343.
- 32. Wang K, Zuo P, Liu Y, Zhang M, Zhao X, Xie S, et al. Clinical and laboratory predictors of in-hospital mortality in patients with COVID-19: a cohort study in Wuhan, China. Clin Infect Dis [Internet]. [cited 2020 May 26]; Available from: https://academic.oup.com/cid/advance-article/doi/10.1093/cid/ciaa538/5828281
- 33. Wang K, Zhang Z, Yu M, Tao Y, Xie M. 15-day mortality and associated risk factors for hospitalized patients with COVID-19 in Wuhan, China: an ambispective observational cohort study. Intensive Care Medicine [Internet]. 2020 Apr 23 [cited 2020 May 25]; Available from: http://link.springer.com/10.1007/s00134-020-06047-w
- 34. Zhang L, Yan X, Fan Q, Liu H, Liu X, Liu Z, et al. D-dimer levels on admission to predict in-hospital mortality in patients with Covid-19. Journal of Thrombosis and Haemostasis [Internet]. 2020 Apr 19 [cited 2020 May 25]; Available from: https://onlinelibrary.wiley.com/doi/abs/10.1111/jth.14859
- 35. Wang D, Yin Y, Hu C, Liu X, Zhang X, Zhou S, et al. Clinical course and outcome of 107 patients infected with the novel coronavirus, SARS-CoV-2, discharged from two hospitals in Wuhan, China. Critical Care [Internet]. 2020 Dec [cited 2020 May 25];24(1). Available from: https://ccforum.biomedcentral.com/articles/10.1186/s13054-020-02895-6
- 36. Liu Y, Sun W, Guo Y, Chen L, Zhang L, Zhao S, et al. Association between platelet parameters and mortality in coronavirus disease 2019: Retrospective cohort study. Platelets. 2020 May 18;31(4):490–6.
- 37. Liu Y, Du X, Chen J, Jin Y, Peng L, Wang HHX, et al. Neutrophil-to-lymphocyte ratio as an independent risk factor for mortality in hospitalized patients with COVID-19. Journal of Infection [Internet]. 2020 Apr [cited 2020 May 25]; Available from: https://linkinghub.elsevier.com/retrieve/pii/S0163445320302085

- 38. Li J, Wang X, Chen J, Zhang H, Deng A. Association of Renin-Angiotensin System Inhibitors With Severity or Risk of Death in Patients With Hypertension Hospitalized for Coronavirus Disease 2019 (COVID-19) Infection in Wuhan, China. JAMA Cardiology [Internet]. 2020 Apr 23 [cited 2020 May 25]; Available from: https://jamanetwork.com/journals/jamacardiology/fullarticle/2765049
- 39. Nikpouraghdam M, Jalali Farahani A, Alishiri G, Heydari S, Ebrahimnia M, Samadinia H, et al. Epidemiological characteristics of coronavirus disease 2019 (COVID-19) patients in IRAN: A single center study. Journal of Clinical Virology. 2020 Jun;127:104378.
- 40. Zhang J, Wang X, Jia X, Li J, Hu K, Chen G, et al. Risk factors for disease severity, unimprovement, and mortality in COVID-19 patients in Wuhan, China. Clinical Microbiology and Infection. 2020 Jun;26(6):767–72.
- 41. Mehta V, Goel S, Kabarriti R, Cole D, Goldfinger M, Acuna-Villaorduna A, et al. Case Fatality Rate of Cancer Patients with COVID-19 in a New York Hospital System. Cancer Discovery. 2020 May 1;CD-20-0516.
- 42. Zou X, Li S, Fang M, Hu M, Bian Y, Ling J, et al. Acute Physiology and Chronic Health Evaluation II Score as a Predictor of Hospital Mortality in Patients of Coronavirus Disease 2019: Critical Care Medicine. 2020 May;1.
- 43. Guan W, Ni Z, Hu Y, Liang W, Ou C, He J, et al. Clinical Characteristics of Coronavirus Disease 2019 in China. New England Journal of Medicine. 2020 Apr 30;382(18):1708–20.
