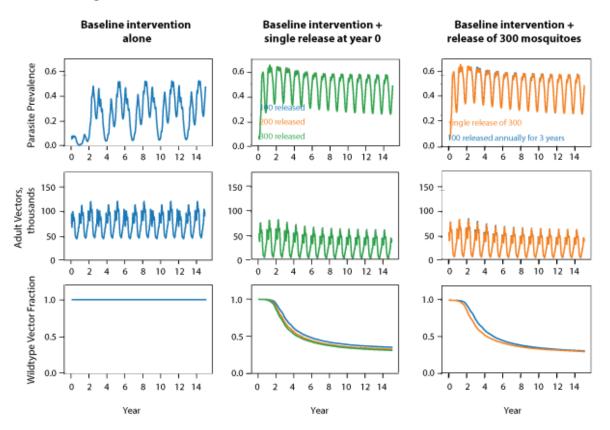
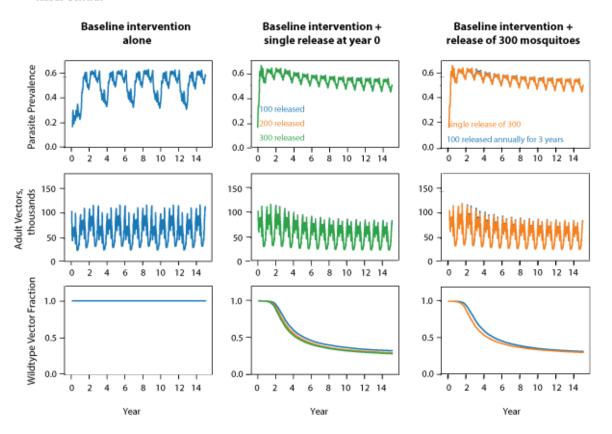
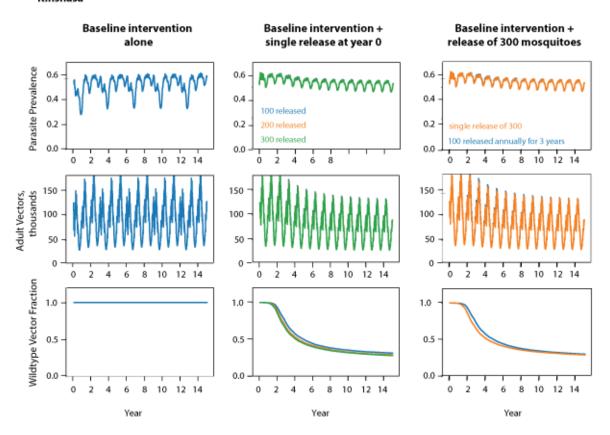
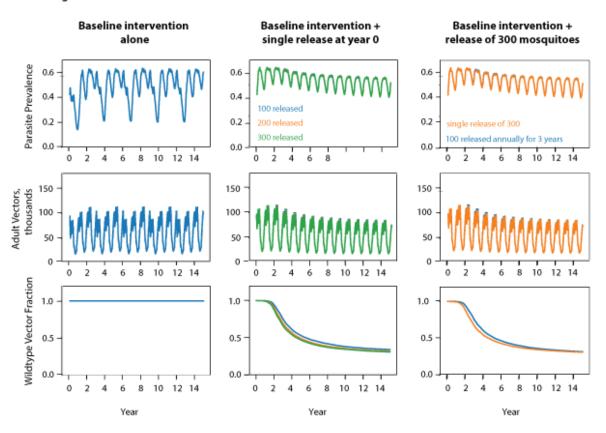
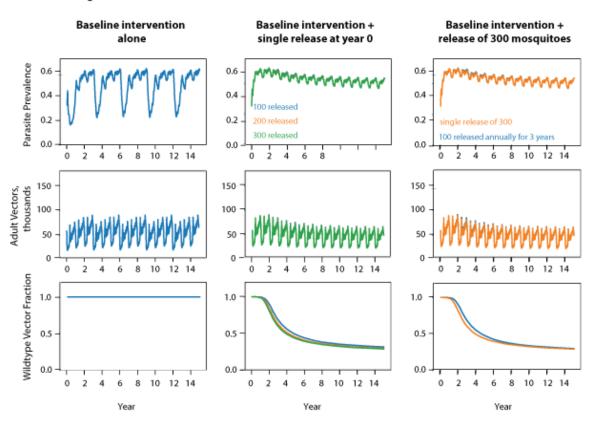

Supplementary: Role of gene drives in malaria elimination strategy: modeling impact and cost-effectiveness in the Democratic Republic of the Congo.


Supplementary 1, Non-spatial simulation framework: number and frequency of driving-Y gene-drive mosquitoes released.

