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S1 The parabola shape of the cost-benefit curve

The downward opening parabola shape of the Fig. 2C in the main text, giving the cost of the mea-

sures as a function of their benefit (reduction in epidemic size) can be understood via mathematical

argumentation based on two stylistic assumptions about the behavior of the epidemic spread with

regard to quarantine measures. Here we do not assume any specific epidemic model, but use

the more easily understandable first-order behavior of the simulation (and the analytical) models

as an input. Putting these inputs together leads to a second order polynomial shape for the num-

ber of quarantined versus reduction of the epidemic size, similar to the one observed for the full

simulation model.

In order to simplify our computations we define auxiliary quantities that capture the overall behavior

of the full simulation epidemics. These quantities describe the average epidemic observables and

we disregard for simplicity all the variation and correlation between the various quantities. The

variables are

• I0: fraction of infected population without quarantine measures;

• Ir: fraction of infected population when quarantine measures are implemented;

• qr: fraction of quarantined individuals out of those who were in contact with an infected

individual;

• k: the average number of individuals encountered by an infected person during the time they

are infectious.
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The two quantities we are interested were defined in the main text as:

• cost q: fraction of population that is quarantined at some point during the epidemics;

• benefit r = I0−Ir
I0

: relative reduction in the fraction of infected population.

We denote by f the function describing how the fraction of quarantined contacts qr reduces the

epidemic size (this function is strictly decreasing and is thus invertible):

Ir = f(qr)I0 . (S1)

The probability of quarantine qr, in addition to having the effect of decreasing the epidemic size,

determines the number q of quarantined people, together with the other variables k and the epi-

demic size. Here we assume, in a mean-field hypothesis, that q is given by the product of the

fraction of infected people, the average number of contacts k a person has while infective and the

fraction qr of quarantined individual out of those:

q = kqrIr . (S2)

The main assumption behind this equation is that the quarantine events take place independently

of each other. This is the case if the epidemics is relatively small and the network neighborhoods of

the nodes are not clustered: correlations between the states of individuals created by the dynamics

of the spread are neglected. We note however that local clustering could be absorbed into k,

independently from the epidemic size, which means that such correlations would not change the

functional shape of the equations we derive next, but only the precise numerical values of the

parameters.

From Eqs. (S1)-(S2) and the definition of r = 1− Ir/I0 we obtain:

q = kI0(1− r)f−1(1− r) (S3)

We further assume that the quarantine efficiency function is linear:

f(qr) = 1− I0 − Im
I0

qr
qmax

, (S4)

where qmax is the maximum value qr can take and Im is the fraction of people still infected when

qr = qmax. Note that qmax does not reach 1 in the simulations even at full quarantine rates as the

quarantine procedures do not find all contacts as τct > 0, and also when the compliance is not

perfect. Inverting f and inserting it into the equation (S3) we get:

q =
kI20qmax

(I0 − Im)
r(1− r) . (S5)
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From the above equation we see that the function q(r) is a downwards opening second order

parabola that always starts at q(r = 0) = 0 but is incomplete in a sense that the arch ends

at r = 1 − Im/I0. The parabola reaches its peak (maximum cost) at r = 1/2 and the height

of the peak is controlled by the combination of disease parameters and parameters related to

interventions. The curve is illustrated in Fig. S1.

Figure S1: Some curves produced by the heuristic argument for the number of quarantined people

(cost) versus the amount of epidemic size reduction (benefit). See equation (S5).

S2 Static network based approximation of the epidemic size

We develop a simplified epidemic model with manual contact tracing and app contact tracing in

order to demonstrate the robustness of our results. Our aim is a minimal model that can exhibit

all the phenomena we observe for the more complicated simulation model, but is simple enough

so that we can write equations for the expected epidemic size. We thus consider an SIR model

with two types of individuals: ones with the app and ones without the app. Further, the underlying

contact network is assumed to be a static configuration model. We write the equations for the

epidemic size for a generic degree distribution of the network, and we will illustrate our findings in

the case of Erdős-Rényi (ER) random graphs.

Considering the SIR model at large times is approximately equivalent to studying the connectivity

of the network when parts of the links are removed.1–3 The idea of this approach is that the links

that do not have time to pass the infection before the source node moves to the recovered state are

removed, and after this the component structure of the network gives the distribution of possible

final epidemic sizes. For a simple SIR epidemic model on ER networks, this approach is known to
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yield exactly the same result as more conventional fully mixed population models.4 This solution is

given by the equation R∞ = 1− e−R0R∞ , where R0 is the expected number of individuals infected

by a single infected individual.

S2.1 Model without manual tracing and no quarantine failure possibility

To illustrate our approach we will first derive a solution to the model with no manual contact tracing

and where the digital contact tracing (app) prevents the infections with full certainty. This model

with app can be solved by extending the standard techniques for solving the final epidemic size for

the normal SIR model.3

More precisely, for a standard SIR model one would define u as the probability that following a link

does not lead to the giant component, and then write a self-consistency equation for this probability.

