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Al: Derivation of the MR-GxE Estimator (equation 8)

Data Generating Model

G; ~ Normal Q)

U; ~ Normal 2

Z; ~ Normal 3)

GiZi = Gy X Z; 4

Xi = Yo +v1Gi +V2Z; + v3GiZ; + vaU; + €x; ®)

Yi = Bo + B1Xi + B2Gi + BaZi + PuGiZ; + BsU; + €y (6)

The MR-GXE Estimator

Y; = Bo + 016Gy + 0,2 + 15G,2; + &y (7)

Y, =g + T6GiZ; + &y )

Xi =7Vo +V1Gi +V2Z; + V3G, Z; + éx; ©)

Xi = Vo +V6zGiZ; + €x; (10)

Gy = do + dcGiZ; + g (11)

Zi =0+ azGiZ; + 1]z (12)

BlMRGxE = % (13)
cov(¥,GZ)~T'1cov(6,GZ)~Tpcov(Z,62)

.élMRGxE = cov(X,az>_vlc'Zi?ff§>_%cov(Z,GZ) (14)

var(GZ)

cov(Y,GZ)-T1cov(G,GZ)-Tcov(Z,GZ)

.BlMRGxE = cov(X,GZ)—Y1cov(G,GZ)-Y,cov(Z,GZ) (15)




A2: Derivation of the violations of the constant pleiotropy assumption
through differing confounding structures.

Scenario 1

m Y4 Bs

Figure A5: DAG illustrating a case in which the instrument G is a determinant of the interaction-covariate Z
through a confounder U.

Data generating model

G, = N(0,1) (A21-1)

U =mg+mG + €y (A21-2)

Z, =0, +0,U; + €, (A21-3)

Xi = Yo+ v1Gi +V2Z; + v3GZ; + 74U + € (A21-4)

Y, = Bo + B1Xi + B2G; + B3Z; + B4GZ; + BsU; + ey (A21-5)

Definition of bias term

First a model for X in terms of G is constructed by substituting models (A21-2) and (A21-3) into

model (A21-4):

Xi = Gi(y1 + 720111 + y301m1G; + yamy) + 1y (A21-6)



We can also construct a model for the outcome Y in terms of G by substituting models (A21-2), (A21-

3), and (A21-6) into model (A21-5):

Yi = Gi(B1(y1 +v20171 +¥30171 Gy + Vamy) + Bo + 30171 + Ba0171 G + Bats) + 1y (A21-7)

Using models (A21-6) and (A21-7), we can calculate the partial effect of G for the first and second

stage models respectively:

ax
E = yl + )/2917'[1 + 2)/391T[1Gi + ]/4_7'[1 (A21‘8)

dy
Fr i B1(y1 + V20111 + 2y30171G; + Va1ry) + By + B3611y + 240,71 G + By (A21-9)

The corresponding Wald estimand is then given as:

,8 + B2+PB301m1+20401m1Gi+ L5y
1

(A21-10)
V1+Y201m1+2y301m1Gi+yam

In equation (A21-10), the change in pleiotropic effect across the set of subgroups is represented by the
term 2(,6,m,G;. In this case, S, represents the average change in pleiotropic effect across subgroups,
6, is the effect of G upon the confounder U, and m, is the effect of the G mediated by the confounder

U. This highlights three important elements of the constant pleiotropy assumption:

1. MRGXE will give an unbiased effect estimate (8, in cases where there is no average change in
pleiotropic effect across the set of subgroups (8, = 0). Importantly, this includes the
possibility of changes in pleiotropic effect being balanced across the sample, in a similar
fashion to the balanced pleiotropic effects in the MR Egger framework.

2. MRGXE will give an unbiased effect estimate $; when there is no effect of the instrument G
upon a confounder (6, = 0).

3. MRGXE will give an unbiased effect estimate $; when there is no effect of the instrument G

mediated by the confounder (m; = 0).



