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Supplementary Note A 

Recurrent Neural Reinforcement Learning for Action (Intervention) Selection and 

Evaluation 

Architecture of Recurrent Reinforcement Learning  Neural Networks 

The basic structure of reinforcement learning (RL) is an agent and an environment [28].  The 

agent interacts with the environment by carrying out different actions under different 

environment (the state of the system). The RL has three components: state, action and reward.   

The agent gets a reward with each action. The  RL attempts to generate a sequence of actions to  

make the best reward. The RL can be viewed as an open dynamical system with a correspondent  

reward function (or loss function).  A typical dynamic system is a Markov Decision Process 

(MDP). The RL has two basic tasks: system identification and best (suitable) action selection. 

Therefore, the architecture of recurrent neural reinforcement learning (RNRL) consists of two 

RNNs. One RNN is designed for system identification to learn a model underlying the dynamics 

of Covid-19 from available historical data. The RNN for system identification is called an 

encoder (Figure 1). The second RNN is  designed for action selection and evaluation to learn 

optimal intervention policy. The RNN for action selection and evaluation is called a decoder 

(Figure 2). 

RNN Encoder 

The RNN encoder was a mapping from a sequence space (or time series) to another sequence 

space (or time series space) and the current output depended on both current input and the whole 

observation history (whole time series). The RNN encoder  extracted short-term local 

dependency patterns among variables and to discover long-term patterns for time series trends 



[S1]. The RNN encoder  had three layers: input, recurrent hidden and output layers (Figure 1). 

The input layer consisted of three types of variables: covariates 𝑋𝑡 = [𝑋𝑡
1, … , 𝑋𝑡

𝑛]𝑇, a scaler 

intervention variable 𝐴𝑡 ∈ 𝒜 , where 𝒜 is an action space, and the numbers of cases (potential 

outcomes) 𝑌𝑡 at the time 𝑡. Similar to the reproduction number 𝑅 in the epidemiological models 

which is often used to determine the dynamic behavior of epidemics, Intervention measure is a 

matric to quantify the degree of controlling infection. Interventions were measured by number in 

the interval [0, 1]. A value of 1 for intervention  measure indicates that intervention is the 

strongest and reproducing number R is close to zero.  A value of zero for intervention variables 

indicates that no restrictions on social-economic activities are imposed. The values between 0 

and 1 indicated the various less strict interventions. The covariates can include the rate of virus 

test, Google mobility indexes, social distance index, weather, age, gender, race, .  Define the 

input vector 𝑉𝑡 as 

𝐶𝑡 = [

𝑦𝑡

⋮
𝑦𝑡−𝑙+1

] . 

Let  ℎ𝑡 = [ℎ𝑡
1, … , ℎ𝑡

𝑚]𝑇 ∈ 𝑆 be a 𝑚  dimensional hidden state vector where 𝑚 is set to be 100 in 

this study where 𝑆  is a state space.  The data 𝐶𝑡 was inputted into the input layer. The linear 

transformation 𝑊𝑐ℎ𝐶𝑡 of the data 𝐶𝑡 was then sent to the hidden layer, where  𝑊𝑐ℎ is a 𝑚 × 𝑙 

dimensional matrix. The input data also included the covariates 𝑋𝑡 and action 𝐴𝑡. The hidden 

layer receives information from the input layer and hidden layer at the previous time point.     

The state ℎ𝑡 at the time 𝑡 was determined by the following nonlinear system transition equation: 

ℎ𝑡 = 𝑓ℎ(𝑊ℎℎℎ𝑡−1 + 𝑊𝑐ℎ𝐶𝑡+𝑊𝑎ℎ𝐴𝑡 + 𝑊𝑥ℎ𝑋𝑡 + 𝑏ℎ) ,     (A1)  



where  𝑊ℎℎ  was a 𝑚 × 𝑚 dimensional weight matrix that connected the previous state to the 

current state, 𝑊𝑎ℎ was 𝑚 × 1 dimensional matrix that connected the action variable to the 

current hidden state,  𝑊𝑥ℎ  is a 𝑚 × 𝑛  dimensional matrix that  connected the covariates to the 

current hidden state, and 𝑏ℎ = [𝑏ℎ
1, … , 𝑏ℎ

𝑚]𝑇 was a 𝑚 dimensional bias vector that corrected the 

bias, and 𝑓ℎ was a element-wise nonlinear activation  function and was often defined as the 

following “tanh” function: 

tanh(𝑥) =
𝑒𝑥−𝑒−𝑥

𝑒𝑥+𝑒−𝑥
 . 

