Appendix A: Tables

Parameter	Meaning
t _o	The starting time for the epidemic
t_1	The time when the first case showed up
τ	Transmission rate
$1/\nu$	Incubation period
f	The percentage of pre-Symptomatic cases that become symptomatic.
$1/\eta$	The recovery period
So	The susceptible population at time t_o
Io	Number of the pre-symptomatic at time t_o
U_1	Number of the unreported asymptomatic at time t_1
A_1	Number of active symptomatic cases at time t_1

Table - A.1 The Important parameters for the epidemic model

Table - A.2 Reported cases May/24 – June/4 for Libya, reported by Libyan National Center for Disease Control ^{1,2}

Day	1	2	3	4	5	6	7	8	9	10	11	12
Date	24/5	25/5	26/5	27/5	28/5	29/5	30/5	31/5	1/6	2/6	3/6	4/6
Active Cases	32	32	34	55	59	72	75	99	111	125	139	152
Cumulative	75	75	77	99	105	118	130	156	168	182	196	209
Cases												

Appendix B: Least square regression with numerical integration

Let's assume we have a set of data $(t_1, y_1), (t_2, y_2), \dots, (t_k, y_k), \dots, (t_n, y_n)$. The data is arranged in ascending order of t_k and we want to fit this data to the function.

$$y(t) = \alpha_1 \exp(\alpha_2 t) - \alpha_3 \tag{A.1}$$

Let's take the integration for the function y(t)

$$\int_{t_1}^{t} y(u) du = \int_{t_1}^{t} (\alpha_1 \exp(\alpha_2 u) - \alpha_3) du = \frac{\alpha_1}{\alpha_2} \exp(\alpha_2 t) - \frac{\alpha_1}{\alpha_2} \exp(\alpha_2 t_1) - \alpha_3 (t - t_1)$$
$$\int_{t_1}^{t} y(u) du = \frac{1}{\alpha_2} (y + \alpha_3) - \frac{\alpha_1}{\alpha_2} \exp(\alpha_2 t_1) - \alpha_3 (t - t_1)$$
A.2

Rearranging equation A.2 yields

$$y - y_1 = \alpha_2 \alpha_3 (t - t_1) + \alpha_2 \int_{t_1}^t y(u) du$$
 A.3

The integral on equation A.3 can be evaluated approximately by using numerical integration methods such as trapezoidal rule ³. Therefore, substituting for t by t_k .

$$S_{k} = \int_{t_{1}}^{t_{k}} y(u) du = \begin{cases} 0 & \text{for } k = 1\\ S_{k-1} + \frac{1}{2}(y_{k} + y_{k-1})(x_{k} - x_{k-1}) & \text{for } k = 2 \to n \end{cases}$$
 A.4

From equations A.3 and A.4 we get

$$y_k - y_1 = \alpha_2 \alpha_3 (t_k - t_1) + \alpha_2 S_k$$
 A.5

The square of the error can be estimated using equation A.5 as

$$\varepsilon^{2} = \sum_{k=1}^{n} (\alpha_{2}\alpha_{3}(t_{k} - t_{1}) + \alpha_{2}S_{k} - (y_{k} - y_{1}))^{2}$$
 A.6

Now we can do the regression process where we need to minimize the error with respect to the constants α_2 and α_1 . For the error to be minimum we have to set $\frac{\partial \varepsilon^2}{\partial \alpha_2} = 0$ and $\frac{\partial \varepsilon^2}{\partial \alpha_3} = 0$ we get two equations in two unknown as

$$\alpha_2 \alpha_3 \sum_{k=1}^n (t_k - t_1) S_k + \alpha_2 \sum_{k=1}^n S_k^2 = \sum_{k=1}^n (y_k - y_1) S_k$$
 A.7

$$\alpha_2 \alpha_3 \sum_{k=1}^n (t_k - t_1)^2 + \alpha_2 \sum_{k=1}^n (t_k - t_1) S_k = \sum_{k=1}^n (y_k - y_1) (t_k - t_1)$$
 A.8

Writing both equations in matrix form, the solution for α_2 and α_3 can be expressed as

$$\begin{bmatrix} \alpha_2 \alpha_3 \\ \alpha_2 \end{bmatrix} = \begin{bmatrix} \sum_{k=1}^n (t_k - t_1) S_k & \sum_{k=1}^n S_k^2 \\ \sum_{k=1}^n (t_k - t_1)^2 & \sum_{k=1}^n (t_k - t_1) S_k \end{bmatrix}^{-1} \begin{bmatrix} \sum_{k=1}^n (y_k - y_1) S_k \\ \sum_{k=1}^n (y_k - y_1) (t_k - t_1) \end{bmatrix}$$
 A.9

Solving equation A.9 will yield α_2 and α_3 , we keep α_2 and discard α_3 . Now that we have a good estimate for α_2 we go back to equation A.1 and we apply the least square regression method when α_2 is known and α_1 , α_3 are unknown. We will get the following equation for the error

$$\varepsilon^{2} = \sum_{k=1}^{n} (\alpha_{1} \exp(\alpha_{2} t_{k}) - \alpha_{3} - y_{k})^{2}$$
 A.10

Applying the least square method again to equation A.10 by taking $\frac{\partial \varepsilon^2}{\partial \alpha_1} = 0$ and $\frac{\partial \varepsilon^2}{\partial \alpha_3} = 0$ we get the equations

$$\begin{bmatrix} \alpha_1 \\ \alpha_3 \end{bmatrix} = \begin{bmatrix} \sum_{k=1}^n \exp(2\alpha_2 t_k) & -\sum_{k=1}^n \exp(\alpha_2 t_k) \\ \sum_{k=1}^n \exp(\alpha_2 t_k) & -n \end{bmatrix}^{-1} \begin{bmatrix} \sum_{k=1}^n y_k \exp(\alpha_2 t_k) \\ \sum_{k=1}^n y_k \end{bmatrix}$$
 A.11

Solving equations A.11 we can get α_1 and α_3

Appendix C. Solution of ordinary linear differential equation of firs order.

Let's assume that we have a linear differential equation in the form

$$\frac{dy}{dt} + a(t) y = h(t) \qquad B.1$$

We attempt to solve this equation by determining an integrating factor p(t) such that

$$\frac{d}{dt}(py) = ph \tag{B.2}$$

Equation B.2 can be written in the form

$$\frac{dy}{dt} + \left(\frac{1}{p}\frac{dp}{dt}\right)y = h(t) \qquad B.3$$

Equations B.1 and B.3 are equivalent only if

$$\frac{1}{p}\frac{dp}{dt} = a(t) \qquad \qquad B.4$$

Thus the integration factor can be expressed as

$$p = \exp\left(\int a(t) \, dt\right) \qquad \qquad B.5$$

Solving equation B.2 yields

$$y = \frac{1}{p} \int p h \, dt + \frac{C}{p} \tag{B.6}$$

Where C here is constant of integration. The constant of integration can be determined from initial values. In particular let's assume $y = y_o$ when $t = t_o$, then the solution can be expressed as

$$y(t) = \frac{1}{p(t)} \int_{t_0}^t p(\xi) h(\xi) d\xi + y_0 \frac{p(t_0)}{p(t)}$$
 B.7

References

- 1. Libyan National Center for Disease Control. https://www.facebook.com/NCDC.LY/.
- 2. Libya Coronavirus: 520 Cases and 10 Deaths Worldometer. https://www.worldometers.info/coronavirus/country/libya/.
- 3. Chapra, S. C. & Canale, R. P. *Numerical methods for engineers*. (7th Edition) (McGraw-Hill, Singapore, 2015).