
-1- 
 

 

Methods 

Settings 

The study was performed on deidentified, cryopreserved PBMC samples of 10 COVID-

19 patients and 13 matched controls, obtained with informed consent on a protocol 

approved by Yale Human Research Protection Program Institutional Review Boards 

(FWA00002571, Protocol ID. 2000027690).  

Patients and samples 

Ten COVID-19 patients hospitalized at Yale-New Haven Hospital (YNHH) were 

recruited for this study. All were confirmed to have COVID-19 by RT-PCR testing of 

nasopharyngeal samples. Four of the patients were "Progressive" (TP6, TP7, TP8, 

TP9), defined as patients who required admission to the intensive care unit (ICU) and 

eventually succumbed to the disease. At the same time, the other 6 were "Stable" 

(NS0, NS1, TS2, TS3, TS4, TS5), defined as patients hospitalized in non-ICU internal 

medicine wards who were eventually discharged. Eight patients (80%) were treated 

with Tocilizumab, a humanized anti-IL6 receptor antibody. Only patients NS0 and NS1 

did not receive this drug (designated with “N”). Tocilizumab was given once at a dose 

of 8 mg/kg (up to a maximal dose of 800 mg). All patients were treated with antivirals 

(Atazanavir, except for patient NS1 which was treated with Remdesivir) and with 

Hydroxychloroquine (except for NS1). Two progressive subjects were treated with 

corticosteroids: patient TP7 was treated with Prednisone 40 mg daily for 2-3 days just 

before blood draw A, and patient TP9 was treated with Methylprednisolone 120 mg 

daily for 1-2 days prior to blood draw B. No other immunosuppressive, 

immunomodulatory, or antiviral agents were used.  

Eighteen blood samples were collected from these ten patients, at different time-points 

as described in the results section and Fig 1A-B. Thirteen control subjects were 

recruited prior to the COVID-19 pandemic. Baseline characteristics of COVID-19 

patients and controls are presented in Supp Table ST1. The timing of symptom onset, 

hospitalization, tocilizumab treatment, and blood draws for each patient is shown in 

Fig 1D.  

Isolation of PBMC and cryopreservation 

PBMCs were isolated from whole blood using density gradient centrifugation, 

according to the following protocol: Histopaque 20 ml was added to a 50 ml SepMate 

tube, then overlaid with fresh blood 1:1 diluted in PBS 2% fetal bovine serum (FBS) 
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and centrifuged at 1200 x g for 10 minutes.  The PBMC layer was collected by quickly 

pouring the remaining contents above the SepMate insert into a fresh tube, and 

washed once with PBS at 650 x g for 10 min.  The supernatant was decanted and ACK 

red blood cell lysis buffer (2ml/sample) was added for 2 minutes; another wash with 

PBS 2% FBS was done, followed by centrifugation at 290 x g to remove platelets and 

supernatant aspirated. Following resuspension of the pellet, PBMCs were 

cryopreserved in aliquots of 5 x 106 cells using 10% DMSO in heat inactivated-FBS as 

the cryopreservation solution. Cryovials were placed in a freezing container (Mr. 

Frosty) and transferred immediately to a -80 °C freezer for >24 hours before being 

transferred to long-term liquid nitrogen storage. 

Sample preparation and 10x barcoding 

All sample processing steps were done in a biosafety level 2+ laboratory. Samples 

were thawed in a water bath at 37°C for ~2 min without agitation, and removed from 

the water bath when a tiny ice crystal still remains. After thawing, cells were gently 

transferred to a 50 mL conical tube using a wide-bore pipette tip, the cryovial was 

rinsed with cold growth medium (10% FBS in DMEM) to recover leftover cells, and the 

rinse medium was added dropwise (1 drop per 5 sec) to the 50 mL conical tube while 

gently shaking the tube. Next, we conducted serial dilutions with cold growth medium 

a total of 5 times by 1:1 volume addition with ~1 min wait between additions. Cold 

growth medium was added at a speed of 3-5 ml/sec, achieving a final volume of 32 

mL. The cells were then centrifuged at 300 x g for 5 minutes at 4°C, and the 

supernatant was removed without disrupting the cell pellet. The pellet was 

resuspended in 1X PBS with 0.04% BSA, and the sample was filtered with a 40 μM 

strainer. Cell concentration was determined using Trypan blue staining with a 

Countess automated cell counter (ThermoFisher). Following this cell count, each 

sample was split into two parts (Fig 1C): one was immediately loaded onto the 10x 