- 44. Xu Y-H, Dong J-H, An W-M, Lv X-Y, Yin X-P, Zhang J-Z, et al. Clinical and computed tomographic imaging features of novel coronavirus pneumonia caused by SARS-CoV-2. Journal of Infection. 2020 Apr;80(4):394–400.
- 45. Tian S, Hu N, Lou J, Chen K, Kang X, Xiang Z, et al. Characteristics of COVID-19 infection in Beijing. Journal of Infection. 2020 Apr;80(4):401–6.
- 46. Li K, Wu J, Wu F, Guo D, Chen L, Fang Z, et al. The Clinical and Chest CT Features Associated With Severe and Critical COVID-19 Pneumonia: Investigative Radiology. 2020 Jun;55(6):327–31.
- 47. Zhao W, Zhong Z, Xie X, Yu Q, Liu J. Relation Between Chest CT Findings and Clinical Conditions of Coronavirus Disease (COVID-19) Pneumonia: A Multicenter Study. American Journal of Roentgenology. 2020 May;214(5):1072–7.
- 48. Han H, Yang L, Liu R, Liu F, Wu K, Li J, et al. Prominent changes in blood coagulation of patients with SARS-CoV-2 infection. Clinical Chemistry and Laboratory Medicine (CCLM) [Internet]. 2020 Mar 16 [cited 2020 May 25];0(0). Available from: https://www.degruyter.com/view/journals/cclm/ahead-of-print/article-10.1515-cclm-2020-0188/article-10.1515-cclm-2020-0188.xml

- 49. Qian G-Q, Yang N-B, Ding F, Ma AHY, Wang Z-Y, Shen Y-F, et al. Epidemiologic and clinical characteristics of 91 hospitalized patients with COVID-19 in Zhejiang, China: a retrospective, multi-centre case series. QJM [Internet]. [cited 2020 May 26]; Available from: https://academic.oup.com/qjmed/advance-article/doi/10.1093/qjmed/hcaa089/5809152
- 50. Qu R, Ling Y, Zhang Y, Wei L, Chen X, Li X, et al. Platelet-to-lymphocyte ratio is associated with prognosis in patients with Corona Virus Disease-19. Journal of Medical Virology [Internet]. 2020 Mar 17 [cited 2020 May 25]; Available from: https://onlinelibrary.wiley.com/doi/abs/10.1002/jmv.25767
- 51. Gao Y, Li T, Han M, Li X, Wu D, Xu Y, et al. Diagnostic Utility of Clinical Laboratory Data Determinations for Patients with the Severe COVID-19. Journal of Medical Virology [Internet]. 2020 Mar 17 [cited 2020 May 25]; Available from: https://onlinelibrary.wiley.com/doi/abs/10.1002/jmv.25770
- 52. Liu K-C, Xu P, Lv W-F, Qiu X-H, Yao J-L, Gu J-F, et al. CT manifestations of coronavirus disease-2019: A retrospective analysis of 73 cases by disease severity. European Journal of Radiology. 2020 May;126:108941.
- 53. Wan S, Xiang Y, Fang W, Zheng Y, Li B, Hu Y, et al. Clinical features and treatment of COVID-19 patients in northeast Chongqing. Journal of Medical Virology [Internet]. 2020 Apr 1 [cited 2020 May 25]; Available from: http://doi.wiley.com/10.1002/jmv.25783
- 54. Shi Y, Yu X, Zhao H, Wang H, Zhao R, Sheng J. Host susceptibility to severe COVID-19 and establishment of a host risk score: findings of 487 cases outside Wuhan. Critical Care [Internet]. 2020 Dec [cited 2020 May 25];24(1). Available from: https://ccforum.biomedcentral.com/articles/10.1186/s13054-020-2833-7
- 55. Li K, Fang Y, Li W, Pan C, Qin P, Zhong Y, et al. CT image visual quantitative evaluation and clinical classification of coronavirus disease (COVID-19). European Radiology [Internet]. 2020 Mar 25 [cited 2020 May 25]; Available from: http://link.springer.com/10.1007/s00330-020-06817-6
- 56. Qin C, Zhou L, Hu Z, Zhang S, Yang S, Tao Y, et al. Dysregulation of Immune Response in Patients with COVID-19 in Wuhan, China. SSRN Electronic Journal [Internet]. 2020 [cited 2020 May 25]; Available from: https://www.ssrn.com/abstract=3541136
- 57. Huang L, Han R, Ai T, Yu P, Kang H, Tao Q, et al. Serial Quantitative Chest CT Assessment of COVID-19: Deep-Learning Approach. Radiology: Cardiothoracic Imaging. 2020 Apr 1;2(2):e200075.