Let 𝜃ℎ denote the weight matrices and bias vector in equation (A1). Then, equation (A1) can be 

rewritten as 

ℎ𝑡 = 𝑓ℎ(ℎ𝑡−1, 𝐶𝑡, 𝐴𝑡 , 𝑋𝑡, 𝜃ℎ) .        (A2) 

The MDP is partially observed through output (observation) equation. The neurons in hidden 

layer were connected to the output layer via a 𝑚 dimensional weight vector 𝑊ℎ𝑦.  The output 

𝑌̂𝑡+1  was determined by 

𝑦̂𝑡+1 = 𝑓𝑦(𝑊ℎ𝑦ℎ𝑡 + 𝑏𝑦) ,         (A3)  

where  𝑓𝑦 was an activation function, 𝑊ℎ𝑦 was 1 × 𝑚 dimensional weight matrix,  and 𝑏𝑦 was 

the bias of the output neuron.   Let 𝜃𝑦 denote the weights and bias in equation (A3). Then, 

equation (A3) can be rewritten as 

𝑦̂𝑡+1 = 𝑓𝑦(ℎ𝑡, 𝜃𝑦) .         (A4) 

     A deterministic policy  maps a state ℎ𝑡 directly to an action via a feedforward neural network: 

𝐴𝑡+1 = 𝑓𝑎(𝑊ℎ𝑎ℎ𝑡 + 𝑏𝑎),         (A5) 



where 𝑊ℎ𝑎  was a weight matrix,   𝑏𝑎 was a bias, and 𝑓𝑎 was element-wise nonlinear activate 

function.  

Again let 𝜃𝑎 denote the weights and bias in equation (A5). Then, equation (A5) can be rewritten 

as 

𝐴𝑡+1 = 𝑔(ℎ𝑡, 𝜃𝑎) .         (A6) 

Reward 𝑟𝑡 at the time step 𝑡 was defined as 

𝑟𝑡 = 𝑅(ℎ𝑡, 𝐴𝑡) = ‖𝑦𝑡+1 − 𝑦̂𝑡+1‖2 .       (A7) 

At each time step, the agent took action 𝐴𝑡+1 at the state ℎ𝑡 and received reward 𝑅(ℎ𝑡 , 𝐴𝑡). The 

agent then transited into the next state ℎ𝑡+1.  The goal of the RL was to find a policy 

that minimizes the following  reward 

min
𝐴

𝑉(ℎ𝑙) = ∑ ‖𝑦𝑡+1 − 𝑦̂𝑡+1‖2𝑇−1
𝑡=𝑙  ,       (A8)  

where 𝐴 = {𝐴𝑙, 𝐴𝑙+1, … , 𝐴𝑇−1}. 

       The popular methods for solving the RL problem was dynamic programming [S 2].  

However, dynamic programming was suitable for discrete state space and action space and was 

not efficient for continuous state space and action space. A popular way to solve the above 

problem was the  gradient method. All system transition, policy mapping and value functions 

were approximated by neural networks and parameterized [28]. Since the action variable was 

parameterized, the value function in equation (A8) should be augmented. Define 

𝑉𝑦(𝑦, 𝑥, 𝐴, 𝜃ℎ,𝜃𝑦) = ∑ ‖𝑦𝑡+1 − 𝑦̂𝑡+1‖2𝑇−1
𝑡=𝑙+1  ,      (A9) 