Chromium Next GEM Chip G, according to the manufacturer's user guide (document 

number CG000208, revision E, February 2020), and the other was further processed 

for CITE-seq as described in the next section, and then loaded to the 10x Chromium 

Chip G. In total, we loaded 18 'conventional' samples into 18 Chip G lanes (aiming for 

recovery of 10,000 cells per lane), and 17 out of 18 'CITE-seq' samples into 6 Chip G 

lanes (each lane containing 5-6 pooled hashed samples, as portrayed in Supp Table 

ST7). One out of 18 CITE-seq samples (TP8B) was not pooled because of very low 

cell concentration.  

CITE-seq and cell hashing 
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The lyophilized Total-seq C human panel (BioLegend) was resuspended with 35 μL of 

wash buffer, vortexed for 10 sec and incubated for 5 min at RT. Total-seq C human 

Hashtag antibodies (Biolegend) were centrifuged at 20000g for 10 min and 6-fold 

diluted with wash buffer (2% FBS and 1mM EDTA in PBS). To maximize performance, 

both were centrifuged at 20000g for 10 min just before adding to the cells. See Supp 

Table ST6 for a list of antibodies, clones, and barcodes used for CITE-seq and hashing 

samples. 

PBMCs from each sample were reconstituted with wash buffer at the concentration of 

10-20 x 106 cells/ml and incubated on ice for 10 mins with 5ul of Human FC block (BD 

Biosciences) and 5 μL of TrueStain Monocyte Blocker (Biolegend). 10-20 μL (0.1-0.2 

x 106 cells) were transferred into a new tube and incubated on ice for 30 mins with 5 

μL of CITE-seq panels and 5 μL of Hashtag antibodies prepared as above. Cells were 

washed twice with wash buffer and with 2% FBS in PBS for the third wash. Samples 

were pooled into one tube based on cell counts, and super-loaded onto the 10x 

Chromium Chip G, aiming for recovery of ~20,000 cells per sample. See Supp Table 

ST6 for the details of 6 pooled samples (CITE#1-CITE#6). 

cDNA libraries preparation and sequencing 

The loaded Chip G was placed in the 10x Chromium controller to create Gel Beads-

in-emulsion (GEMs). The next steps were carried out according to the manufacturer's 

user guide, including GEM-RT incubation, post GEM-RT Dynabead cleanup, and 

cDNA amplification. The cDNA samples were used to construct 4 types of cDNA 

libraries, according to the steps outlined in the user guide: gene expression libraries, 

T-cell receptor libraries, B-cell receptor libraries, and cell surface protein libraries (the 

latter only for samples processed with CITE-seq). cDNA libraries were then sequenced 

on an Illumina Novaseq 6000 platform.   

Flow cytometry  

Freshly isolated PBMCs were incubated with FC block reagent (Biolegend) for 10min 

and stained with LIVE/DEAD Fixable Aqua Dead Cell Stain kit (Thermo Fisher) for 20 

minutes at 4°C. Following a wash, cells were then blocked with Human TruStan FCX 

(BioLegend) for 10 minutes at RT. Cocktails of following antibodies were directly added 

to this mixture for 30 minutes at RT. BB515 anti-HLA-DR (G46-6), BV605 anti-CD3 

(UCHT1), BV785 anti-CD4 (SK3), APCFire750 anti-CD8 (SK1), BV421 anti-CCR7 

(G043H7), AlexaFluor 700 anti-CD45RA (HI100), PE anti-PD1 (EH12.2H7), APC anti-

TIM3 (F38-2E2), BV711 anti-CD38 (HIT2), BB700 anti-CXCR5 (RF8B2), PE-Cy7 anti-

CD127 (HIL-7R-M21), PE-CF594 anti-CD25 (BC96), BV711 anti-CD127 (HIL-7R-
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M21). Cells were washed two times with staining buffer and acquired on a BD Fortessa 

flow cytometer. FlowJo software (Treestar) was used for analysis. 