- 58. Zhang J, Dong X, Cao Y, Yuan Y, Yang Y, Yan Y, et al. Clinical characteristics of 140 patients infected with SARS-CoV-2 in Wuhan, China. Allergy [Internet]. 2020 Feb 27 [cited 2020 May 25]; Available from: https://onlinelibrary.wiley.com/doi/abs/10.1111/all.14238

- 59. Zhang G, Zhang J, Wang B, Zhu X, Wang Q, Qiu S. Analysis of clinical characteristics and laboratory findings of 95 cases of 2019 novel coronavirus pneumonia in Wuhan, China: a retrospective analysis. Respiratory Research [Internet]. 2020 Dec [cited 2020 May 25];21(1). Available from: https://respiratory-research.biomedcentral.com/articles/10.1186/s12931-020-01338-8
- 60. Chen G, Wu D, Guo W, Cao Y, Huang D, Wang H, et al. Clinical and immunological features of severe and moderate coronavirus disease 2019. Journal of Clinical Investigation. 2020 Apr 13;130(5):2620–9.
- 61. Chu J, Yang N, Wei Y, Yue H, Zhang F, Zhao J, et al. Clinical characteristics of 54 medical staff with COVID-19: A retrospective study in a single center in Wuhan, China. Journal of Medical Virology [Internet]. 2020 Apr 6 [cited 2020 May 25]; Available from: https://onlinelibrary.wiley.com/doi/abs/10.1002/jmv.25793
- 62. Yuan J, Zou R, Zeng L, Kou S, Lan J, Li X, et al. The correlation between viral clearance and biochemical outcomes of 94 COVID-19 infected discharged patients. Inflammation Research. 2020 Jun;69(6):599–606.
- 63. Wang L, Li X, Chen H, Yan S, Li D, Li Y, et al. Coronavirus Disease 19 Infection Does Not Result in Acute Kidney Injury: An Analysis of 116 Hospitalized Patients from Wuhan, China. American Journal of Nephrology. 2020;51(5):343–8.
- 64. Han H, Xie L, Liu R, Yang J, Liu F, Wu K, et al. Analysis of heart injury laboratory parameters in 273 COVID-19 patients in one hospital in Wuhan, China. Journal of Medical Virology [Internet]. 2020 Apr 15 [cited 2020 May 25]; Available from: http://doi.wiley.com/10.1002/jmv.25809
- 65. Xie H, Zhao J, Lian N, Lin S, Xie Q, Zhuo H. Clinical characteristics of non-ICU hospitalized patients with coronavirus disease 2019 and liver injury: A retrospective study. Liver International [Internet]. 2020 Apr 12 [cited 2020 May 25]; Available from: http://doi.wiley.com/10.1111/liv.14449
- 66. Cai Q, Huang D, Ou P, Yu H, Zhu Z, Xia Z, et al. COVID-19 in a designated infectious diseases hospital outside Hubei Province, China. Allergy [Internet]. 2020 Apr 17 [cited 2020 May 25]; Available from: https://onlinelibrary.wiley.com/doi/abs/10.1111/all.14309
- 67. Zhang Y, Zheng L, Liu L, Zhao M, Xiao J, Zhao Q. Liver impairment in COVID-19 patients: A retrospective analysis of 115 cases from a single centre in Wuhan city, China. Liver International [Internet]. 2020 Apr 28 [cited 2020 May 25]; Available from: https://onlinelibrary.wiley.com/doi/abs/10.1111/liv.14455
- 68. Wang L. C-reactive protein levels in the early stage of COVID-19. Médecine et Maladies Infectieuses. 2020 Jun;50(4):332–4.

