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Supplementary Materials: 
 

1. Stopping distance of Droplets 

 

The horizontal movement, x(t), of droplets is well known and described by Eq. 1, where 

v0 is the initial horizontal velocity of the particle, 𝜂 is the dynamic viscosity of the air, 

and	𝜌$ and R are the density and radius of the droplet. As shown in Supplementary 

Figure 1, for a single droplet with diameter R =10 micron and, initial velocity vo = 5 

m/s, a maximum horizontal travel distance (also called the stopping distance) of ~1mm 

is obtained, whereas a droplet with radius 100 micron at the same initial velocity will 

have a stopping distance of about 10cm. 
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Supplementary Figure 1 – Temporal evolution of horizontal travel distances for a 

broad range of droplet sizes. 

 

The horizontal movement of the micro-droplets is not only influenced by their own 

initial velocity, but also by the movement of bulk air displaced by coughing or speaking. 

Using a Stokes flow approximation, the influence of how the air stream with initial 

velocity v0 ‘carries’ these droplets can be determined. Eq. 2 gives the horizontal travel 

distance of the droplets in the air stream where 𝑟 ≡ ?9𝜂/2𝜆𝜌  and 𝜆 sets the maximum 

stopping distance of the air stream which may be obtained experimentally. 
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Supplementary Figure 2 shows that the micro-droplets are predicted to travel 1m in 

distance given an initial velocity of 1m/s. 
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Supplementary Figure 2 - Maximum travel distance as a function of droplet size for 

droplets emitted inside a cough having a stopping distance of 0.33 m (yellow) and 

another one having a stopping distance of 1.0 m (red), both released at 1.5 m above the 

floor with initial velocities of 0.3m/s and 1 m/s, respectively. 

 

2. Evaporation of Droplets 

 

The evaporation of a spherical droplet in an environment with a known relative 

humidity (RH), idealized in Supplementary Figure 3a/b, can be evaluated using the 

diffusion model presented and validated in [8,9]. The rate of change of the mass of the 

droplet, md(t), is given by Equation 3, where R(t) is the radius of the droplet, Dva is the 

diffusivity of water vapor in air, and C(r,t) is the water vapor concentration along 

direction r. Assuming that the droplets are sufficiently spaced and that the relative 

humidity of the air in which they are falling through does not change, Equation 4 

expresses the water vapor concentration gradient found in Eq. 3. The water vapor 

concentrations at the surface of droplet (i.e., r = R(t)) is given by the equilibrium vapor 

pressure, 𝜌I.J,  of the environment and very far away from the droplet surface (i.e., r >> 

R(t)) is given by the product of the RH of the environment and 𝜌I.J, resulting in Eq. 5. 
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Supplementary Figure 3 – a). idealized spherical droplet and b). solid core 

simplification. 
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The preceding equations express how the liquid water mass in the droplet 

reduces due to evaporation. Assuming that the solids constitute a ‘spherical core’ of the 

droplet, as shown in Supplementary Figure 3a, the mass, md, of the droplet at any time 

is given by Eq. 6 where 𝜌Y is the density of solid found in human mucus/saliva (i.e., 

1500 kg/m3) from [10] and 𝜌Z is the density of liquid water. Differentiating Eq. 6 with 

respect to time and combining the result with Eq. 5 gives Eq. 7 - a non-separable 

differential equation for the evolution in size of the droplet due to evaporation, where 

evaporation stops when the droplet is completely composed of the solid fraction or 

when R(t) = R0. The evolving density of the droplet, 𝜌$(𝑡), is obtained by Eq. 8. For the 

purpose of the following calculations, it is taken than the R0 for each droplet is a factor 

of two of R(t=0) and corresponds to an initial density of ~1080 kg/m3 for water – solid 

droplet mixture. Supplemental Figures 4 and 5 display solutions to Eq. 7 for numerous 

micro-droplet sizes and the influence of the RH on the evaporation kinetics of a 10 

micron droplet. Within 1 second, the evaporation of the small micro-droplets is 

complete, resulting in a solid-core laden with virus copies.  
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Supplementary Figure 4 – ). initial size distribution of microdroplets generated by 

human speech, b). normalized size evolution due to evaporation for each size class 

given in a). in an environment with RH = 50%. 