SARS-CoV-2 viral load measurements 

Nasopharyngeal swabs and saliva samples were collected from COVID-19 diagnosed 

inpatients at -Yale-New Haven Hospital, as described elsewhere1. We extracted total 

nucleic acid using the MagMax Viral/Pathogen Nucleic Acid Isolation kit (ThermoFisher 

Scientific, Waltham, MA, USA) with 300 µL of input sample eluted into 75 µL, using a 

slightly modified protocol (dx.doi.org/10.17504/protocols.io.bg3pjymn). A total of 5 µL 

of extracted nucleic acid was used as input in the RT-qPCR assay for SARS-CoV-2 

detection, as described elsewhere2. Briefly, we used the Luna Universal Probe One-

Step RT-qPCR kit (New England Biolabs, Ipswich, MA, USA) with the CDC 2019-

nCoV_N1, 2019-nCoV_N2, and human RNase P (RP) primer-probe sets (Integrated 

DNA Technologies, Coralville, IA, USA). Viral RNA copy numbers were calculated 

based on 10-fold dilution standard curves of the previously generated nucleocapsid 

(N) transcript standard2. 

Data processing of raw sequencing reads 

Raw sequencing reads were demultiplexed using Cell Ranger mkfastq pipeline to 

create FASTQ files. Next, Cell Ranger count pipeline (v3.1) was employed in order to 

perform alignment (using STAR), filtering, barcode counting, and UMI counting. We 

have used GRCh38 (Ensembl 93) as the genome reference (corresponding to Cell 

Ranger reference GRCh38-3.0.0).  

ScRNA-seq sample aggregation 

10x cellranger count filtered output data of PBMCs from thirteen healthy controls were 

added to that of the eighteen COVID-19 samples. Seurat package3, 4 (v3.1) was used 

for all downstream analyses. 10x gene expression matrices for each sample were 

converted and combined into one Seurat object. Cells with mitochondrial gene 

percentages higher than 12% and cells with less than 200 genes were excluded from 

the study to filter out dead and dying cells. For CITE-seq samples, following de-

hashing, cell barcodes of multiplets (i.e. with 2 or more hashing antibody signals) or 

uncertain origin (i.e with no clear hashing signal) were also removed. After these 

filtering steps, the gene-barcode matrix contained 35,538 genes and 163,452 

barcoded cells.  

Integration, principal components analysis and clustering 

https://dx.doi.org/10.17504/protocols.io.bg3pjymn
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In accordance with the standard Seurat pre-processing workflow, sample gene 

expressions were normalized using Seurat’s “LogNormalize” method3, 4. The 

“FindVariableFeatures” function selected the 3,000 genes with the highest variance to 

mean ratio using the “vst” method. To remove single-subject effects, samples were 

integrated on a subject level using 2000 anchors with a dimensionality of 304. The 

integrated data was then scaled with the “ScaleData” function.  

Principal Component Analysis (PCA) was performed on the integrated data, and the 

first 30 Principal Components (PCs) were used in the “FindNeighbors” algorithm. The 

Louvain modularity optimization algorithm in “FindClusters” generated the clusters 

while the resolution was set to 0.75. Thirty PCs were used in the “RunUMAP” function 

to create the final UMAP, and thirty clusters were generated from the aforementioned 

pipeline (Supp Fig S2). 

These thirty clusters were first annotated with the SingleR software (Supp Fig S3)  and 

then annotated manually (Fig 1F) by using cell-specific markers (Supp Fig S1) plotted 

on UMAP space, and by examining the output of “FindAllMarkers” per cluster. Five 

clusters out of thirty were removed; namely: a nonspecific cluster of low UMI cells 

(cluster #8), monocyte-platelet multiplets (#22), B and T/NK multiplets (#24), erythroid 

cell contamination from a single subject (#25), and B cell-platelet multiplets (#29). 

Following the removal of these clusters, the final Seurat object contained 153,554 cells. 