Scenario 2:

%

Figure A6: DAG illustrating a case in which the interaction-covariate Z is a determinant of the instrument G
through a confounder U.

Bs

Data generating model

Z, = N(0,1) (A22-1)

U =mng+mZ +ey (A22-2)

G, = 0, + 0,U; + €g (A22-3)

Xi = Yo+ v1Gi +V2Z; + v3GZ; +7,U + € (A22-4)

Y, = Bo + B1X; + BoG; + B3Z; + L4GZ; + BsU; + €y (A22-5)

Definition of bias term

First model for the exposure X in terms of Z is constructed by substituting models (A22-2) and (A22-

3) into model (A22-4):

Xi = Zi(y101m1 +v2 + v301mZ; + yamy) +10x (A22-6)

We can also construct a model for the outcome Y in terms of Z; by substituting models (A22-2),

(A22-3), and (A22-6) into model (A22-5):

Yi = Zi(B1(y10171 + v + V3011 Z; + yamy) + B201701 + B3 + Bab171 Z; + Psy) + 1y (A22-7)



As Z is a determinant of both U and G, it is appropriate to calculate the partial effect of Z with respect

toXandY
dx

=7 = V1011t ¥z + 2y3601mZ; + yamy (A22-8)

ay
7= Br1(y10171 +v2 + 2y30171Z; + Yamq) + B2017y + B3 + 240171 Z; + sy (A22-9)

The corresponding Wald estimand is then given as:

,8 + B201m1+PB3+204,01T1Zi+ L5,
1 V1011 +Y2+2Y301 1 Zj+Y,my

(A22-10)

In this case term 23,60, m,Z; has an equivalent role in invalidating MRGXE estimates as the

2y30,m,G; term from scenario 1.



Scenario 3:

B

Figure A7: DAG illustrating a case in which the interaction-covariate Z and the instrument G are determinants
of the confounder U.

Data generating model

G, = N(0,1) (A23-1)

7, = N(0,1) (A23-2)

Ui =my +m1G; + 72 + €y (A23-3)

Xi = Yo+ v1Gi +V2Z; + v3GZ; + 74U + € (A23-4)
Y, = Lo+ B1Xi + B2G; + B3Z; + B4GZ; + BsU; + €y (A23-5)

Definition of bias term

First a model for the exposure X in terms of G is constructed by substituting models (A23-2) and

(A23-3) into model (A23-4):

Xi= Gi(y1 +v3Z; + vamy) +1x (A23-6)

We can also construct a model for the outcome Y in terms of G by substituting models (A23-2), (A23-

3), and (A23-6) into model (A23-5):

Yi = Gi(B1(y1 +V3Zi +vamy) + Po + BuZi + Bsmy) + 1y (A23-7)



Using models (A23-6) and (A23-7), we can calculate the partial effect of G for the first and second

stage models respectively:

ax
- = V1T VZityam (A23-8)

ar
—c = Bi(r1 +v3Zi +vami) + Bz + PaZi + Bsmy (A23-9)

The corresponding Wald estimand is then given as:

.Bl + B2+PB4Zi+PBsme

(A23-10)
Y1+YV3Zityamq

As can be seen from equation (A23-10), the effect of G through the confounder U is constant and
incorporated into the MRGXE pleiotropy correction. As a consequence, MRGXE provides an

unbiased estimate of the causal effect £3;.



Scenario 4:

B2

A
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Figure A8: DAG illustrating a case in which the confounder U is a determinant of both the interaction-covariate
Z and the instrument G.

