Supplementary Material (updated 21/07/20)

Contents

A1: Derivation of the MR-GxE Estimator (equation 8)	2
A2: Derivation of the violations of the constant pleiotropy assumption through differin	
structures	3
A3: Code for performing analyses (using a preformatted data frame)	11

A1: Derivation of the MR-GxE Estimator (equation 8)

Data Generating Model

$$G_i \sim Normal$$
 (1)

$$U_i \sim Normal$$
 (2)

$$Z_i \sim Normal$$
 (3)

$$G_i Z_i = G_i \times Z_i \tag{4}$$

$$X_i = \gamma_0 + \gamma_1 G_i + \gamma_2 Z_i + \gamma_3 G_i Z_i + \gamma_4 U_i + \epsilon_{Xi}$$

$$\tag{5}$$

$$Y_{i} = \beta_{0} + \beta_{1}X_{i} + \beta_{2}G_{i} + \beta_{3}Z_{i} + \beta_{4}G_{i}Z_{i} + \beta_{5}U_{i} + \epsilon_{Yi}$$
(6)

The MR-GxE Estimator

$$Y_i = \hat{\beta}_0 + \hat{\Gamma}_1 G_i + \hat{\Gamma}_2 Z_i + \hat{\Gamma}_3 G_i Z_i + \hat{\epsilon}_{Yi} \tag{7}$$

$$Y_i = \tilde{\Gamma}_0 + \tilde{\Gamma}_{GZ} G_i Z_i + \tilde{\epsilon}_{Yi} \tag{8}$$

$$X_i = \hat{\gamma}_0 + \hat{\gamma}_1 G_i + \hat{\gamma}_2 Z_i + \hat{\gamma}_3 G_i Z_i + \hat{\epsilon}_{Xi} \tag{9}$$

$$X_i = \tilde{\gamma}_0 + \tilde{\gamma}_{GZ} G_i Z_i + \tilde{\epsilon}_{Xi} \tag{10}$$

$$G_i = \tilde{\alpha}_0 + \tilde{\alpha}_G G_i Z_i + \tilde{\eta}_{Gi} \tag{11}$$

$$Z_i = \tilde{\alpha}_0 + \tilde{\alpha}_Z G_i Z_i + \tilde{\eta}_{Zi} \tag{12}$$

$$\hat{\beta}_{1MRGxE} = \frac{\tilde{\Gamma}_{GZ} - \hat{\Gamma}_1 \tilde{\alpha}_G - \hat{\Gamma}_2 \tilde{\alpha}_Z}{\tilde{\gamma}_{GZ} - \hat{\gamma}_1 \tilde{\alpha}_G - \hat{\gamma}_2 \tilde{\alpha}_Z}$$
(13)

$$\hat{\beta}_{1MRGxE} = \frac{\frac{cov(Y,GZ) - \hat{\Gamma}_1 cov(G,GZ) - \hat{\Gamma}_2 cov(Z,GZ)}{var(GZ)}}{\frac{cov(X,GZ) - \hat{\gamma}_1 cov(G,GZ) - \hat{\gamma}_2 cov(Z,GZ)}{var(GZ)}}{var(GZ)}$$
(14)

$$\hat{\beta}_{1MRGxE} = \frac{cov(Y,GZ) - \hat{\Gamma}_1 cov(G,GZ) - \hat{\Gamma}_2 cov(Z,GZ)}{cov(X,GZ) - \hat{\gamma}_1 cov(G,GZ) - \hat{\gamma}_2 cov(Z,GZ)}$$
(15)

A2: Derivation of the violations of the constant pleiotropy assumption through differing confounding structures.

Scenario 1

Figure A5: DAG illustrating a case in which the instrument G is a determinant of the interaction-covariate Z through a confounder U.

Data generating model

$$G_i = N(0,1) (A21-1)$$

$$U_i = \pi_0 + \pi_1 G_i + \epsilon_U \tag{A21-2}$$

$$Z_i = \theta_0 + \theta_1 U_i + \epsilon_Z \tag{A21-3}$$

$$X_{i} = \gamma_{0} + \gamma_{1}G_{i} + \gamma_{2}Z_{i} + \gamma_{3}GZ_{i} + \gamma_{4}U + \epsilon_{X}$$
(A21-4)

$$Y_i = \beta_0 + \beta_1 X_i + \beta_2 G_i + \beta_3 Z_i + \beta_4 G Z_i + \beta_5 U_i + \epsilon_Y$$
 (A21-5)

Definition of bias term

First a model for X in terms of G is constructed by substituting models (A21-2) and (A21-3) into model (A21-4):

$$X_{i} = G_{i}(\gamma_{1} + \gamma_{2}\theta_{1}\pi_{1} + \gamma_{3}\theta_{1}\pi_{1}G_{i} + \gamma_{4}\pi_{1}) + \eta_{X}$$
(A21-6)