𝑉𝑎(𝑦, 𝑥, 𝐴, 𝜃𝑎) = ∑ ‖𝐴̂𝑡+1
𝑘 − 𝐴̂𝑡+1

𝑘−1‖
2𝑇−1

𝑡=𝑙+1  ,      (A10) 



and 

𝑉(𝑦, 𝑥, 𝐴, 𝜃ℎ,𝜃𝑦, 𝜃𝑎) = 𝑉𝑦(𝑦, 𝑥, 𝐴, 𝜃ℎ,𝜃𝑦) + 𝑉𝑎(𝑦, 𝑥, 𝐴, 𝜃𝑎) ,    (A11) 

where 𝜃ℎ = (𝑊𝑣ℎ, 𝑊𝑎ℎ, 𝑊𝑥ℎ, 𝑏ℎ),  𝜃𝑦 = (𝑊ℎ𝑦, 𝑏𝑦), and 𝜃𝑎 = (𝑊ℎ𝑎, 𝑏𝑎).  

Define 

𝑉̃𝑦
𝑘(𝑦, 𝑥, 𝐴̃𝑘, 𝜃ℎ , 𝜃𝑦) = 𝑉𝑦(𝑦, 𝑥, 𝐴̃𝑘 , 𝜃ℎ,𝜃𝑦) + 𝑉𝑎 . 

Define the following optimal value functions: 

𝑉̅𝑦
𝑘(𝑦, 𝑥, 𝐴̃𝑘, 𝜃̃ℎ

𝑘+1, 𝜃̃𝑦
𝑘+1) = min

𝜃ℎ,𝜃𝑦

𝑉̃𝑦
𝑘(𝑦, 𝑥, 𝐴̃𝑘, 𝜃ℎ , 𝜃𝑦) ,    (A12) 

where  

[
𝜃̃ℎ

𝑘+1

𝜃̃𝑦
𝑘+1] = arg min

𝜃ℎ,𝜃𝑦

𝑉̃𝑦
𝑘(𝑦, 𝑥, 𝐴̃𝑘, 𝜃ℎ , 𝜃𝑦) ,      (A13) 

𝑉̃𝑎
𝑘+1(𝑦, 𝑥, 𝐴̃𝑘+1, 𝜃̃ℎ

𝑘+1, 𝜃̃𝑦
𝑘+1, 𝜃̃𝑎

𝑘+1) = min
𝐴,𝜃𝑎

𝑉̃𝑎
𝑘 (𝑦, 𝑥, 𝐴, 𝜃̃ℎ

𝑘+1, 𝜃̃𝑦
𝑘+1, 𝜃𝑎)  ,     (A14) 

where  

[
𝐴̃𝑘+1

𝜃̃𝑎
𝑘+1] = arg min

𝐴,𝜃𝑎

𝑉̃𝑎
𝑘 (𝑦, 𝑥, 𝐴, 𝜃̃ℎ

𝑘+1, 𝜃̃𝑦
𝑘+1, 𝜃𝑎)  ,      (A15) 

𝑉̃𝑦
𝑘(𝑦, 𝑥, 𝐴̃𝑘+1, 𝜃̃ℎ

𝑘+1, 𝜃̃𝑦
𝑘+1) = 𝑉̅𝑦

𝑘(𝑦, 𝑥, 𝐴̃𝑘+1, 𝜃̃ℎ
𝑘+1, 𝜃̃𝑦

𝑘+1) ,     (A16)  

and  

𝑉̃𝑘+1(𝑦, 𝑥, 𝐴̃𝑘+1, 𝜃̃ℎ
𝑘+1, 𝜃̃𝑦

𝑘+1, 𝜃̃𝑎
𝑘+1 )  = 𝑉̃𝑎

𝑘+1(𝑦, 𝑥, 𝐴̃𝑘+1, 𝜃̃ℎ
𝑘+1, 𝜃̃𝑦

𝑘+1, 𝜃̃𝑎
𝑘+1) +

𝑉̃𝑦
𝑘(𝑦, 𝑥, 𝐴̃𝑘+1, 𝜃̃ℎ

𝑘+1, 𝜃̃𝑦
𝑘+1) .        (A17) 



Minimization problems in equations (A12) and (A14) are solved by the backpropagation 

algorithm. 

Training Algorithm for RNN Encoder 

Now we were ready to present training algorithm for RNN encoder.  

Step 1: Initialization for action (intervention). 