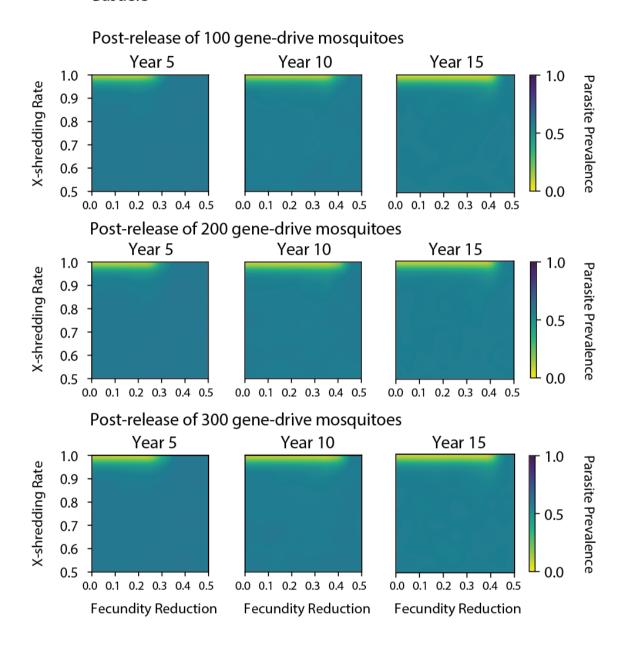

Equateur


Haut Katanga

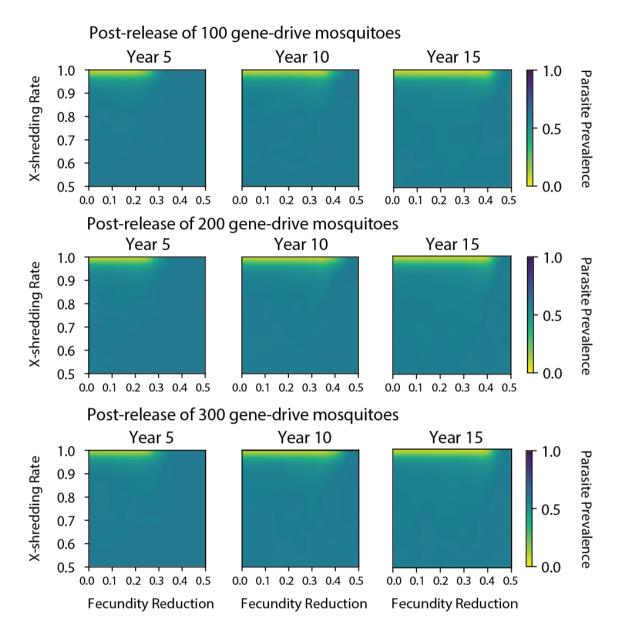

Kasai Central


Kinshasa

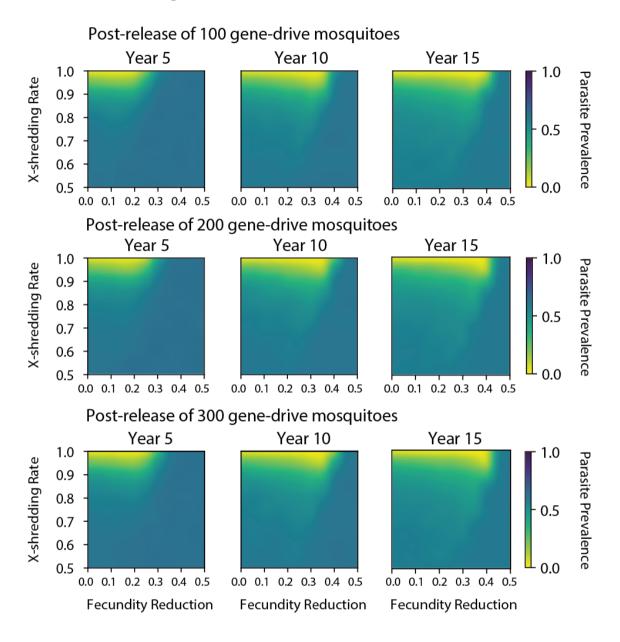
Kwango

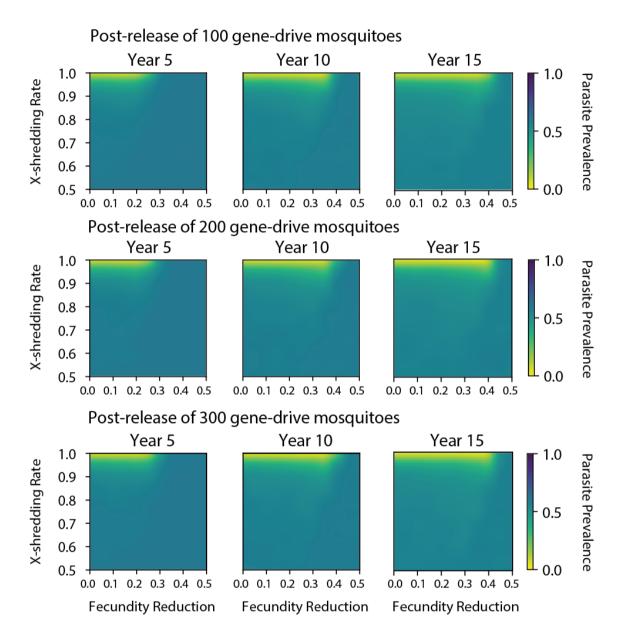


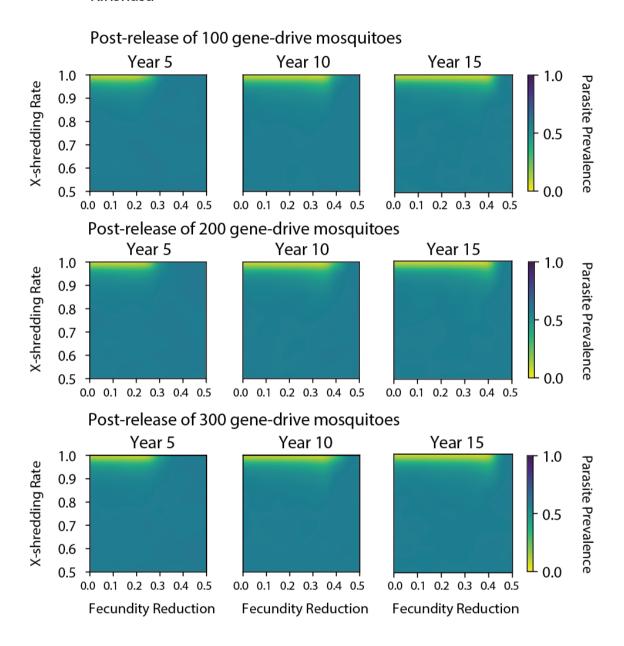
Nord Ubangui

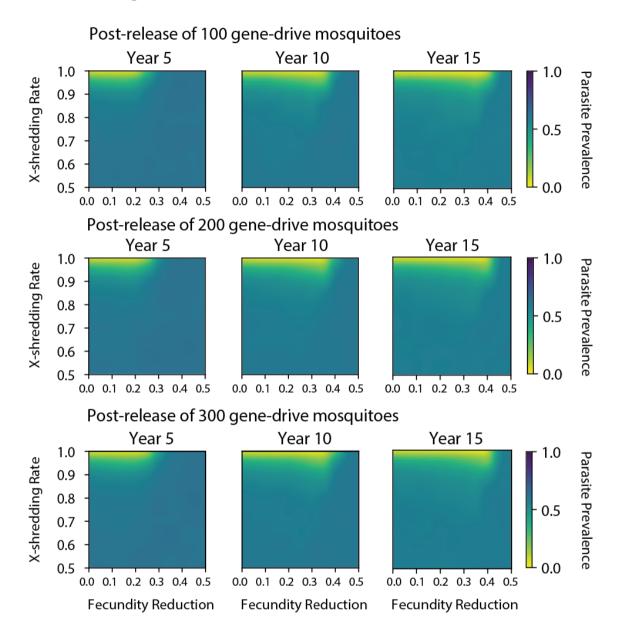


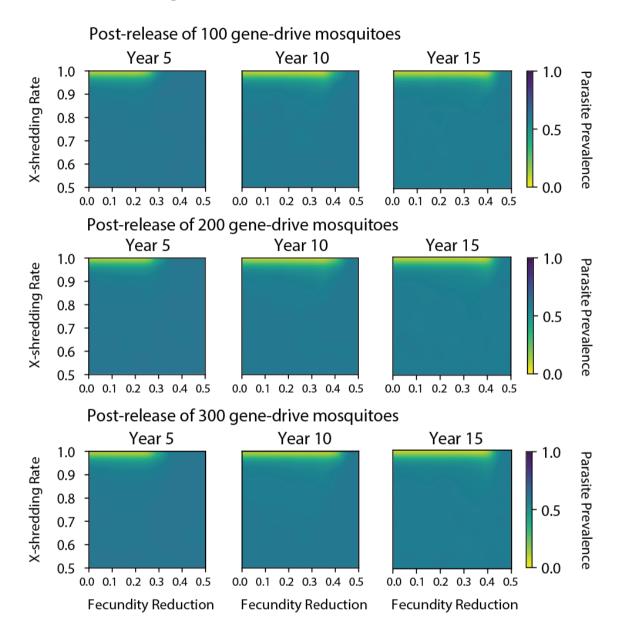
Supplementary 2, Non-spatial simulation framework: driving-Y parameters of genedrive mosquitoes released.