Data generating model

Ui =N(0,1) (A24-1)

Zi=my+mU; +¢; (A24-2)

G; =0y +0.U; + €5 (A24-3)

Xi = Yot V1Gi +V2Z; +v3GZ; + 74U + € (A24-4)

Y; = Bo+ B1Xi+ B2Gi + B3Z; + BaGZ; + BsU; + €y (A24-5)

Definition of bias term

We can substitute model (A24-2) into models (A24-4) and (A24-5), such that

Xi = Ui(y161 +vamy +v301m U +y4) +1x (A24-6)

Y; = Ui(B1 (1101 + vomy + 2y301m1U; + va) + B261 + B3y + 2B,6,m.U; + Bs) + 1y

As the instrument G is determined by U, it is appropriate to calculate the partial effect of U for the

first and second stage models respectively:



dax
—5 = V161 T vomy + 2y360,m Ui + v, (A24-8)

dy
—5 = B1(r101 +vomy + 27301mU; +va) + B201 + Bamy + 28,61 U + Bs A24-(9)

The corresponding Wald estimand is then given as:

ﬁ n B,01+B;m1+2B,6, 71U+ B (A24-10)
1 Y1014y, m+2y50,m Uy,

As with scenario 1 and scenario 2, the term 23,6, m, U; encapsulates the bias resulting from change in
pleiotropic effects across subgroups. As a result, the MRGXE model will be invalidated where there
are one or more confounders causally downstream of both the instrument G and the interaction

covariate Z, and where the average effect of the set of confounders is not balanced.
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A3: Code for performing analyses (using a preformatted data frame).

#Where pheno_data is an appropriately formatted data frame containing candidate
#interaction covariates, and xy_data is a formatted data frame containing the
#texposure and outcome of interest. The last column of pheno_data should contain
#values for the genetic instrument G, written in this example as pheno_data$SCORE.
pheno_data<-pheno_data[,-c(1,1691)]

phenovec<-length(names(pheno_data))-1

F_stat_pvalue<-rep(99,phenovec)

F_stat<-rep(12345,phenovec)

GXEB1<-rep(99, phenovec)

GxEse<-rep(99,phenovec)

GXEp<-rep(99,phenovec)

GXE_1lb<-rep(99,phenovec)

GXE_ub<-rep(99, phenovec)

summary (ivreg(xy_data$f.4080.0.0~xy data$f.845.0.0|pheno_data$SCORE),diagnostics=T
summary (ivreg(xy_data$f.4080.0.0~xy data$f.845.0.0|pheno_data$SCORE),diagnostics=T

)$coefficients[2,1]

summary (ivreg(xy_data$f.4080.0.0~xy _data$f.845.0.0|pheno_data$SCORE),diagnostics=T
)$coefficients[2,2]

summary (ivreg(xy_data$f.4080.0.0~xy data$f.845.0.0|pheno_data$SCORE),diagnostics=T
)$coefficients[2,4]

for(i in 1:phenovec){

GZ<-pheno_data[,1690] * pheno_data[,i]
formula_temp<-as.formula(paste(c(paste("xy_data[,2]",
paste(c("xy_data[,1]",paste(c("pheno_data",names(pheno _data)[i]),collapse="$"),"ph
eno_data[,1690]"),collapse = " + "), sep = " ~ ")
spaste(c(paste(c("pheno_data",names(pheno_data)[i]),collapse="%$"), "pheno_data[,169
0]","Gz"),collapse = " + ")),collapse = "|"))
F_stat_pvalue[i]<-summary(ivreg(formula_temp),diagnostics=T)$diagnostics[1,4]
F_stat[i]<-summary(ivreg(formula_temp),diagnostics=T)$diagnostics[1,3]
GXEB1[i]<-summary(ivreg(formula_temp),diagnostics=T)$coefficients[2,1]

GxEse[i]<-summary(ivreg(formula_temp),diagnostics=T)$coefficients[2,2]
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GxEp[i]<-summary(ivreg(formula_temp),diagnostics=T)$coefficients[2,4]
GxE_1b[i]<-confint(ivreg(formula_temp))[2,1]
GXE_ub[i]<-confint(ivreg(formula_temp))[2,2]

}

output<-
data.frame(names(pheno_data)[1:1689],F_stat,F_stat_pvalue,GxEB1,GxEse,GxEp,GXE_1b,
GXE_ub)

write.csv(output, "output_extended.csv",row.names=F)

Further specific information pertaining to code is available upon request.
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