We can also construct a model for the outcome Y in terms of G by substituting models (A21-2), (A21-3), and (A21-6) into model (A21-5):

$$Y_i = G_i(\beta_1(\gamma_1 + \gamma_2\theta_1\pi_1 + \gamma_3\theta_1\pi_1G_i + \gamma_4\pi_1) + \beta_2 + \beta_3\theta_1\pi_1 + \beta_4\theta_1\pi_1G_i + \beta_4\pi_4) + \eta_V$$
 (A21-7)

Using models (A21-6) and (A21-7), we can calculate the partial effect of G for the first and second stage models respectively:

$$\frac{dX}{dG} = \gamma_1 + \gamma_2 \theta_1 \pi_1 + 2\gamma_3 \theta_1 \pi_1 G_i + \gamma_4 \pi_1 \tag{A21-8}$$

$$\frac{dY}{dG} = \beta_1(\gamma_1 + \gamma_2\theta_1\pi_1 + 2\gamma_3\theta_1\pi_1G_i + \gamma_4\pi_1) + \beta_2 + \beta_3\theta_1\pi_1 + 2\beta_4\theta_1\pi_1G_i + \beta_5\pi_1 \text{ (A21-9)}$$

The corresponding Wald estimand is then given as:

$$\beta_1 + \frac{\beta_2 + \beta_3 \theta_1 \pi_1 + 2\beta_4 \theta_1 \pi_1 G_i + \beta_5 \pi_1}{\gamma_1 + \gamma_2 \theta_1 \pi_1 + 2\gamma_3 \theta_1 \pi_1 G_i + \gamma_4 \pi_1}$$
(A21-10)

In equation (A21-10), the change in pleiotropic effect across the set of subgroups is represented by the term $2\beta_4\theta_1\pi_1G_i$. In this case, β_4 represents the average change in pleiotropic effect across subgroups, θ_1 is the effect of G upon the confounder U, and π_1 is the effect of the G mediated by the confounder U. This highlights three important elements of the constant pleiotropy assumption:

- 1. MRGXE will give an unbiased effect estimate β_1 in cases where there is no average change in pleiotropic effect across the set of subgroups ($\beta_4 = 0$). Importantly, this includes the possibility of changes in pleiotropic effect being balanced across the sample, in a similar fashion to the balanced pleiotropic effects in the MR Egger framework.
- 2. MRGXE will give an unbiased effect estimate β_1 when there is no effect of the instrument G upon a confounder $(\theta_1 = 0)$.
- 3. MRGXE will give an unbiased effect estimate β_1 when there is no effect of the instrument G mediated by the confounder $(\pi_1 = 0)$.

Scenario 2:

Figure A6: DAG illustrating a case in which the interaction-covariate Z is a determinant of the instrument G through a confounder U.

Data generating model

$$Z_i = N(0,1)$$
 (A22-1)

$$U_i = \pi_0 + \pi_1 Z_i + \epsilon_U \tag{A22-2}$$

$$G_i = \theta_0 + \theta_1 U_i + \epsilon_G \tag{A22-3}$$

$$X_i = \gamma_0 + \gamma_1 G_i + \gamma_2 Z_i + \gamma_3 G Z_i + \gamma_4 U + \epsilon_X \tag{A22-4}$$

$$Y_i = \beta_0 + \beta_1 X_i + \beta_2 G_i + \beta_3 Z_i + \beta_4 G Z_i + \beta_5 U_i + \epsilon_Y$$
 (A22-5)

Definition of bias term

First model for the exposure X in terms of Z is constructed by substituting models (A22-2) and (A22-

3) into model (A22-4):

$$X_i = Z_i(\gamma_1 \theta_1 \pi_1 + \gamma_2 + \gamma_3 \theta_1 \pi_1 Z_i + \gamma_4 \pi_1) + \eta_X \tag{A22-6}$$

We can also construct a model for the outcome Y in terms of Z_i by substituting models (A22-2),

(A22-3), and (A22-6) into model (A22-5):

$$Y_i = Z_i(\beta_1(\gamma_1\theta_1\pi_1 + \gamma_2 + \gamma_3\theta_1\pi_1Z_i + \gamma_4\pi_1) + \beta_2\theta_1\pi_1 + \beta_3 + \beta_4\theta_1\pi_1Z_i + \beta_5\pi_1) + \eta_Y \quad (A22-7)$$