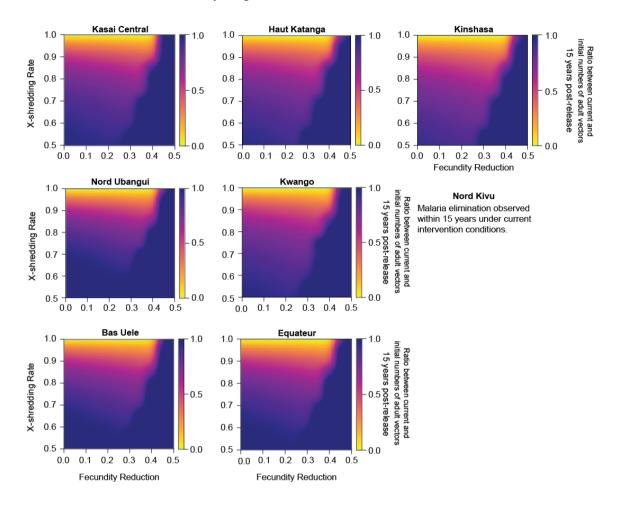

Basuele


Equateur

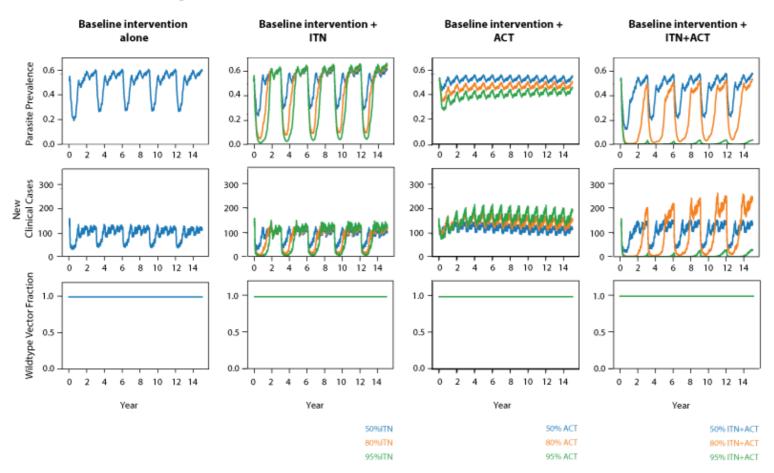

Haut Katanga

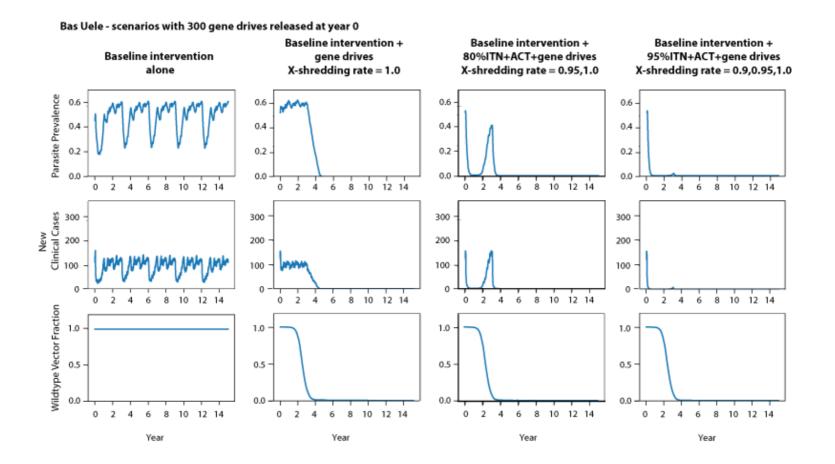

Kasai Central

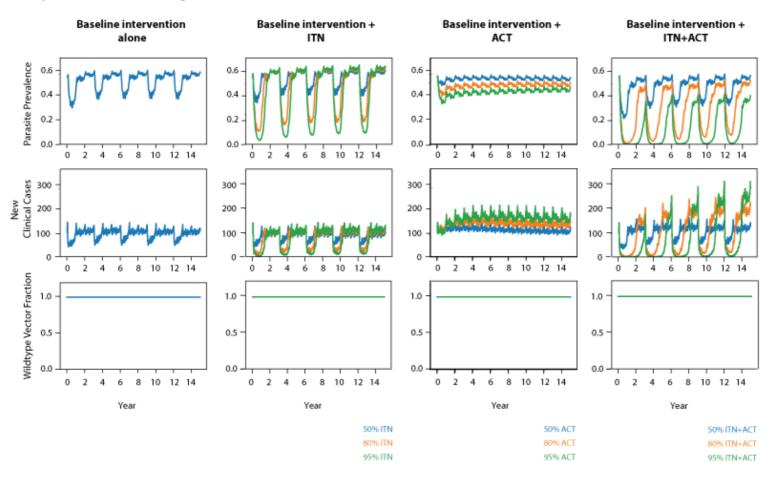

Kinshasa

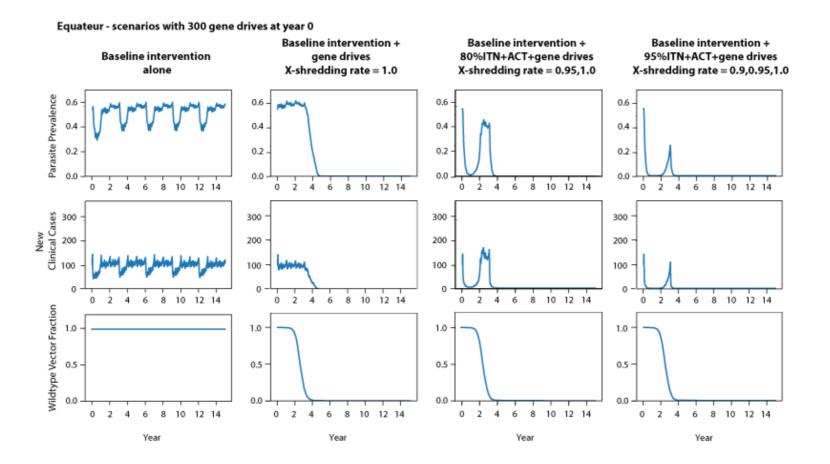

Kwango