Cell Type Proportions Analysis  

For each subject, the number of cells within a given cell type was normalized by the 

subject’s total number of cells. For each cell type, cell proportions were plotted in a 

boxplot by disease group, namely by (1) controls, (2) stable patients at time point A, 

(3) stable patients at time point B, (4) progressive patients at time point A, and (5) 

progressive patients at time point B.  

Differential Gene Expression Analysis  

The “FindMarkers” function was used to identify differentially expressed genes (DEGs) 

across the following conditions: per cell type, (1) time point A versus time point B; (2) 

controls versus COVID-19 patients at time point A; and (3) progressive vs stable. For 

the time point comparison (comparison 1), the logistic regression test for differential 

expression with subjects set as latent variables was used to account for paired 

samples. For comparisons (2) and (3), the default Wilcoxon rank test was used. Genes 

were ranked by absolute log2 fold-change (logFC), and those with p-values > 0.05 

(adjusted for multiple comparisons) were removed.  
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Heatmap visualization of DEGs 

DEGs were visualized as heatmaps which were generated by using the 

ComplexHeatmap package5. Cell types were binned into monocytes, CD4 T cells, CD8 

T cells, and B cells and “FindMarkers” distinguished DEGs for each cell type bin for (1) 

time point A versus time point B and (2) progressive versus stable. Genes with greater 

than 0.5 absolute logFC were included in visualization and EnrichR pathway analysis. 

Samples for the progressive versus stable time-point were hierarchically clustered.  

Gene Pathway Annotation  

Gene list outputs from the “FindMarkers” function were fed into EnrichR for pathway 

and ontology analysis6, 7. Gene set enrichment analysis8 was also performed on 

“Dividing T cells” cluster using KEGG9, 10, 11 and MSigDB Hallmark gene sets12, and 

custom gene sets (Supp Table ST9). 

Gene List Score Analysis  

Seurat Function “AddModuleScore” was used to combine the expression of genes 

from IFN Score A13 (ISG15, IFI44, IFI27, CXCL10, RSAD2, IFIT1, IFI44L, CCL8, XAF1, 

GBP1, IRF7, CEACAM1). This function was also used to combine other gene list 

scores as well, including scores for HLA type II (HLA-DRA, HLA-DQA1, HLA-DQA2, 

HLA-DPA1, HLA-DRB1, HLA-DPB1, HLA-DQB2, HLA-DRB5, HLA-DQB1, HLA-DMA, 

HLA-DMB) and the IL6 pathway (ARID5A, SOCS3, PIM1, BCL3, BATF, MYC)14. 

Similarly, a platelet score was calculated with 6 genes that have high specificity for 

platelets within the PBMC compartment (PPBP, TUBB1, PF4, CAVIN2, SPARC, CLU). 

The differences in gene list scores were compared between (1) control versus COVID-

19 patients, (2) time point A and time point B, and (3) progressive versus stable 

patients.  

Demultiplexing (de-hashing) of CITE-seq samples 

In order to demultiplex cells in the CITE-seq samples and attribute them a biological 

sample, hashing antibody-derived tag (ADT) counts were normalized by library size, 

square-root transformed, and normalized for every row in the data matrix of each CITE-

seq sample. To account for the inherent background noise of ADT and accurately 

identify a cell as tagged by a hashing ADT, histograms of each hashing ADT counts in 

each CITE-seq sample were used to determine the optimal threshold of significance 

for hashing ADTs. As distributions appeared bimodal for the majority of hashing, we 

manually set the threshold between the two modes. 
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Based on the previous threshold, data matrix rows with two or more significant ADT 

were flagged as doublets, and rows with zero significant ADT flagged as unidentified, 

thus removed for downstream analysis. 