- 69. Chen X, Yang Y, Huang M, Liu L, Zhang X, Xu J, et al. Differences between COVID-19 and suspected then confirmed SARS-CoV-2negative pneumonia: a retrospective study from a single center. Journal of Medical Virology [Internet]. 2020 Apr 1 [cited 2020 May 25]; Available from: http://doi.wiley.com/10.1002/jmv.25810
- 70. Zheng F, Tang W, Li H. Clinical characteristics of 161 cases of corona virus disease 2019 (COVID-19) in Changsha. :7.
- 71. Deng Q, Hu B, Zhang Y, Wang H, Zhou X, Hu W, et al. Suspected myocardial injury in patients with COVID-19: Evidence from front-line clinical observation in Wuhan, China. International Journal of Cardiology [Internet]. 2020 Apr [cited 2020 May 25]; Available from: https://linkinghub.elsevier.com/retrieve/pii/S0167527320311153
- 72. Li H, Xiang X, Ren H, Xu L, Zhao L, Chen X, et al. Serum Amyloid A is a biomarker of severe Coronavirus Disease and poor prognosis. Journal of Infection. 2020 Jun;80(6):646–55.
- 73. Zou Y, Guo H, Zhang Y, Zhang Z, Liu Y, Wang J, et al. Analysis of coagulation parameters in patients with COVID-19 in Shanghai, China. BioScience Trends [Internet]. 2020 [cited 2020 May 25]; Available from: https://www.jstage.jst.go.jp/article/bst/advpub/0/advpub_2020.03086/_article
- 74. Shi F, Wu T, Zhu X, Ge Y, Zeng X, Chi Y, et al. Association of viral load with serum biomakers among COVID-19 cases. Virology. 2020 Jul;546:122–6.
- 75. Wang G, Wu C, Zhang Q, Wu F, Yu B, Lv J, et al. C-Reactive Protein Level May Predict the Risk of COVID-19 Aggravation. Open Forum Infectious Diseases [Internet]. 2020 May 1 [cited 2020 May 25];7(5). Available from: https://academic.oup.com/ofid/article/doi/10.1093/ofid/ofaa153/5826961
- 76. Ji M, Yuan L, Shen W, Lv J, Li Y, Li M, et al. Characteristics of disease progress in patients with coronavirus disease 2019 in Wuhan, China. Epidemiology and Infection [Internet]. 2020 [cited 2020 May 25];148. Available from: https://www.cambridge.org/core/product/identifier/S0950268820000977/type/journal_article
- 77. Shen L, Li S, Zhu Y, Zhao J, Tang X, Li H, et al. Clinical and laboratory-derived parameters of 119 hospitalized patients with coronavirus disease 2019 in Xiangyang, Hubei Province, China. Journal of Infection [Internet]. 2020 Apr [cited 2020 May 25]; Available from: https://linkinghub.elsevier.com/retrieve/pii/S0163445320301663
- 78. Yang F, Shi S, Zhu J, Shi J, Dai K, Chen X. Clinical characteristics and outcomes of cancer patients with COVID-19. Journal of Medical Virology [Internet]. 2020 May 5 [cited 2020 May 25]; Available from: https://onlinelibrary.wiley.com/doi/abs/10.1002/jmv.25972

- 79. Ma J, Yin J, Qian Y, Wu Y. Clinical characteristics and prognosis in cancer patients with COVID-19: A single center's retrospective study. Journal of Infection [Internet]. 2020 Apr [cited 2020 May 25]; Available from: https://linkinghub.elsevier.com/retrieve/pii/S0163445320302140
- Chen Q, Zheng Z, Zhang C, Zhang X, Wu H, Wang J, et al. Clinical characteristics of 145 patients with corona virus disease 2019 (COVID-19) in Taizhou, Zhejiang, China. Infection [Internet]. 2020 Apr 28 [cited 2020 May 25]; Available from: http://link.springer.com/10.1007/s15010-020-01432-5