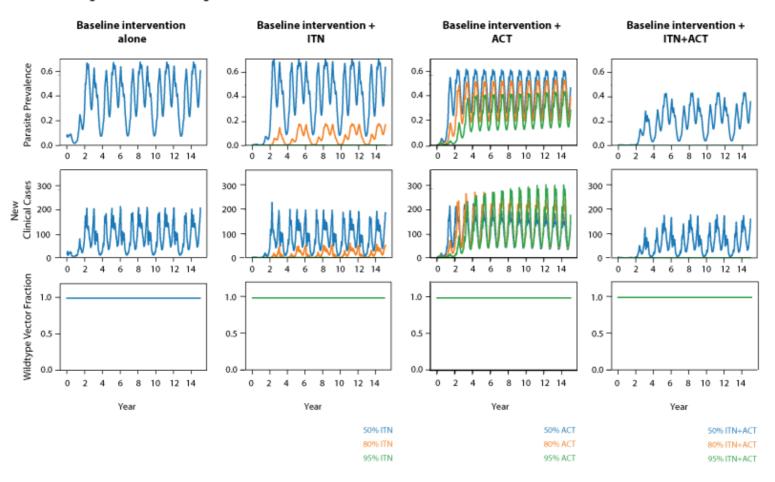
Nord Ubangui

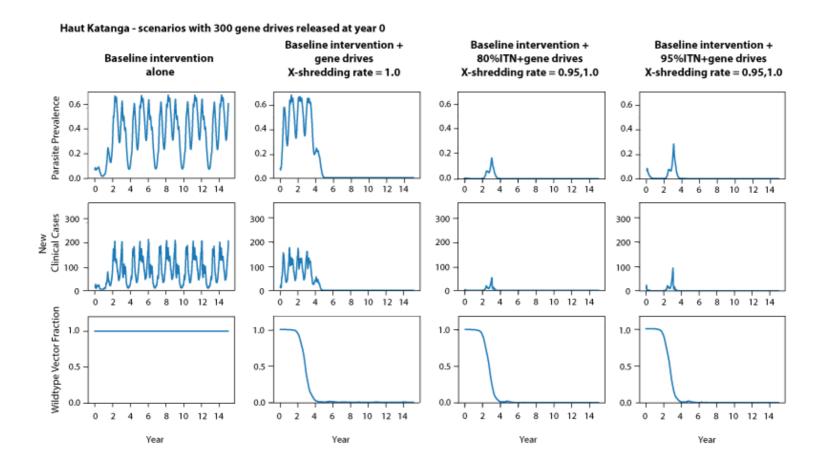


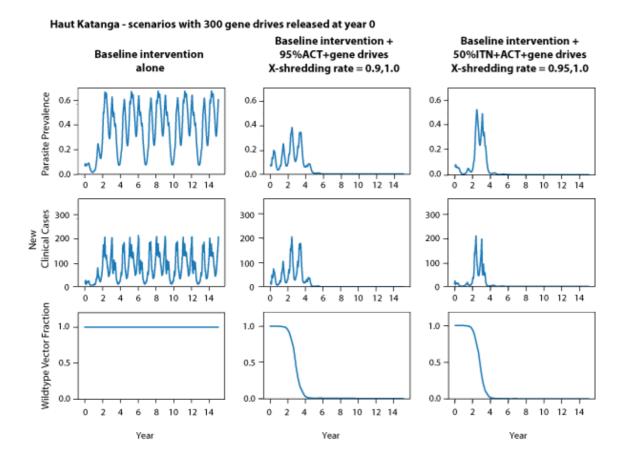

Supplementary 3, Non-spatial simulation framework: ratio between current and initial numbers of adult vectors, 15 year post-release.