For our model, we have two different kinds of nodes (with or without app installed) and we need

two define two analogous probabilities:

u0 = ’Probability that following a link to a non-app user does not lead to the giant component’ (S6)

ua = ’Probability that following a link to an app user does not lead to the giant component’ (S7)

Given that the excess degree of the node at the end of the followed link is k, we can write the

conditional probabilities u0(k) and ua(k) using u0 and ua. If out of the k new neighbors the node

has there are k′ app users, then the probability u0(k) that the non-app user is not in the giant

component is given by uk
′

a u
k−k′
0 . For an app user, we do not follow the links leading to another app

users, so the probability ua(k) is given by uk−k
′

0 . The number of app user neighbors k′ out of k

neighbors follows the binomial distribution with probability papp so we get

u0(k) =
k∑

k′=0

(
k

k′

)
pk

′

app(1− papp)
k−k′uk

′

a u
k−k′
0 , (S8)

ua(k) =
k∑

k′=0

(
k

k′

)
pk

′

app(1− papp)
k−k′uk−k

′

0 . (S9)

These probabilities can be rearranged and using the binomial theorem we can write

u0(k) = [(1− papp)u0 + pappua]
k , (S10)

ua(k) = [(1− papp)u0 + papp]
k . (S11)

Now taking into account the excess degree distribution q(k) we can write the self-consistency
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equations for u0 and ua as

u0 =
∞∑
k=0

q(k)u0(k) =
∞∑
k=0

q(k)[(1− papp)u0 + pappua]
k , (S12)

ua =
∞∑
k=0

q(k)ua(k) =
∞∑
k=0

q(k)[(1− papp)u0 + papp]
k . (S13)

By denoting the generating function of q(k) as g1(z) and using the definition of generating functions

[g1(z) =
∑∞

k=0 q(k)z
k] we can write

u0 = g1((1− papp)u0 + pappua) , (S14)

ua = g1((1− papp)u0 + papp) . (S15)

The two probabilities u0 and ua can be solved from the above equations. We can then compute

the giant component size using these probabilities as

S = 1− pappg0((1− papp)u0 + papp)− (1− papp)g0((1− papp)u0 + pappua) , (S16)

where g0 is the generating function for the degree distribution of the network. If the disease spread-

ing is starting from a single node, the size of the epidemic spans a zero fraction of the network if it

starts from a node in a non-giant component and a fraction S if it starts from the giant component.

Thus, the expected final size of the epidemics is R∞ = 0× (1− S) + S × S = S2.

For Erdős-Rényi networks we can compute numerically the epidemic size by using and inserting

g0(z) = g1(z) = eR0(z−1).

S2.2 Model with manual tracing and possibility for quarantine failure

We next develop the above model further by considering that the quarantine has probability qsucc
to succeed and by introducing a probability for manual contact tracing pct.

Let us first focus on how u0(k) (and therefore Eq. S14) needs to be updated. For a node that

does not have the app, there are now two ways that a link leaving it does not lead to the giant

component: either the link is manually traced and the quarantine works, or one of these fails and

the link happens to lead to another node that doesn’t belong to the giant component. The former

happens with probability pctqsucc for each link, and the latter with 1 − pctqsucc times the probability

we wrote for the case without contact tracing (Eq. S8). That is, we write probabilities of there being

k′ failure in manual tracing or quarantine (out of k in total) and k − k′ success. Then out of those

k′ failures there are k′′ links leading to an app user and k′− k′′ individuals without the app. In total,
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the formula becomes

u0(k) =
k∑

k′=0

(
k

k′

)
(pctqsucc)

k−k′(1− pctqsucc)
k′

[
k′∑

k′′=0

(
k′

k′′

)
pk

′′

app(1− papp)
k′−k′′uk

′′

a u
k′−k′′
0

]
. (S17)

Now we can apply the binomial theorem (exactly like we did going from Eq. S8 to Eq. S10) and

write the part in the square brackets as [(1 − papp)u0 + pappua]
k′ . We then apply the binomial

theorem again to write:

u0(k) = pctqsucc + (1− pctqsucc)[(1− papp)u0 + pappua] . (S18)

The equation for ua(k) is slightly trickier to write. We need to consider that the manual contact

tracing and app contact tracing lead to the same tracing procedure that can fail. That is, if both

manual contract tracing and app contact tracing would be applied to a link, it is not possible that

one of them succeeds and the other one does not. They are both done with the same procedure,

and either the quarantine is too late or it fails through some other way or not. What we do is to

separate the links into ones where the quarantine would succeed if it was applied (with probability

qsucc) and the ones where it does not succeed (with probability 1− qsucc).