- 81. Colaneri M, Sacchi P, Zuccaro V, Biscarini S, Sachs M, Roda S, et al. Clinical characteristics of coronavirus disease (COVID-19) early findings from a teaching hospital in Pavia, North Italy, 21 to 28 February 2020. Eurosurveillance [Internet]. 2020 Apr 23 [cited 2020 May 25];25(16). Available from: https://www.eurosurveillance.org/content/10.2807/1560-7917.ES.2020.25.16.2000460
- 82. Zhao X-Y, Xu X-X, Yin H-S, Hu Q-M, Xiong T, Tang Y-Y, et al. Clinical characteristics of patients with 2019 coronavirus disease in a non-Wuhan area of Hubei Province, China: a retrospective study. BMC Infectious Diseases [Internet]. 2020 Dec [cited 2020 May 25];20(1). Available from: https://bmcinfectdis.biomedcentral.com/articles/10.1186/s12879-020-05010-w
- 83. Chen L, Li Q, Zheng D, Jiang H, Wei Y, Zou L, et al. Clinical Characteristics of Pregnant Women with Covid-19 in Wuhan, China. New England Journal of Medicine [Internet]. 2020 Apr 17 [cited 2020 May 25]; Available from: http://www.nejm.org/doi/10.1056/NEJMc2009226
- 84. Sun L, Shen L, Fan J, Gu F, Hu M, An Y, et al. Clinical Features of Patients with Coronavirus Disease 2019 (COVID-19) from a Designated Hospital in Beijing, China. Journal of Medical Virology [Internet]. 2020 May 5 [cited 2020 May 25]; Available from: https://onlinelibrary.wiley.com/doi/abs/10.1002/jmv.25966
- 85. Zhu Z, Cai T, Fan L, Lou K, Hua X, Huang Z, et al. Clinical value of immune-inflammatory parameters to assess the severity of coronavirus disease 2019. International Journal of Infectious Diseases. 2020 Jun;95:332–9.
- 86. Liu Y, Liao W, Wan L, Xiang T, Zhang W. Correlation Between Relative Nasopharyngeal Virus RNA Load and Lymphocyte Count Disease Severity in Patients with COVID-19. Viral Immunology [Internet]. 2020 Apr 10 [cited 2020 May 25]; Available from: https://www.liebertpub.com/doi/10.1089/vim.2020.0062
- 87. Feng Y, Ling Y, Bai T, Xie Y, Huang J, Li J, et al. COVID-19 with Different Severity: A Multi-center Study of Clinical Features. American Journal of Respiratory and Critical Care Medicine [Internet]. 2020 Apr 10 [cited 2020 May 25]; Available from: https://www.atsjournals.org/doi/10.1164/rccm.202002-0445OC

- 88. Zhang R, Ouyang H, Fu L, Wang S, Han J, Huang K, et al. CT features of SARS-CoV-2 pneumonia according to clinical presentation: a retrospective analysis of 120 consecutive patients from Wuhan city. European Radiology [Internet]. 2020 Apr 11 [cited 2020 May 25]; Available from: http://link.springer.com/10.1007/s00330-020-06854-1
- 89. Chen X, Zhao B, Qu Y, Chen Y, Xiong J, Feng Y, et al. Detectable serum SARS-CoV-2 viral load (RNAaemia) is closely correlated with drastically elevated interleukin 6 (IL-6) level in critically ill COVID-19 patients. Clinical Infectious Diseases [Internet]. 2020 Apr 17 [cited 2020 May 25]; Available from: https://academic.oup.com/cid/advance-article/doi/10.1093/cid/ciaa449/5821311
- 90. Wei X, Su J, Yang K, Wei J, Wan H, Cao X, et al. Elevations of serum cancer biomarkers correlate with severity of COVID-19. Journal of Medical Virology [Internet]. 2020 Apr 29 [cited 2020 May 25]; Available from: https://onlinelibrary.wiley.com/doi/abs/10.1002/jmv.25957
- 91. Zheng Y, Xiong C, Liu Y, Qian X, Tang Y, Liu L, et al. Epidemiological and clinical characteristics analysis of COVID-19 in the surrounding areas of Wuhan, Hubei Province in 2020. Pharmacological Research. 2020 Jul 1;157:104821.