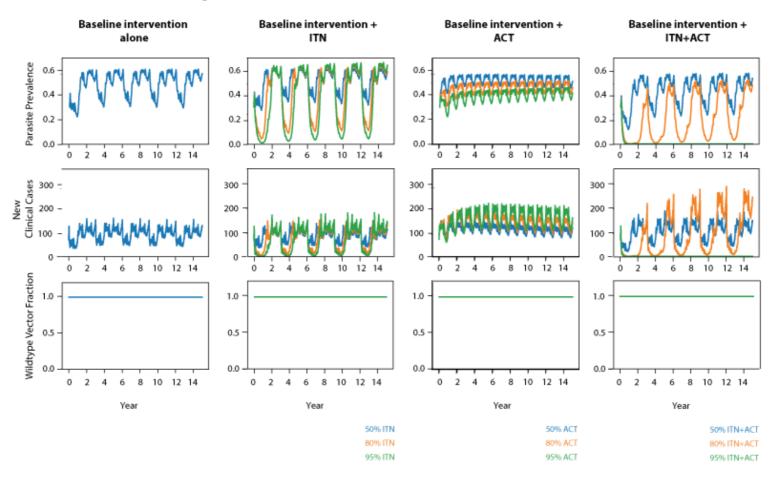

Supplementary 4: Spatial simulation framework: simulation outputs.