CITE-seq ADT preprocessing and downstream analysis 

Once the cells were demultiplexed and hashing ADT counts were removed, the 

remaining ADT counts (192) for each CITE-seq sample were combined into one single 

matrix. The counts for the remaining 43,349 cells were normalized by library size and 

square root transformed. We visualized the dataset using Uniform Manifold 

Approximation and Projection (UMAP). Cells were clustered using the Louvain 

community detection on a 15-nearest neighborhood graph and were manually 

annotated using a panel of ADT markers for each cell type (cell types include: CD4 T 

cells, CD8 T cells, B cells, NK cells, monocytes, macrophages, DCs, plasma cells, 

neutrophils, eosinophils, platelets and red blood cells). We also manually annotated 

the clusters based on surface marker lists proposed by the Human Immunology Project 

Consortium (HIPC) (https://www.immuneprofiling.org) (Supp Table ST8). As gene 

expression (GEX) data from CITE-seq was incorporated in the standard scRNA-seq 

analysis, there were two different annotations: one based on GEX, and one based on 

ADT. To measure the concordance between the two annotations, the percentage of 

shared cells between each annotated cluster was computed (Fig 4C). 

Differential expression analysis was performed using the Wilcoxon rank sum test, and 

p-values were adjusted for multiple hypothesis testing using the Benjamini-Hochberg 

correction. Data preprocessing and analysis (for ADT analysis only) was performed in 

Python (version 3.8.0) using Scanpy (version 1.4.6)15. 

Differential connectivity (connectomic) analysis 

For connectomic analysis, the cell parcellation shown in Figure 1 was used except for 

IFN-activated CD8 T cells, which were lumped into the Effector T cell cluster. These 

data were then mapped against a version of the FANTOM5 database of ligand-

receptor interactions, modified to include additional immunomodulatory cues of interest 

to the authors (Supp Table ST10). Each parcellation, in a given experimental condition, 

was then treated as a single signaling node for network analysis. Average expression 

values were calculated for all ligand and receptor genes on a per-cell-type basis. Then 

an unfiltered edgelist (‘connectome’) was created linking all producers of a ligand to all 

producers of a receptor, with associated quantitative edge attributes, as previously 

described. 

https://www.immuneprofiling.org/
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To compare experimental conditions, the connectomes from two experimental 

conditions were directly compared to yield log-fold changes for the sending (ligand) 

side and receiving (receptor) side of all edges. In addition, a ‘perturbation score’ was 

calculated, which allows plotting of differential edges proportional to the degree of 

change, allowing both negative and positive log fold changes and incorporating 

information from both sides of a given edge.  The perturbation score that we used was 

defined, for every cell vector from Celli to Cellj for ligand-receptor mechanism (k), as: 

𝑠𝑐𝑜𝑟𝑒𝑖𝑗𝑘 = |𝑙𝑜𝑔(
𝐶𝑒𝑙𝑙𝑖

𝐿𝑘
𝑡𝑒𝑠𝑡

− 𝐶𝑒𝑙𝑙𝑖
𝐿𝑘
𝑐𝑜𝑛𝑡𝑟𝑜𝑙

𝐶𝑒𝑙𝑙𝑖
𝐿𝑘
𝑐𝑜𝑛𝑡𝑟𝑜𝑙 )| × |𝑙𝑜𝑔(

𝐶𝑒𝑙𝑙𝑗
𝑅𝑘
𝑡𝑒𝑠𝑡

− 𝐶𝑒𝑙𝑙𝑗
𝑅𝑘
𝑐𝑜𝑛𝑡𝑟𝑜𝑙

𝐶𝑒𝑙𝑙𝑗
𝑅𝑘
𝑐𝑜𝑛𝑡𝑟𝑜𝑙 )| 

Edges were then plotted which 1) had >10% of the sending and receiving cluster 

expressing the given ligand and receptor, respectively, and 2) which displayed an 

adjusted p-value < 0.05 via a Wilcoxon Rank Sum test comparing identical cell types 

to each other across experimental conditions. 

Chord diagram plotting was performed using a custom implementation of the circlize 

package with directed edge thickness between cell type nodes proportional to the 

above described perturbation score, scaled per-plot. 

Tocilizumab treatment effect analysis 

To investigate the treatment effects of tocilizumab on transcription levels for different 

cell types, we conducted differential expression analysis between the two sampling 

time points for patients in the tocilizumab treatment group and those in the non-

tocilizumab group separately. The logFC from these two separate analyses, i.e. for the 

tocilizumab group and non-tocilizumab group, was scatter plotted for each cell type in 

order to identify genes in which the differential expression pattern observed between 

the two-time points is due to a treatment effect rather than the natural course of the 

disease progression (Fig 3D). In addition, we investigated the correlations across cell 

types and compared results between the tocilizumab and non-tocilizumab groups 

(Supp Fig S13B, C). Six IL-6 pathway related genes, which are known to be associated 

with tocilizumab treatment14, are highlighted in red (Fig 3D, Supp Fig S13A-C).  