The initial intervention measure was calculated as follows. Set the intervention measure at the 

final time 𝐴𝑡𝑓
= 1 for China,  𝐴𝑡𝑓

= 0.3  for Korea South, Switzerland, United Kingdom, Spain, 

US, Italy, Germany, Iran, and France, and  𝐴𝑡𝑓
= 0 for all other countries. Assume that the 

intervention measure curve was an exponential function starting at 0 and ends at  𝐴𝑡𝑓
. The 

intervention measure 𝐴𝑡
0  is given by 

𝐴𝑡
0 =

𝑝𝑡−1

𝑝−1
∗ (𝐴𝑡𝑓

− 𝐴0) + 𝐴0, where 𝑝 > 0, 𝑝 ≠ 1 was the curve shape factor and 𝑡 took values 

in evenly sliced numbers of interval [0, 1], 𝐴0  was the intervention measure at the initial time 𝑡0 

.    When 𝑝 = 1, 𝐴𝑡
0 is a linear function 𝐴𝑡

0 = 𝑡 ∗ (𝐴𝑡𝑓
− 𝐴0) + 𝐴0. In this study, we set 𝑝 =

0.01. 

Set 𝑘 = 0. 

Step 2: Use forward dynamic programming and backpropagation to infer the best actions 

(interventions) for fitting the data. 

While ‖𝐴̃𝑘+1 − 𝐴̃𝑘‖
𝟐

> 𝜺  

Given 𝐴̃𝑘, the forward  dynamic programming [S6] was used to find the best action value 



 𝐴̃𝑘+1 = {𝐴̃1
𝑘+1, … , 𝐴̃𝑇

𝑘+1}. 

Assume that 

𝐴𝑡+1
𝑘+1 = 𝜌𝑗 , 

where 0 ≤ 𝜌 ≤ 0.01, 𝜌𝑗 ≤ 1. 

Define 

𝑅𝑡(𝑌̅𝑡, 𝑋𝑡, 𝐴𝑡
𝑘+1 = 𝜌𝑖, 𝐴𝑡+1

𝑘+1 = 𝜌𝑗, 𝜃ℎ
∗ , 𝜃𝑦

∗, 𝜃𝑎
∗) = min

𝜃ℎ,𝜃𝑦,𝜃𝑎

(‖𝑦𝑡+1 − 𝑦̂𝑡+1‖2 + ‖𝐴𝑡+1
𝑘 − 𝐴̂𝑡+1

𝑘+1‖
2

),  

where 𝑌̅𝑡 = {𝑦𝑡, … , 𝑦𝑡−𝑙+1} and 𝐴̂𝑡+1
𝑘+1 = 𝑔(ℎ𝑡, 𝜃𝑎) = 𝜌𝑗.  

Assume that 

𝐴𝑡
𝑘+1 = 𝜌𝑖, 𝐴𝑡+1

𝑘+1 = 𝜌𝑗 . 

Define 

𝑟𝑡(𝐴𝑡
𝑘+1 = 𝜌𝑖, 𝐴𝑡+1

𝑘+1 = 𝜌𝑗) = 𝑅𝑡(𝑌̅𝑡, 𝑋𝑡, 𝐴𝑡
𝑘+1 = 𝜌𝑖, 𝐴𝑡+1

𝑘+1 = 𝜌𝑗, 𝜃ℎ
∗ , 𝜃𝑦

∗, 𝜃𝑎
∗)  and 

𝑉∗(𝐴𝑡
𝑘+1 = 𝜌𝑖) = min

𝐴̅𝑡
𝑖 ,𝜃ℎ,𝜃𝑎𝜃𝑦,

∑ (‖𝑦𝜏+1 − 𝑦̂𝜏+1‖2 + ‖𝐴𝜏+1
𝑘 − 𝐴̂𝜏+1

𝑘+1‖
2

)𝑡
𝜏=𝑙  , 

where 𝐴̅𝑡
𝑖 = {𝐴1, … , 𝐴𝑡−1, 𝐴𝑡

𝑘+1 = 𝜌𝑖, }. 