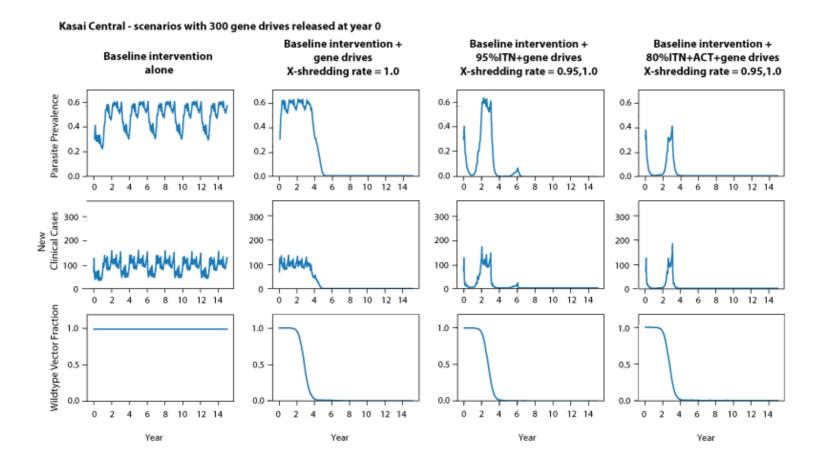

Bas Uele - scenarios without gene drives

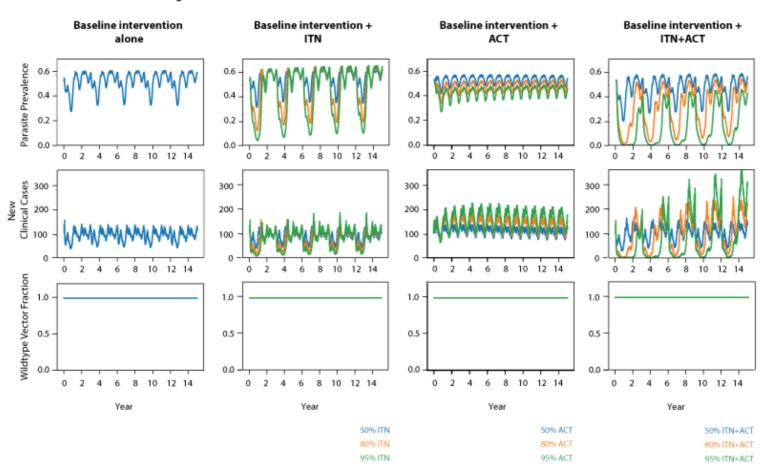


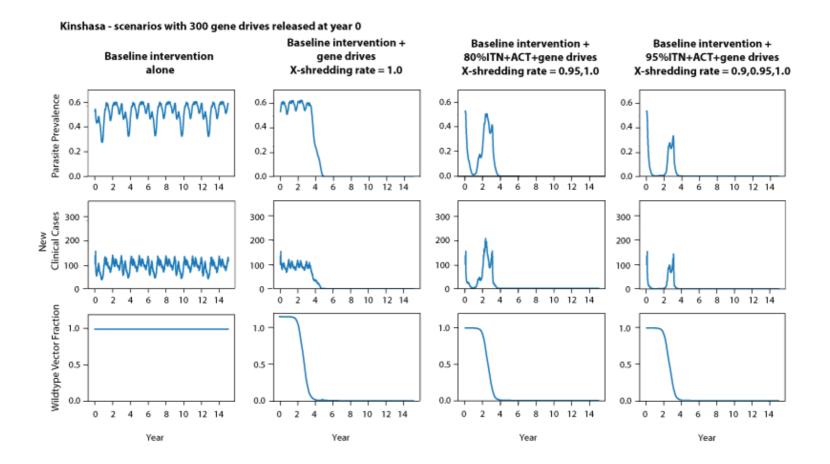

Equateur - scenarios without gene drives

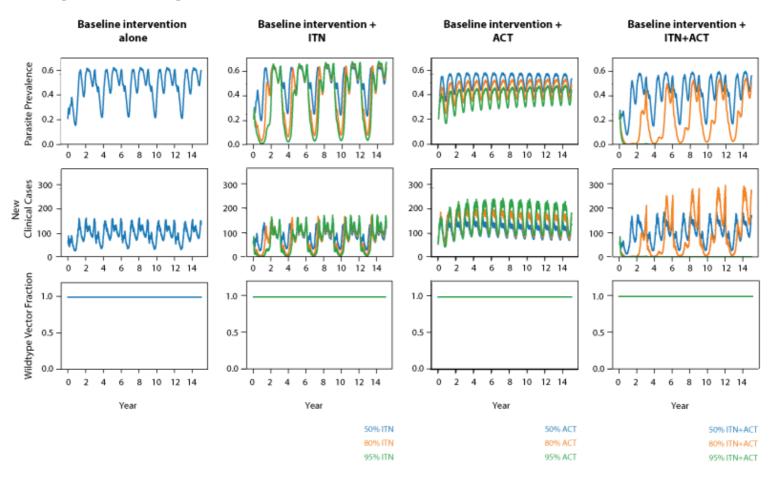


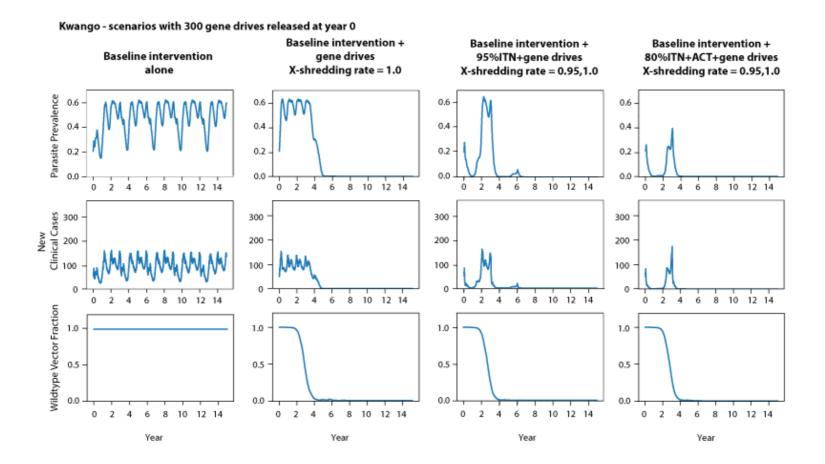

Haut Katanga - scenarios without gene drives

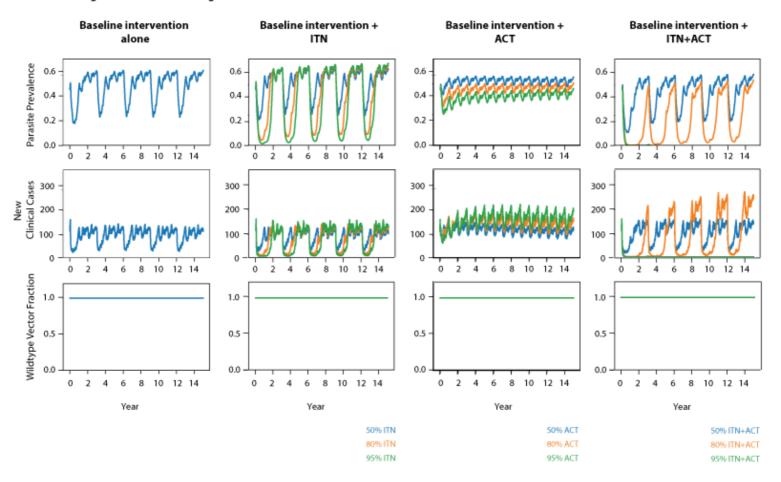


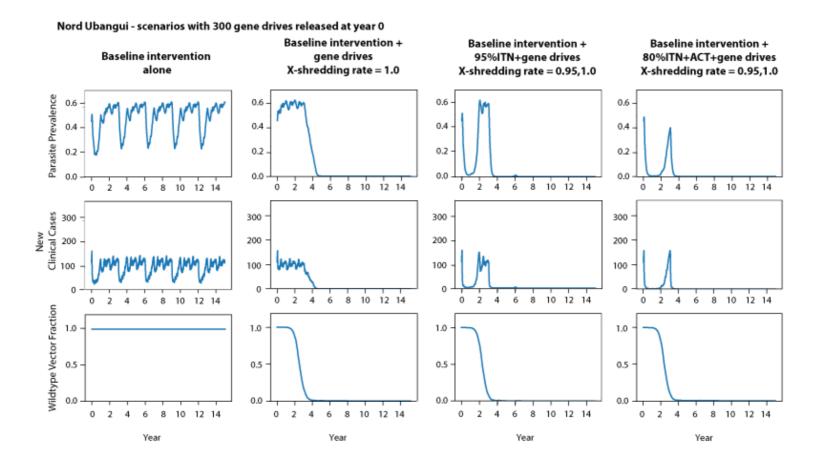



Kasai Central - scenarios without gene drives




Kinshasa - scenarios without gene drives




Kwango - scenarios without gene drives

Nord Ubangui - scenarios without gene drives

Supplementary 5: Economic analysis

<u>Table S1</u> Average DALYs averted per year per one million population across all locations estimated from model's outputs in spatial simulation framework. Estimates of each scenario were compared with baseline scenario, which 50% ITNs and 19% ACT coverage were applied. For scenarios that included gene drives, only the estimates from scenarios that resulted in malaria elimination were included.