- 92. Wang R, Pan M, Zhang X, Han M, Fan X, Zhao F, et al. Epidemiological and clinical features of 125 Hospitalized Patients with COVID-19 in Fuyang, Anhui, China. International Journal of Infectious Diseases. 2020 Jun;95:421–8.
- 93. Yao Z, Zheng Z, Wu K, Junhua Z. Immune environment modulation in pneumonia patients caused by coronavirus: SARS-CoV, MERS-CoV and SARS-CoV-2. Aging. 2020 May 2;12(9):7639–51.
- 94. Lei F, Liu Y, Zhou F, Qin J, Zhang P, Zhu L, et al. Longitudinal association between markers of liver injury and mortality in COVID-19 in China. Hepatology [Internet]. 2020 May 2 [cited 2020 May 25]; Available from: https://onlinelibrary.wiley.com/doi/abs/10.1002/hep.31301
- 95. Lu L, Xiong W, Liu D, Liu J, Yang D, Li N, et al. New onset acute symptomatic seizure and risk factors in coronavirus disease 2019: A retrospective multicenter study. Epilepsia [Internet]. 2020 May 2 [cited 2020 May 25]; Available from: https://onlinelibrary.wiley.com/doi/abs/10.1111/epi.16524
- 96. Yang Y, Shen C, Li J, Yuan J, Wei J, Huang F, et al. Plasma IP-10 and MCP-3 levels are highly associated with disease severity and predict the progression of COVID-19. Journal of Allergy and Clinical Immunology [Internet]. 2020 Apr [cited 2020 May 25]; Available from: https://linkinghub.elsevier.com/retrieve/pii/S0091674920305765
- 97. Bi X, Su Z, Yan H, Du J, Wang J, Chen L, et al. Prediction of severe illness due to COVID-19 based on an analysis of initial Fibrinogen to Albumin Ratio and Platelet count. Platelets. 2020 May 5;1–6.

- 98. Liu F, Li L, Xu M, Wu J, Luo D, Zhu Y, et al. Prognostic value of interleukin-6, C-reactive protein, and procalcitonin in patients with COVID-19. Journal of Clinical Virology. 2020 Jun;127:104370.
- 99. Pei G, Zhang Z, Peng J, Liu L, Zhang C, Yu C, et al. Renal Involvement and Early Prognosis in Patients with COVID-19 Pneumonia. Journal of the American Society of Nephrology. 2020 Apr 28;ASN.2020030276.
- 100. Hu L, Chen S, Fu Y, Gao Z, Long H, Wang J, et al. Risk Factors Associated with Clinical Outcomes in 323 COVID-19 Hospitalized Patients in Wuhan, China. Clinical Infectious Diseases [Internet]. 2020 May 3 [cited 2020 May 25]; Available from: https://academic.oup.com/cid/advance-article/doi/10.1093/cid/ciaa539/5828282
- 101. Liu X, Zhou H, Zhou Y, Wu X, Zhao Y, Lu Y, et al. Risk factors associated with disease severity and length of hospital stay in COVID-19 patients. Journal of Infection [Internet]. 2020 Apr [cited 2020 May 25]; Available from: https://linkinghub.elsevier.com/retrieve/pii/S0163445320302164
- 102. Wei Y-Y, Wang R-R, Zhang D-W, Tu Y-H, Chen C-S, Ji S, et al. Risk factors for severe COVID-19: Evidence from 167 hospitalized patients in Anhui, China. Journal of Infection [Internet]. 2020 Apr [cited 2020 May 25]; Available from: https://linkinghub.elsevier.com/retrieve/pii/S016344532030219X
- 103. Li X, Xu S, Yu M, Wang K, Tao Y, Zhou Y, et al. Risk factors for severity and mortality in adult COVID-19 inpatients in Wuhan. Journal of Allergy and Clinical Immunology [Internet]. 2020 Apr [cited 2020 May 25]; Available from: https://linkinghub.elsevier.com/retrieve/pii/S0091674920304954
- 104. Zheng Y, Zhang Y, Chi H, Chen S, Peng M, Luo L, et al. The hemocyte counts as a potential biomarker for predicting disease progression in COVID-19: a retrospective study. Clinical Chemistry and Laboratory Medicine (CCLM) [Internet]. 2020 Apr 29 [cited 2020 May 25];0(0). Available from: https://www.degruyter.com/view/journals/cclm/ahead-of-print/article-10.1515-cclm-2020-0377/article-10.1515-cclm-2020-0377.xml
- 105. Wang F, Hou H, Luo Y, Tang G, Wu S, Huang M, et al. The laboratory tests and host immunity of COVID-19 patients with different severity of illness. JCI Insight [Internet]. 2020 May 21 [cited 2020 May 25];5(10). Available from: https://insight.jci.org/articles/view/137799
- 106. Lyu P, Liu X, Zhang R, Shi L, Gao J. The performance of chest CT in evaluating the clinical severity of COVID-19 pneumonia: identifying critical cases based on CT characteristics. Investigative Radiology. 2020 Apr;1.