Using forward recursive: 

𝑉∗(𝐴𝑡
𝑘+1 = 𝜌𝑗) = min

𝑎𝑙𝑙 𝐴𝑡−1
1 =𝜌𝑖

{𝑟𝑡(𝐴𝑡
𝑘+1 = 𝜌𝑖, 𝐴𝑡+1

𝑘+1 = 𝜌𝑗) + 𝑉∗(𝐴𝑡−1
𝑘+1 = 𝜌𝑖} , 

we obtain a sequence of actions 𝐴̃𝑘+1 = {𝐴̃1
𝑘+1, … , 𝐴̃𝑇

𝑘+1} that fit the data.  

End 



     The standard back-propagation method  and  the Adam Optimizer   were used  for 

minimization in the parameter estimations. The initial learning rate in the updating parameters in 

the RNN encoder via backpropagation  was 0.02 and learning rate decay was 0.0001. 

Potential Outcome Framework for Evaluation of Actions (Public Health Interventions)  

Before discussing the algorithm for training RNN decoder, we introduced the basic principles for 

action (intervention policy) selection and evaluation. Learning intervention policies was an 

extremely challenge problem. We employed the Counterfactually-Guided Policy Evaluation (CF-

GPS)  principle  and RL to evaluate the effect of public health interventions on controlling the 

spread of Covid-19 [S3].  We viewed the public health intervention as treatment and the number 

of cases as the outcome. Counterfactual treatment outcome estimation was essentially a causal 

problem. Most  methods for causal inference were designed for the statistic setting and cannot be 

applied to evaluating the effects of the sequence of public health interventions  on (e.g. 

sequential application of intervention A followed by intervention B) the transmission dynamics 

of Covid-19 over time.  Potential outcome framework was our basic model to evaluate the 

impact of the public health interventions on the spread of Covid-19. The potential outcome 

framework was often referred to the Neyman-Rubin model (Rubin 1974).  

     Potential outcomes consisted of actual (or observed) and counterfactual (hypothesized) 

outcomes.  We were interested in number of cases of Covid-19 under some specific intervention.  

We observed the number of cases of Covid-19 (actual observation) without intervention or 

known intervention. However, we wanted to know what number of cases of Covid-19 

(counterfactual, unobserved) would be if an alternative intervention was implemented.  To 

evaluate the effect of intervention, we should compare the difference between the observed 

actual number of cases of Covid-19 and the counterfactual number of cases of Covid-19. Our 



aim was to learn the counterfactual outcomes  of Coid-19 under a sequence of public health 

intervention options and evaluate the impact of the intervention strategies on the spread of 

Covid-19. 

   The  Recurrent decoder (Figure 2) was an architecture for estimating the effects of intervention 

on the spread of Covid-19 over time [S4]. The decoder network used the hidden state computed 

by the encoder to initialize the state of an RNN in the decoder which predicted the counterfactual 

outcomes for a sequence of hypothesized future interventions [S4]. The decoder attempts to 

propagate the encoder representation forwards in time, using only the planned interventions and 

avoiding the covariates. 

Training Algorithm for RNN Decoder 

The architecture of the RNN decoder was shown in Figure 2. The difference between the RNN 

encoder and decoder was that RNN decoder removed the covariates from the input since the 

future covariates were unobservable and difficult to forecast. The training algorithm for RNN 

decoder was almost the same as that for RNN encoder except that the final hidden state in the 

RNN encoder was used as the initial state of the RNN decoder and covariates 𝑋 were removed in 

the RNN decoder. During decoder training, the outcomes (𝑌𝑡+2, … , 𝑌𝑡+𝜏)  from the observational 

data that were batched into a shorter sequences of up to 𝜏 steps. The value function  is defined as 

𝑉(ℎ𝑡+𝜏𝑏
) = ∑ || 𝑦𝑡+𝜏

min {𝑇−𝑡,𝜏𝑏}
𝜏=2 − 𝑦̂𝑡+𝜏||2 . 

The initial learning rate in the updating parameters in the decoder training was 0.02 and learning 

rate decay was 0.0001.   