			Average DALYs averted per year per one million									
				popul	lation							
				Model's	estimates							
			Average	The first	The second	The last						
	Intervention	Coverage	over 15	interval:	interval:	interval:						
			years	year 1-5	year 6-10	year 11-15						
	ITNs	50%	-3,696	-6,818	-2,361	-1,910						
	IIINS	80%	1,482	12,827	-1,990	-6,390						
lout		95%	8,727	27,165	2,158	-3,143						
with ives	ACT	50%	1,680	-7,733	2,506	10,266						
Scenarios without gene drives	ACI	80%	12,962	10,390	10,212	18,283						
nari		95%	21,437	25,261	15,883	23,169						
Scer	ITNs & ACT	50%	8,004	14,973	4,432	4,606						
	IINS & ACI	80%	33,477	60,693	21,288	18,451						
		95%	72,706	81,875	69,014	67,230						
	300 gene drive mosquitoes with	NA	57,298	2,888	82,542	86,464						
	X-shredding rates = 1.0 alone	IVA	37,296	2,888	62,342	80,404						
	ITNs plus gene drives with X-	80	57,561	12,201	81,580	78,904						
	shredding rates = 0.95 and 1.0	80	37,301	12,201	81,380	76,704						
es	ITNs plus gene drives with X-	95	68,222	43,505	75,420	85,741						
Scenarios with gene drives	shredding rates $= 0.95$ and 1.0	75	00,222	+3,303	73,420	05,741						
ne c	ACT plus gene drives with X-	95	68,006	40,162	83,090	80,766						
geı	shredding rates = 0.95 and 1.0	73	00,000	40,102	03,070	00,700						
vith	ITNs & ACT plus gene drives											
A SC	with X-shredding rates $= 0.95$	50	67,740	39,311	83,142	80,766						
lario	and 1.0											
cer	ITNs & ACT plus gene drives											
\ \oldsymbol{\sigma}	with X-shredding rates $= 0.95$	80	81,029	73,234	82,414	87,441						
	and 1.0											
	ITNs & ACT plus gene drives		0.5		04							
	with X-shredding rates = 0.9 ,	95	85,307	86,609	81,819	87,492						
	0.95 and 1.0											

Notes for Table S1:

- 1) NA: Not applicable
- 2) Green highlight: the scenario achieved malaria elimination
- 3) It is possible that the DALY averted results turned out to be negative figures in some scenarios since the combination of ITNs at 50% coverage and ACT at 19% coverage was applied in the baseline scenarios that were used as a comparator to reflect reality. For example, a 50% ITNs scenario means only ITNs at 50% coverage was applied as a single intervention in the scenario. Therefore, it is understandable that the lower efficacy of 50% ITNs alone could be observed once compared to the comparator in which the combination of 50% ITNs and 19% ACT was applied. Negative DALYs averted are in red texts.
- 4) WHO estimated the DALYs averted using null (do nothing) scenario as a comparator.

<u>Table S2</u> Average cost per DALY averted of interventions and combinations applied estimated from model's outputs.

		8 1				Scenar								Scenarios with gene drives								
													1	Intervention(s)								
					ITNs A				The combination of ITNs and ACT				300 genedrive mosquitoes with X-shredding rates = 1.0 alone	ITNs plus gene drives with X- shredding rates = 0.95 and 1.0	ITNs plus gene drives with X- shredding rates = 0.95 and 1.0	ACT plus gene drives with X- shredding rates = 0.95 and 1.0	ITNs & ACT plus gene drives with X- shredding rates = 0.95 and 1.0	ITNs & ACT plus gene drives with X- shredding rates = 0.95 and 1.0	ITNs & ACT plus gene drives with X- shredding rates = 0.9, 0.95 and 1.0			
ı		1											ı	Coverage (%)								
	Parasite prevalence at the end of the 50- year run- in (%)	Coverage (%)	Interval	50	80	95	50	80	95	50	80	95	Bound	NA	80	95	95	50	80	95		
	WHO's	estimates for (4)	Afr E	49	42	41	21	14	12	43	35	28	NA	NA	NA	NA	NA	NA	NA	NA		
			Year	-45	22	13	-9	143	9	28	12	11	Lower bound	-36	111	37	23	36	NA	NA		
			1-5	43	22	13		143		20	12	11	Upper bound	-355	641	205	184	200	NA	NA		
S	7.27	Haut	Year	-	-91	23	43	18	12	303	10	9	Lower bound	9	17	26	11	17	NA	NA		
from	7.27	Katanga	6-10	238	-91	23	43	18	12	303	10		Upper bound	96	142	89	95	96	NA	NA		
Estimates from model's outputs			Year	-	-121	25	20	12	11	169	10	9	Lower bound	9	17	18	12	17	NA	NA		
Estin			11-15	207 -121	-121	23	20	12	11	109	10		Upper bound	99	98	91	97	99	NA	NA		

		Year	-60	51	26	24	22	9	47	11	8	Lower bound	-340	NA	32	NA	NA	20	NA		
		1-5	-60	51	26	-24	23	9		11	8	Upper bound	-3,382	NA	175	NA	NA	101	NA		
20.81	Kwango	Year	-	-494	-156	55	17	12	112	59	9	Lower bound	9	NA	17	NA	NA	18	NA		
20.01	Kwango	6-10	427	-474	-130	33	17	12	112	39	9	Upper bound	85	NA	95	NA	NA	94	NA		
		Year	-	-117	-106	18	11	9	120	89	8	Lower bound	8	NA	16	NA	NA	18	NA		
		11-15	275	-117	-100	10	11	,	120	89	0	Upper bound	82	NA	90	NA	NA	91	NA		
		Year	-69	51	26	-29	11	8	46	11	8	Lower bound	11,661	NA	32	NA	NA	20	NA		
	Kasai Central	1-5	-07	31	20	-27	11	0	40	11	0	Upper bound	116,124	NA	176	NA	NA	103	NA		
29.65			-			-245	-161	64	20	14	157	68	9	Lower bound	9	NA	18	NA	NA	19	NA
27.05			175	243	101	04	20	17	137	00		Upper bound	87	NA	97	NA	NA	97	NA		
		Year 11-15	-	-102	-81	20	11	9	142	121	9	Lower bound	8	NA	16	NA	NA	18	NA		
			220	-102	-01	20	11		142	121		Upper bound	83	NA	91	NA	NA	92	NA		
		Year	-64	53	30	-27	20	8	48	11	8	Lower bound	82	NA	31	NA	NA	20	NA		
		1-5	-04	33	30	-27	20	0	70	11	0	Upper bound	816	NA	172	NA	NA	102	NA		
45.03	Nord	Year	-	-925	-206	125	22	15	138	66	9	Lower bound	9	NA	17	NA	NA	19	NA		
73,03	Ubangui	6-10	168	-723	-200	123	22	13	130	00		Upper bound	88	NA	96	NA	NA	98	NA		
		Year 11-15	-	-96	-82	17	10	9	129	98	8	Lower bound	8	NA	16	NA	NA	17	NA		
			419	-96	-82	17	10			76	· ·	Upper bound	82	NA	89	NA	NA	91	NA		