T cell receptor V(D)J data processing 

The raw sequencing reads of the T cell receptor (TCR) libraries were processed using 

the Cell Ranger V(D)J pipeline by 10XGenomics™, which assembled read-pairs into 

V(D)J contigs for each cell, identified cell barcodes from targeted cells, annotated the 

assembled contigs with V(D)J segment labels and located the CDR3 regions. We only 
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considered V(D)J contigs with high confidence defined by cell ranger under the default 

settings for downstream analysis. Contigs that were not recognized as either alpha 

chain or beta chain and cells with no beta chains were removed. Only the alpha and 

beta chains with the largest UMI count were kept for cells with more than one alpha 

and/or beta chains. After the filtering, each cell has only one beta chain contig and zero 

or one alpha chain contig.  

The data were further examined and processed for sample to sample contamination 

and potential cell doublets. First, we removed cells with cell barcodes found in more 

than 2 samples. Second, cells barcodes overlapped between TCR and BCR data were 

extracted and checked for their cell types determined based on the scRNA-seq gene 

expression data. Only cell barcodes from T cells were kept. Finally, we checked the 

gene expression-based cell types of all cells and cells without an assigned cell type or 

not belonging to the T cell category were removed. The T cell category includes 13 cell 

types: Naive CD4 T, Tregs, Naive CD8 T, Effector T, NK CD56dim, Memory CD4 T, 

NK CD56bright, Dividing T & NK, Memory CD8 T, Dying T & NK, Memory CD4 & MAIT, 

Gamma delta T, and IFN-activated CD8 T.  

TCR Clone Identification 

Before defining clones, we re-annotated the contigs using Change-O16. A TCR clone 

was defined as a group of cells sharing an identical nucleic acid sequence of TCR 

alpha chain and beta chain in the repertoire.  

Specificity group identification by GLIPH2 

It was observed that antigen-specific pools of TCRs were enriched for similar CDR3 

sequences17. To identify clone clusters of TCRs with a high probability of sharing 

antigen specificity (specificity groups), we applied GLIPH218 to cluster CD4 and CD8 

TCR clones from all samples. Clones from the same cluster are predicted to bind the 

same antigen. Significant clonal groups reported by GLIPH2 were identified based on 

either local motif-based similarity (shared CDR3 amino acid motifs are comparatively 

rare in a reference population of naive T-cells) or global similarity (CDR3 differing by 

up to one amino acid). GLIPH2 assesses the quality of clusters by their global/local 

similarities, cluster size, and enrichment of common V-genes, a limited CDR3 length 

distribution and clonally expanded clones. The confidence of identified clusters was 

examined by Fisher’s exact test which tests for the enrichment of unique CDR3s in 

each cluster compared to the reference naïve CD4 and CD8 T cell repertoire provided 

in GLIPH2. The V and J gene usage was calculated as the frequency of clones with 

the corresponding genes in a given clone cluster.  
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B cell receptor V(D)J data processing 

B cell receptor (BCR) V(D)J repertoire data processing and analysis were carried out 

using tools in the Immcantation framework (www.immcantation.org). V(D)J genes were 

re-assigned from CellRanger output using IgBLAST v.1.15.0. Cells with multiple IGH 

V(D)J sequences were assigned to the most abundant IGH V(D)J sequence by UMI 

count. Following V(D)J gene annotation, non-functional sequences were removed from 

further analysis and functional V(D)J sequences were assigned into clonal groups 

using Change-O v.1.0.0. Sequences were first partitioned based on common IGHV 

gene annotations, IGHJ gene annotations, and junction lengths (the junction region is 

defined as the complementarity-determining region-3 plus the conserved flanking 

amino acid residues). Within these groups, sequences differing from one another by a 

length normalized Hamming distance of 0.15 within the junction region were defined 

as clones by single-linkage clustering19 using the DefineClones function from Change-

O v.1.0.0 package. This distance threshold was determined at equal distance between 

the two modes of the within-sample bimodal distance-to-nearest histogram across all 

patients. The distance-to-nearest distribution was calculated using distToNearest 

function from SHazaM v.1.0.0 in R v.3.6.3. Germline sequences were then 

reconstructed for each sequence with D segment and N/P regions masked (replaced 

with “N” nucleotides) using the CreateGermlines.py function within Change-O v.1.0.0. 