- 107. Liu R, Ma Q, Han H, Su H, Liu F, Wu K, et al. The value of urine biochemical parameters in the prediction of the severity of coronavirus disease 2019. Clinical Chemistry and Laboratory Medicine (CCLM) [Internet]. 2020 Apr 14 [cited 2020 May 25];0(0). Available from: https://www.degruyter.com/view/journals/cclm/ahead-of-print/article-10.1515-cclm-2020-0220/article-10.1515-cclm-2020-0220.xml
- 108. Hou H, Zhang B, Huang H, Luo Y, Wu S, Tang G, et al. Using IL-2R/lymphocytes for predicting the clinical progression of patients with COVID-19. Clinical & Experimental Immunology [Internet]. 2020 May 15 [cited 2020 May 25]; Available from: https://onlinelibrary.wiley.com/doi/abs/10.1111/cei.13450
- 109. Zheng S, Fan J, Yu F, Feng B, Lou B, Zou Q, et al. Viral load dynamics and disease severity in patients infected with SARS-CoV-2 in Zhejiang province, China, January-March 2020: retrospective cohort study. BMJ. 2020 Apr 21;m1443.
- 110. Metlay JP, Waterer GW, Long AC, Anzueto A, Brozek J, Crothers K, et al. Diagnosis and Treatment of Adults with Community-acquired Pneumonia. An Official Clinical Practice Guideline of the American Thoracic Society and Infectious Diseases Society of America. Am J Respir Crit Care Med. 2019 Oct 1;200(7):e45–67.
- 111. Lin L, Li TS. Interpretation of "Guidelines for the Diagnosis and Treatment of Novel Coronavirus (2019-nCoV) Infection by the National Health Commission (Trial Version 5)." Zhonghua Yi Xue Za Zhi. 2020;100(0):E001–E001.
- 112. Singer M, Deutschman CS, Seymour CW, Shankar-Hari M, Annane D, Bauer M, et al. The Third International Consensus Definitions for Sepsis and Septic Shock (Sepsis-3). JAMA. 2016 Feb 23;315(8):801–10.
- 113. Fourth Universal Definition of Myocardial Infarction [Internet]. American College of Cardiology. [cited 2020 Jun 17]. Available from: http%3a%2f%2fwww.acc.org%2flatest-in-cardiology%2ften-points-to-remember%2f2018%2f08%2f24%2f00%2f09%2ffourth-universaldefinition-of-mi-esc-2018
- 114. Acute Respiratory Distress Syndrome: The Berlin Definition. JAMA. 2012 Jun 20;307(23):2526–33.
- 115. Kellum JA, Lameire N, Aspelin P, Barsoum RS, Burdmann EA, Goldstein SL, et al. Kidney disease: Improving global outcomes (KDIGO) acute kidney injury work group. KDIGO clinical practice guideline for acute kidney injury. Kidney International Supplements. 2012 Mar;2(1):1–138.