Evaluation of the Intervention Strategies and Forecasting   



After completion of the training, the decoder can be used to evaluate interventions. The potential 

outcome framework for treatment effect estimation which accounts for the time varying 

treatments [S4]  was extended to evaluation of the effects of the interventions on the spread of 

Covid-19. Let 𝐻̃𝑡 = (𝑌̃𝑡, 𝐴̃𝑡)  be the history of the outcomes (number of cases) 𝑌̃𝑡 =

(𝑌̅𝑙, … , 𝑌̅𝑡), 𝑌̅𝑡 = (𝑌𝑡, … , 𝑌𝑡−𝑙+1) ,  and interventions 𝐴̃𝑡 = (𝐴1, … , 𝐴𝑡) . Let 𝑌[𝐴̃] be   the potential 

outcomes that can be either observed or counterfactual, under each possible sequence of 

intervention 𝐴̃ . The potential outcome framework assumed the existence of the hypothetical 

outcome with some interventions which was not observed in the data. The hypothetical outcome 

under hypothetical intervention was called counterfactual outcome. Given the history 𝐻̃𝑡  and a 

sequence of planned interventions 𝐴̃(𝑡, 𝑡 + 𝜏 − 1) = (𝐴𝑡, … , 𝐴𝑡+𝜏−1),   the counterfactual 

outcome  𝑌𝑡+𝜏[𝐴̃(𝑡, 𝑡 + 𝜏 − 1)] can be predicted by 

𝐸(𝑌𝑡+𝜏[𝐴̃(𝑡, 𝑡 + 𝜏 − 1)]|𝐻̃𝑡) , 

which defined the future dynamic trajectory of the Covid-19  under the planned sequence of 

interventions, given the previous history of Covid-19  and its environments. To make the 

prediction of the dynamic trajectory of the Covid-19 under the potential outcome framework to 

be identifiable, we need to make the following assumptions [S4].  

Assumptions 

We introduced assumptions in the Neyman-Rubin  model [S4].  

Assumption 1. (Consistency). If a nation received an intervention 𝐴𝑡 = 𝑎𝑡, then the potential 

outcome for the intervention 𝑎𝑡 which can be counterfactual was equal to the observed (factual) 

outcome 𝑌𝑡+1(𝑎𝑡) = 𝑌𝑡+1. 



Assumption 2. (Overlap). For all (𝑎1, … , 𝑎𝑡−1), we had  

0 < 𝑃(𝐴𝑡 = 𝑎𝑡|𝐴1 = 𝑎1, … , 𝐴𝑡−1 = 𝑎𝑡−1) < 1 . In other words, at each time step,  each 

intervention had non-zero probability of being implemented. 

Assumption 3. Sequential strong ignorability. Conditional on 𝐴1 = 𝑎1, … , 𝐴𝑡−1 = 𝑎𝑡−1,  the 

potential outcomes 𝑌𝑡+1 were independent of  𝐴𝑡, 

𝑌𝑡+1(𝑎𝑡) ⫫ 𝐴𝑡| 𝐴1 = 𝑎1, … , 𝐴𝑡−1 = 𝑎𝑡−1.  

Assumption 3 implied that there was no confounders which affected both outcomes and 

interventions.   

       During evaluation,   we did not have access to ground-truth outcomes. Therefore, we used 

the decoder to make one step ahead forecasting. The outcomes forecasted by the decoder 

(𝑌̂𝑡+1, … , 𝑌̂𝑡+𝜏−1) were recursively used as inputs. For each country, by running the trained  

decoder, with a sequence of planned interventions and recursively forecasted outcomes, we 

forecasted the response dynamics, i.e., the number of new cases of Covid-19 of the country over 

time under a sequence of interventions and evaluated the effects of  various intervention 

strategies on controlling the spread of Covid-19. By running the decoder, we could select  

starting  and ending time of  different interventions and the optimal or appropriate interventions  

to give over time to obtain the best  outcomes of controlling the spread of Covid-19 for each 

country.  
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Figure S1. RNRL algorithm flowchart.  

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

Figure S2. The reproduction number and intervention measure curves as a function of time in 

the top fifteen most-affected countries where blue and red curve represented the reproduction 

number and intervention measure, respectively.  

 

 

 

 

 

 

 

 