To make the exposition clear we avoid writing multiple stacked binomial distributions (similar to Eq.

S17 where we had two binomial distributions). Instead we describe the various cases separately

and write down the final equation in the form of Eq. S18.

At the first level, we consider links where the quarantine would succeed if we applied it (either

through manual or app contact tracing). This will fail with probability (1− qsucc) and in this case the

success of none of the quarantine measures make any difference and the probability of not going

to the giant component is (1− papp)u0 + pappua. Note that this is the same probability that appears

inside Eq. S10, which also describes the case of no possibility of quarantine.

The possible quarantine would succeed with probability qsucc. In this case if the link is traced

manually with probability pct it does not lead to the giant component with certainty. If the manual

tracing fails there is still a possibility for the manual app tracing to work. This now happens with

certainty if the neighbor has the app and otherwise the probability for the link to not lead to the giant

component is u0. That is, in total the probability is (1 − papp)u0 + papp. Note that this is the same

probability that appears inside Eq. S11, which describes the case of the app quarantine working if

we are coming to a node with the app (and within a model where the quarantines always work).

Putting together the parts for the equation for ua(k) we get

ua(k) = qsucc(pct + (1− pct)((1− papp)u0 + papp))) + (1− qsucc)((1− papp)u0 + pappua) . (S19)
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Now that we have the updated equations for u0(k) and ua(k) the rest of the model derivation

goes as before. We add in the generating function for the excess degree and get the final self-

consistency equations:

u0 = g1(pctqsucc + (1− pctqsucc)[(1− papp)u0 + pappua]) , (S20)

ua = g1(qsucc(pct + (1− pct)((1− papp)u0 + papp))) + (1− qsucc)((1− papp)u0 + pappua)) .(S21)

After solving these equations, we can calculate the giant component size S for the ER networks as

before and from this we get the expected size of the epidemics R∞.

We now have a simple theoretical model that has the parameters R0, papp, pct, and qsucc. Note that

the R0 probability (which is the average degree of our contact network) is the basic reproductive

number without the manual tracing and application of quarantine measures. However, as we do

not model any other isolation measures those must be absorbed in the R0 value, which lowers it

from the R0 = 3 value discussed in the main text.

The main text explores the effects of the two parameters papp and pct on the full model with realistic

temporal contact sequences. In order to confirm the findings on the overall shapes of the epidemic

size reduction curves as functions of papp and pct, we need to match the two remaining parameters

R0 and qsucc to the simulation model. These two parameters describe the average behavior of

the simulation model and are likely to have a complicated relationship with the temporal contact

network structure and the simulation parameters. Instead of deriving these relationships we take

an alternative approach of fitting the theoretical model prediction of R∞ to the simulation results

for R∞ in two extreme cases.

The first extreme case is the one without any interventions through contact tracing, i.e., when pct =

papp = 0. This is the equivalent of fitting the conventional SIR model to the data, and effectively

fixes theR0 value to the expected number of infectious contacts when only the isolation intervention

is applied. The second extreme case is when both manual contact tracing and app contact tracing

are applied with 100% certainty, i.e., when pct = papp = 1. Effectively this reduces the problem to

solving the self-consistency equation ua = g1(qsucc+(1−qsucc)ua), which is equivalent to the usual

SIR model with basic reproduction number scaled as R0(1− qsucc).

Fitting to the SD data (threshold θct = θapp = 15 min) we get R0 = 1.6 and qsucc = 0.30. The

epidemic size reduction curve we get by varying probabilities papp and pct is shown in the main text

Fig 3A.
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S3 Supplementary results
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Figure S2: Average reduction in epidemic size as a function of papp and pct for different parame-

ters for the OD data and HighSchool data. Columns correspond to three different contact tracing

thresholds (θct = θapp = 5, 10, 15 minutes). Top row: OD with β = 1 (corresponding to R0 ≈ 2.36).

Second row: OD with β = 1.37 (R0 ≈ 3). Third row: OD with β = 1.37 and compliance rate

pc = 0.6. Bottom row: HighSchool data set with β = 1.37 and compliance rate pc = 1..
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Figure S3: Average fraction of population in quarantine as a function of papp and pct for different

parameters for the OD data and HighSchool data. Columns correspond to three different contact

tracing thresholds (θct = θapp = 5, 10, 15 minutes). Top row: OD with β = 1 (corresponding to

R0 ≈ 2.36). Second row: OD with β = 1.37 (R0 ≈ 3). Third row: OD with β = 1.37 and compliance

rate pc = 0.6. Bottom row: HighSchool data set with β = 1.37 and compliance rate pc = 1..
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Figure S4: Cost-benefit curves: normalized number of quarantine events as a function of the

relative reduction in average epidemic size, for different parameters for the OD data, HighSchool

data, and SD data.
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