	_																												
		Year	-81	61	29	-36	19	8	48	12	10	Lower bound	65	NA	NA	NA	NA	20	16										
		0-5	-01	01	29	-30	19	8	40	12	10	Upper bound	645	NA	NA	NA	NA	105	87										
51. 64	D 111	Year 6-10	Year	Year	Year	Year	Year	Year	Year	Year	Year	Year	_	606	222	117	22	1.5	1.40	170	0	Lower bound	9	NA	NA	NA	NA	19	18
51.64	Bas Uele		181	-606	-322	117	22	15	140	170	9	Upper bound	87	NA	NA	NA	NA	97	96										
		Year	_	-81	-73	19	1.1	9	180	111	9	Lower bound	8	NA	NA	NA	NA	18	17										
		11-15	204	-01	-/3	19	11	9	100	111	9	Upper bound	82	NA	NA	NA	NA	91	90										
		Year	_	104	51	-89	19	9	67	17	10	Lower bound	77	NA	NA	NA	NA	25	18										
	Kinshasa	1-5	103	104	31	-09	19		07	17	10	Upper bound	765	NA	NA	NA	NA	129	97										
52.33		Year 6-10		_	-366	-	110	20	13	181	69	23	Lower bound	9	NA	NA	NA	NA	19	18									
32.33			170	-300	1,602	110	20		101	09	23	Upper bound	88	NA	NA	NA	NA	98	97										
		Year 11-15	-	-118	-98	18	10	8	143	-3 82	36	Lower bound	8	NA	NA	NA	NA	17	17										
			271	-110	-98	10	10		143		30	Upper bound	81	NA	NA	NA	NA	91	90										
		Year	-	76	40	-86	17	8	53	40	9	Lower bound	55	NA	NA	NA	NA	23	17										
		1-5	1-5	1-5	1-5	1-5	1-5	1-5	1-5	1-5	1-5	104	70	40	-00	17	0	33	40	,	Upper bound	547	NA	NA	NA	NA	120	91	
54.33	Equateur	Year	-	5,457	-706	115	21	13	143	75	19	Lower bound	9	NA	NA	NA	NA	19	18										
34.33		6-10	180	3,737	-700	113	21	13	173	13	17	Upper bound	88	NA	NA	NA	NA	98	97										
		Year	-	-75	-74	20	12	9	164	115	31	Lower bound	8	NA	NA	NA	NA	18	17										
				11-15	252	-13	-/-	20	12		104	113	31	Upper bound	83	NA	NA	NA	NA	92	91								

Note for Table S2:

- 1) NA: Not applicable
- 2) The scenarios that could achieve malaria elimination when adding gene drives were highlighted in green.

ICER

- 3) \$int: International Dollars
- 4) upper bound: upper bound price, lower bound: lower bound price

<u>Table S3</u> Incremental cost-effectiveness ratio in year 1-5 after applying intervention(s)

				(\$int per DALY averted)										
				The first	interval:	The second	interval:	The last	t interval:					
				year	1-5	year (6-10	year 11-15						
	Intervention	Coverage	Label	Lower bound	Upper bound	Lower bound	Upper bound	Lower bound	Upper bound					
	ITNs	50%	A	dominated	dominated	negative	dominated	negative	dominated					
gene		80%	В	dominated	dominated	negative	dominated	negative	dominated					
		95%	C	6.52	6.52	negative	dominated	negative	dominated					
hou	ACT	50%	D	negative	negative	negative	negative	negative	negative					
s with drives		80%	Е	negative	negative	negative	negative	negative	negative					
Scenarios without drives		95%	F	First point	First point	negative	First point	negative	First point					
nar	ITNs & ACT	50%	G	dominated	dominated	negative	dominated	negative	dominated					
Sce		80%	Н	0.43	0.43	dominated	2.82	dominated	dominated					
		95%	I	0.23	0.23	dominated	0.25	dominated	0.30					
with es	300 gene drive mosquitoes with X-shredding rates = 1.0 alone	NA	J	dominated	dominated	First point	2.62	First point	2.76					
Scenarios with gene drives	ITNs plus gene drives with X-shredding rates = 0.95 and 1.0	80	K	dominated	dominated	dominated	2.90	dominated	3.42					
Scel	ITNs plus gene drives with X-shredding rates = 0.95 and 1.0	95	L	1.67	10.56	dominated	3.23	dominated	3.07					

ACT plus gene drives with X-	95	M	1.22	12.10	9.74	2.68	dominated	3.12
shredding rates = 0.95 and 1.0	75	1V1	1.22	12.10	2.74	2.00	dominated	3.12
ITNs & ACT plus gene drives								
with X-shredding rates = 0.95	50	N	2.12	13.66	28.36	2.85	dominated	3.33
and 1.0								
ITNs & ACT plus gene drives								
with X-shredding rates = 0.95	80	О	0.69	4.06	dominated	2.93	20.99	3.03
and 1.0								
ITNs & ACT plus gene drives								
with X-shredding rates = 0.9 ,	95	P	0.51	3.14	dominated	2.92	17.93	2.99
0.95 and 1.0								

Keys for Table S3:

- ICER: Incremental cost-effectiveness ratio
- Negative: the incremental cost and the incremental effect are negative
- Dominated: the incremental cost is positive, and the incremental effect is negative
- Vector control strategies that could reach malaria elimination were highlighted in green.
- **Incremental cost-effectiveness ratio (ICER)** is defined as the incremental change in cost, divided by the incremental change in its effectiveness. The first, second, and third points of each expansion path were highlighted in red, orange, and yellow accordingly.