As Z is a determinant of both U and G, it is appropriate to calculate the partial effect of Z with respect to X and Y

$$\frac{dX}{dZ} = \gamma_1 \theta_1 \pi_1 + \gamma_2 + 2\gamma_3 \theta_1 \pi_1 Z_i + \gamma_4 \pi_1$$
 (A22-8)

$$\frac{dY}{dZ} = \beta_1 (\gamma_1 \theta_1 \pi_1 + \gamma_2 + 2\gamma_3 \theta_1 \pi_1 Z_i + \gamma_4 \pi_1) + \beta_2 \theta_1 \pi_1 + \beta_3 + 2\beta_4 \theta_1 \pi_1 Z_i + \beta_5 \pi_1 \ \ (A22-9)$$

The corresponding Wald estimand is then given as:

$$\beta_1 + \frac{\beta_2 \theta_1 \pi_1 + \beta_3 + 2\beta_4 \theta_1 \pi_1 Z_i + \beta_5 \pi_1}{\gamma_1 \theta_1 \pi_1 + \gamma_2 + 2\gamma_3 \theta_1 \pi_1 Z_i + \gamma_4 \pi_1}$$
(A22-10)

In this case term $2\beta_4\theta_1\pi_1Z_i$ has an equivalent role in invalidating MRGXE estimates as the $2\gamma_3\theta_1\pi_1G_i$ term from scenario 1.

Scenario 3:

Figure A7: DAG illustrating a case in which the interaction-covariate Z and the instrument G are determinants of the confounder U.

Data generating model

$$G_i = N(0,1) (A23-1)$$

$$Z_i = N(0,1) (A23-2)$$

$$U_i = \pi_0 + \pi_1 G_i + \pi_2 Z_i + \epsilon_{II} \tag{A23-3}$$

$$X_i = \gamma_0 + \gamma_1 G_i + \gamma_2 Z_i + \gamma_3 G Z_i + \gamma_4 U + \epsilon_X \tag{A23-4}$$

$$Y_i = \beta_0 + \beta_1 X_i + \beta_2 G_i + \beta_3 Z_i + \beta_4 G Z_i + \beta_5 U_i + \epsilon_Y$$
 (A23-5)

Definition of bias term

First a model for the exposure X in terms of G is constructed by substituting models (A23-2) and (A23-3) into model (A23-4):

$$X_{i} = G_{i}(\gamma_{1} + \gamma_{3}Z_{i} + \gamma_{4}\pi_{1}) + \eta_{X}$$
(A23-6)

We can also construct a model for the outcome Y in terms of G by substituting models (A23-2), (A23-3), and (A23-6) into model (A23-5):

$$Y_i = G_i(\beta_1(\gamma_1 + \gamma_3 Z_i + \gamma_4 \pi_1) + \beta_2 + \beta_4 Z_i + \beta_5 \pi_1) + \eta_Y$$
(A23-7)

Using models (A23-6) and (A23-7), we can calculate the partial effect of G for the first and second stage models respectively:

$$\frac{dX}{dG} = \gamma_1 + \gamma_3 Z_i + \gamma_4 \pi_1 \tag{A23-8}$$

$$\frac{dY}{dG} = \beta_1(\gamma_1 + \gamma_3 Z_i + \gamma_4 \pi_1) + \beta_2 + \beta_4 Z_i + \beta_5 \pi_1$$
 (A23-9)

The corresponding Wald estimand is then given as:

$$\beta_1 + \frac{\beta_2 + \beta_4 Z_i + \beta_5 \pi_1}{\gamma_1 + \gamma_3 Z_i + \gamma_4 \pi_1} \tag{A23-10}$$

As can be seen from equation (A23-10), the effect of G through the confounder U is constant and incorporated into the MRGXE pleiotropy correction. As a consequence, MRGXE provides an unbiased estimate of the causal effect β_1 .

Scenario 4:

Figure A8: DAG illustrating a case in which the confounder U is a determinant of both the interaction-covariate Z and the instrument G.

Data generating model

$$U_i = N(0,1) (A24-1)$$

$$Z_i = \pi_0 + \pi_1 U_i + \epsilon_Z \tag{A24-2}$$

$$G_i = \theta_0 + \theta_1 U_i + \epsilon_G \tag{A24-3}$$

$$X_i = \gamma_0 + \gamma_1 G_i + \gamma_2 Z_i + \gamma_3 G Z_i + \gamma_4 U + \epsilon_X \tag{A24-4}$$

$$Y_i = \beta_0 + \beta_1 X_i + \beta_2 G_i + \beta_3 Z_i + \beta_4 G Z_i + \beta_5 U_i + \epsilon_Y$$
 (A24-5)