 

 
Supplementary Figure 5 – Influence of relative humidity on the evaporation kinetics 

of a R(t=0) = 10micron droplet. 

 

3. Sedimentation and Persistence of Droplets 
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At all times, the droplets are assumed to be vertically falling at their terminal 

velocities described by Stokes flow. Eq. 9 describes the rate of change of the height, 

h(R(t),t), through which the droplet has fallen where 𝜌. is the density of air and g is the 

acceleration due to gravity. By solving Eq. 7 and Eq. 9 numerically, the progressive 

evaporation and sedimentation of the droplets is coupled and comparable to models 

presented in [11,12]. For the framework presented herein, how the number of droplets in 

a given volume evolve can be predicted, allowing for the persistence calculations in 

Figure 3 to be made. For this calculation, it is assumed that the droplets of each size 

class have a uniform random initial height in the volume in which they progressively 

sediment. From the particle size distribution, the total number of particles of each size 

class, N(R(t=0)), initially in the volume can be obtained. The evolution in the total 

number of particles for each size class is then directly given by Eq. 10 while h(R(t),t) is 

less than the system height, hsys. The total number of droplets in the system, Ntotal, at any 

time, t, is then the discrete summation of Eq. 10 over all particle sizes, n, for which 

h(R(t),t) < hsys shown in Eq. 11.  
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𝑁7,7.g(𝑡) =h𝑁(𝑅(𝑡), 𝑡)
i
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 Eq. 11 

 

Figure 3 displays that the derived system of equations and model system can directly 

predict the persistence of the aerosol particles with knowledge of the system size, initial 

size distribution of the aerosol droplets, and the relative humidity. Supplementary 

Figure 6a displays how the droplet size distribution evolves due to effects of 

evaporation and sedimentation at 5.5min, which corresponds to when ~50% of the 

initial number aerosol particles (i.e., the halflife) remain in the space. Supplementary 

Figure 6b, shows that the halflife reduces nearly 50% when the relative humidity is 

100% - corresponding to conditions in which there is no evaporation of the aerosol. As 

expected, when no evaporation occurs, the droplets fall faster through the system due to 

their nominally larger size and higher terminal velocities. The decrease in number of 
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microdroplets in the system due the effects of higher relative humidity implies a lower-

likelihood of aerosol mediated transmission of CoV-2, as presented in Figure 4, and 

corresponds to other studies [13,14] that show that higher relative, and absolute, 

humidity environments may lead to lower infectivity rates of influenza and other 

respiratory infections. 

 

 
                                      a).                                                             b).  

Supplementary Figure 6 – a). change in droplet size distribution due to sedimentation 

and evaporation at the half-life of droplet evolution, b). influence of relative humidity 

on droplet evolution. 

 

4. A General Persistence Model 

 

Based on these results, a more general model can be derived to explain the exponential 

decline in droplets. Given a number No of drops with a given diameter D, then it is 

reasonable to assume that the decrease in time will be exponential and given by   

𝑁(𝐷, 𝑡) = 𝑁,𝑒4kl
<7 Eq. 12 

 

with α an empirical constant independent of the droplet diameter D. A good estimate of  

𝛼 ≅ 	𝜌𝑔/18𝜂ℎ with h a typical sedimentation height. The life time of a micro-droplet is 

then characterized by the exponent in Eq. 12, and given by 𝑡gjpq ≡ 1/𝛼𝐷0. 

 

In case of droplets with a varying size distribution we have to collect the different 

droplet sizes and get: 
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𝑁7,7.g(𝐷, 𝑡) = ∑ 			𝑁j𝑒4kl
<7jSi

jSH   Eq. 13 
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