The IMGT/GENE-DB v3.1.26 reference database was used to assign B cell gene 

segments. 

Expanded B cell clonal lineages identification 

We identified expanded clonal lineages based on the fractional abundance of each 

lineage. The fractional abundance of a lineage is defined as the number of cells within 

that lineage divided by the total number of cells observed in the repertoire at a given 

time point. Expanded lineages were identified among lineages with fractional 

abundance above 1% of the repertoire at either time point. To account for the low 

sequencing depth, we further required expanded clones to contain at least 5 cells. 

Analysis of somatic hypermutation (SHM) from single-cell V(D)J library  

Mutations in IGHV and IGHJ relative to germline sequences were quantified using 

SHazaM v.1.0.0 in R v.3.6.3.  

CDR3 amino acids information content 

For a given patient we computed the frequency of observed amino acids in the CDR-

H3 segment for each time point A and B. Then, the fold changes were calculated as 
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the log2 ratio of each amino acid frequency at B divided by the corresponding amino 

acid frequency at A. Finally, each full change was multiplied by the frequency of amino 

acid at B to calculate the conditional information content of the given amino acid. 

Convergent antibody identification 

To identify putative SARS-CoV-2-specific antibody signatures, we first grouped 

together heavy chain sequences that utilized the same IGHV and IGHJ gene, and had 

CDR-H3 regions with the same length. We then grouped these sequences using 

single-linkage clustering with a threshold of 85% amino acid identity in the CDR-H3 

sequence. Within these clusters, we identified sequences that were found in at least 

two COVID-19 patients. 

Identification of unmutated IGHG clones 

As specified in recent study20, B cell clones consisting of any cellular subtype (naïve, 

memory, plasma) were separated by isotype. These isotype-specific clonal clusters 

were considered “unmutated” if the median SHM frequency of their constituent 

sequences was < 1%. 

Lineage tree analysis 

B cell lineage trees were built for all clones found at both time points using the 

procedure detailed in recent study21 using IgPhyML v1.1.3 and Change-O v1.0.016. 

Within each time-point, identical sequences and those differing only by ambiguous 

characters (e.g. “N”) were collapsed. Only clones containing at least three distinct 

sequences (i.e. sequences that were either unique or sampled at different time points) 

were included. We estimated maximum likelihood tree topologies and branch lengths 

for each clone, as well as repertoire-wide model parameters shared among all clones, 

using the GY94 model22. Using these tree topologies, we then estimated maximum 

likelihood branch lengths for each clone and repertoire-wide substitution model 

parameters using the HLP19 model with separate ω parameters for FWR and CDR 

partitions and separate h parameters for all six canonical somatic hypermutation 

(SHM) hot- and cold-spot motifs21. Branches with lengths < 0.001 were collapsed to 

zero. Trees were visualized using ggtree v2.0.223. We used a root-to-tip correlation 

test24 to test for evidence of continued SHM between time points within these B cell 

lineage trees. For each tip we calculated the divergence, which is the sum of branch 

lengths leading to the most recent common ancestor (MRCA) of all observed 

sequences. Predicted germline sequences were excluded because their sampling time 

is unknown.  Clones in which all sequences were equally diverged from the MRCA 
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were discarded. We then calculated the Pearson correlation coefficient between 

divergence and time point (A = 0, B = 1). If B cell clones continued to accumulate SHM 

between time points, we would expect a positive correlation between divergence and 

time. We tested the significance of this correlation by randomizing time point labels 

within each tree, re-calculating the correlation between divergence and time, and 

repeating for 10,000 repetitions. We calculated the p-value that the correlation was 

positive as the proportion of repetitions in which the observed correlation was less than 

or equal to the correlation in randomized trees. 
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