Definition of bias term

We can substitute model (A24-2) into models (A24-4) and (A24-5), such that

$$X_i = U_i(\gamma_1 \theta_1 + \gamma_2 \pi_1 + \gamma_3 \theta_1 \pi_1 U_i + \gamma_4) + \eta_X$$
 (A24-6)

$$Y_i = U_i(\beta_1(\gamma_1\theta_1 + \gamma_2\pi_1 + 2\gamma_3\theta_1\pi_1U_i + \gamma_4) + \beta_2\theta_1 + \beta_3\pi_1 + 2\beta_4\theta_1\pi_1U_i + \beta_5) + \eta_Y$$

As the instrument G is determined by U, it is appropriate to calculate the partial effect of U for the first and second stage models respectively:

$$\frac{dX}{dU} = \gamma_1 \theta_1 + \gamma_2 \pi_1 + 2\gamma_3 \theta_1 \pi_1 U_i + \gamma_4 \tag{A24-8}$$

$$\frac{dY}{dU} = \beta_1(\gamma_1\theta_1 + \gamma_2\pi_1 + 2\gamma_3\theta_1\pi_1U_i + \gamma_4) + \beta_2\theta_1 + \beta_3\pi_1 + 2\beta_4\theta_1\pi_1U_i + \beta_5$$
 A24- (9)

The corresponding Wald estimand is then given as:

$$\beta_1 + \frac{\beta_2 \theta_1 + \beta_3 \pi_1 + 2\beta_4 \theta_1 \pi_1 U_i + \beta_5}{\gamma_1 \theta_1 + \gamma_2 \pi_1 + 2\gamma_3 \theta_1 \pi_1 U_i + \gamma_4}$$
(A24-10)

As with scenario 1 and scenario 2, the term $2\beta_4\theta_1\pi_1U_i$ encapsulates the bias resulting from change in pleiotropic effects across subgroups. As a result, the MRGXE model will be invalidated where there are one or more confounders causally downstream of both the instrument G and the interaction covariate Z, and where the average effect of the set of confounders is not balanced.

A3: Code for performing analyses (using a preformatted data frame).

#Where pheno_data is an appropriately formatted data frame containing candidate

#interaction covariates, and xy_data is a formatted data frame containing the #exposure and outcome of interest. The last column of pheno data should contain #values for the genetic instrument G, written in this example as pheno_data\$SCORE. pheno_data<-pheno_data[,-c(1,1691)]</pre> phenovec<-length(names(pheno data))-1</pre> F stat pvalue<-rep(99,phenovec) F stat<-rep(12345,phenovec) GxEB1<-rep(99,phenovec)</pre> GxEse<-rep(99,phenovec)</pre> GxEp<-rep(99,phenovec)</pre> GxE_lb<-rep(99,phenovec)</pre> GxE ub<-rep(99,phenovec)</pre> summary(ivreg(xy data\$f.4080.0.0~xy data\$f.845.0.0|pheno data\$SCORE),diagnostics=T summary(ivreg(xy data\$f.4080.0.0~xy data\$f.845.0.0|pheno data\$SCORE),diagnostics=T)\$coefficients[2,1] summary(ivreg(xy_data\$f.4080.0.0~xy_data\$f.845.0.0|pheno_data\$SCORE),diagnostics=T)\$coefficients[2,2] summary(ivreg(xy_data\$f.4080.0.0~xy_data\$f.845.0.0|pheno_data\$SCORE),diagnostics=T)\$coefficients[2,4] for(i in 1:phenovec){ GZ<-pheno_data[,1690] * pheno_data[,i]</pre> formula temp<-as.formula(paste(c(paste("xy data[,2]",</pre> eno data[,1690]"),collapse = " + "), sep = " ~ ") ,paste(c(paste(c("pheno_data",names(pheno_data)[i]),collapse="\$"),"pheno_data[,169 0]","GZ"),collapse = " + ")),collapse = "|")) F_stat_pvalue[i]<-summary(ivreg(formula_temp),diagnostics=T)\$diagnostics[1,4] F stat[i]<-summary(ivreg(formula temp),diagnostics=T)\$diagnostics[1,3] GxEB1[i]<-summary(ivreg(formula temp),diagnostics=T)\$coefficients[2,1]</pre>

GxEse[i]<-summary(ivreg(formula_temp),diagnostics=T)\$coefficients[2,2]</pre>

```
GxEp[i]<-summary(ivreg(formula_temp),diagnostics=T)$coefficients[2,4]

GxE_lb[i]<-confint(ivreg(formula_temp))[2,1]

GxE_ub[i]<-confint(ivreg(formula_temp))[2,2]
}

output<-
data.frame(names(pheno_data)[1:1689],F_stat,F_stat_pvalue,GxEB1,GxEse,GxEp,GxE_lb,GxE_ub)

write.csv(output,"output_extended.csv",row.names=F)

Further specific information pertaining to code is available upon request.</pre>
```