Table S1: *P. vivax* proteins used in this study. Proteins were selected based on our previously validation study as being able to accurately classify individuals as infected with *P. vivax* in the last 9-months when using IgG antibody responses, either individually or in combination [1]. References listed are for the protein production and purification method. Protein ID and annotations are from PlasmoDB (release 36 http://plasmodb.org/plasmo/) or GenBank. Where the protein ID has an A or B, it is used to match exactly to the proteins listed in our validation manuscript. The Short Code listed is in reference to our original manuscript [1].

Destate ID			Protein		E	D. C. C. Malad
Protein ID	Short Code	Gene Annotation	length, aa	Construct, aa (size)	Expression System	Purification Method
PVX_099980	W01	merozoite surface protein 1 (MSP1-19)	1751	1622-1729 (108)	WGCF	One-step Ni column
PVX_096995	W02	tryptophan-rich antigen (Pv-fam-a)	480	61-end (420)	WGCF	One-step Ni column
PVX_112670	W08	unspecified product	335	34-end (302)	WGCF	One-step Ni column
PVX_003770	W12	merozoite surface protein 5 (MSP5)	387	23-365 (343)	WGCF	One-step Ni column
PVX_082700	W27	merozoite surface protein 7 (MSP7.1)	420	23-end (397)	WGCF	One-step Ni column
PVX_097680	W28	merozoite surface protein 3 (MSP3.3)	1016	21-end (996)	WGCF	One-step Ni column
PVX_097625	W30	merozoite surface protein 8 (MSP8), putative	487	24-463 (440)	WGCF	One-step Ni column
PVX_082670	W31	merozoite surface protein 7 (MSP7), putative	411	24-end (388)	WGCF	One-step Ni column
PVX_082735	W34	thrombospondin-related anonymous protein (TRAP)	556	26-493 (468)	WGCF	One-step Ni column
PVX_097720	W39	merozoite surface protein 3 (MSP3.10)	852	25-end (828)	WGCF	One-step Ni column
PVX_000930	W40	sexual stage antigen s16, putative	140	31-end (110)	WGCF	One-step Ni column
PVX_094255B	W50	reticulocyte binding protein 2b (RBP2b)	2806	161-1454 (1294)	E. coli	2x affinity + size exclusion [2]
AAY34130.1	W57	Duffy binding protein (DBP, region 2, AH strain)	237	1-237 (237)	E. coli	Ni, ion exchange, gel filtration [3]
PVX_110810A	W53	Duffy binding protein (DBP, region 2, Sal1 strain)	1070	193-521 (329)	E. coli	Ni, ion exchange, gel filtration [3, 4]

PVX_087885B	W47	rhoptry-associated membrane antigen, putative	730	462-730 (269)	WGCF	One-step Ni column [5]
KMZ83376.1	W58	erythrocyte binding protein II (PvEBPII)	786	109-432 (324)	E. coli	Ni, ion exchange, gel filtration [3, 4]
PVX_095055	W55	Rh5 interacting protein, putative (RIPR)	1075	552-1075 (524)	E. coli	2x affinity + size exclusion [6]

18 Table S2: Direct comparison of AUC values for each protein for IgG versus IgM, for classifying recent infection in the past 9 months.

	Thailand		Brazil	
Antigen	IgM	IgG	IgM	IgG
PVX_099980	0.607	0.8117523	0.537	0.7870332
PVX_096995	0.549	0.7457229	0.593	0.7243792
PVX_112670	0.567	0.7553279	0.589	0.7306483
PVX_003770	0.602	0.7530849	0.633	0.6703616
PVX_082700	0.641	0.7587684	0.596	0.7436841
PVX_097680	0.593	0.7049692	0.529	0.6507685
PVX_097625	0.671	0.7670301	0.665	0.7456572
PVX_082670	0.747	0.7268631	0.635	0.6978052
PVX_082735	0.743	0.7019698	0.705	0.6598704
PVX_097720	0.628	0.7894644	0.573	0.7270199
PVX_000930	0.673	0.7899103	0.654	0.7811927
PVX_094255B	0.631	0.849134	0.560	0.8177998
AAY34130.1	0.597	0.7397995	0.540	0.772517
PVX_110810A	0.554	0.7155953	0.496	0.7613065

PVX_087885A	0.615	0.7588708	0.591	0.7527885
PVX_094255A	0.675	0.8051379	0.581	0.7624446
PVX_092995	0.640	0.7917883	0.599	0.7028894
PVX_087885B	0.771	0.8065824	0.715	0.7481328
KMZ83376.1	N/A	N/A	0.617	0.7393093
PVX_095055	N/A	N/A	0.624	0.7717238

19

20 References:

Longley RJ, White MT, Takashima E, et al. Development and validation of serological markers for detecting recent exposure to
Plasmodium vivax infection. bioRxiv 2018:481168.

23 2. Hietanen J, Chim-Ong A, Chiramanewong T, et al. Gene Models, Expression Repertoire, and Immune Response of Plasmodium vivax

24 Reticulocyte Binding Proteins. Infect Immun **2015**; 84:677-85.

25 3. Cole-Tobian JL, Michon P, Biasor M, et al. Strain-specific duffy binding protein antibodies correlate with protection against infection

with homologous compared to heterologous plasmodium vivax strains in Papua New Guinean children. Infect Immun 2009; 77:4009 17.

4. Franca CT, White MT, He WQ, et al. Identification of highly-protective combinations of Plasmodium vivax recombinant proteins for
vaccine development. Elife **2017**; 6.

30 5. Lu F, Li J, Wang B, et al. Profiling the humoral immune responses to Plasmodium vivax infection and identification of candidate

31 immunogenic rhoptry-associated membrane antigen (RAMA). J Proteomics **2014**; 102:66-82.

32 6. Healer J, Thompson JK, Riglar DT, et al. Vaccination with conserved regions of erythrocyte-binding antigens induces neutralizing

antibodies against multiple strains of Plasmodium falciparum. PLoS One **2013**; 8:e72504.

34