Supplementary Information

Understanding Society Sampling Strategy

The GPS comprises two separate postcode samples, one for England, Scotland and Wales, and the other sampling Northern Ireland. The GPS used a clustered postcode sector design, firstly random selecting postcode sectors to become the primary sampling units (PSUs) for the study. After stratifying PSUs on geographical region, proportion of non-manual workers, population density, and ethnic minority density, a systematic random sample was carried out to select PSUs in the GPS, and data collection carried out systematically on the 2,640 PSUs over 24 months (Lynn and Knies, 2016). A further 2,395 randomly selected postcodes were included in the Northern Irish sample. The EMBS consists of a further 771 sectors selected for their relatively high proportions of ethnic minority groups and expected household yield (Berthoud *et al.*, 2009).

Modelling Procedure

Starting values were obtained using Iterative Generalised Least Squares estimation, however starting values for cross-classified levels had to be manually specified, and thus area-classification residuals were specified to initially be orthogonal with variances of 0.01. All models were specified to have uniform, uninformative prior distributions. Models were run initially for 100,000 iterations after a discarded burn-in of 50,000 iterations. Model coefficients were then checked and if necessary, the model run was extended to achieve adequate estimated sample size (250) for all random parameters. Added model coefficients were retained if their introduction to the model induced significant reduction in DIC which was significant when evaluated against a chi-square distribution given the complexity introduced by added coefficients (Spiegelhalter *et al.*, 2002). Models including the complex age terms were run for 500,000 iterations post burn-in before following this same procedure.

Interpretation of Bayesian Credible Intervals

95% credible intervals are presented for VPCs, which should not be interpreted as standard errors from which to infer traditional significance, as these are estimated from MCMC chains. Credible intervals are the 2.5th and 97.5th quantiles of the posterior sampling distribution generated by the MCMC chains. Within any one iteration the variance estimate must be positive, meaning VPCs cannot span zero. Conversely, correlation estimate credible intervals can be interpreted as evidence of a non-zero value. As with the VPC estimates, these are calculated from estimates in a given iteration, and then quantiles are presented. As such these estimates are necessarily bounded by -1 and 1.

Variables	GHQ-12 Partial respondents (N = 40452)		Full GHQ-12+SWE Respondents (N = 37836)					
Responses								
GHQ-12	Mean = 11.05	SD = 5.36	Mean = 11.03	SD = 5.33				
SWE			Mean = 12.62	SD = 5.83				
Individual Level Variables								
Age	Mean = 45.83	SD = 18.02	Mean = 45.36	SD = 17.76				
Sex	Female 56.2%	Male 43.8%	Female 56.0%	Male 44.0%				
Marital Status	Married 51.0%	Single 31.5%	Married 51.1%	Single 31.9%				
	SWD 17.5%		SWD 17.1%					
Ethnicity	White 83.1%	Black 4.6%	White 83.8%	Black 4.1%				
	Asian 9.1%	Mixed 3.3%	Asian 7.7%	Mixed 3.2%				
Job Classification	Not in Employment	Professional 3.6%	Not in Employment	Professional 3.7%				
	43.5%		42.3%					
	Managerial/Technical	Skilled Non-Manual	Managerial/Technical	Skilled Non-Manual				
	20.9%	12.6%	21.7%	13.0%				
	Skilled Manual 9.0%	Partly Skilled 8.2%	Skilled Manual 9.1%	Partly Skilled 8.3%				
	Unskilled 1.9%		Unskilled 1.9%					
Educational	Higher Education 33.8%	A-Level 19.1%	Higher Education 34.8%	A-Level 21.1%				
Attainment	GCSE 20.9%	Other 5.0%	GCSE 19.6%	Other 4.9%				
	None 21.2%		None 19.6%					
Household Level Variables		25181 Households						
Housing Tenure	Mortgaged 38.2%	Owned Outright	Mortgaged 39.4%	Owned Outright				
		28.7%		28.3%				
	Local Authority Rented	Housing Authority	Local Authority Rented	Housing Authority				
	10.4%	Rented 6.9%	9.9%	Rented 6.6%				
	Privately Rented 15.1%	Other 0.7%	Privately Rented 14.9%	Other 0.9%				

Supplementary Table 1: Demographic differences between 40452 partial GHQ-12 respondents and 37836 GHQ-12 and SWE respondents

350k Unadjusted Run	Mean Estimate	Median	Cred Int 2.5%	Cred Int 97.5%	ESS
Level: Area-Classification					
Var(cons.GHQ12)	0.36943	0.35820	0.23028	0.57288	147207
Covar(cons.SWE/cons.GHQ12)	0.48650	0.47216	0.30737	0.74774	173281
Var(cons.SWE)	0.67414	0.65457	0.42938	1.03183	176795
Covar((Age-gm)^1.GHQ12/cons.GHQ12)	0.00352	0.00338	0.00082	0.00703	79935
Covar((Age-gm)^1.GHQ12/cons.SWE)	0.00511	0.00491	0.00143	0.00991	80708
Var((Age-gm)^1.GHQ12)	0.00012	0.00011	0.00006	0.00021	72920
Covar((Age-gm)^1.SWE/cons.GHQ12)	0.00292	0.00279	-0.00024	0.00680	81751
Covar((Age-gm)^1.SWE/cons.SWE)	0.00347	0.00332	-0.00083	0.00862	79823
Covar((Age-gm)^1.SWE/(Age-gm)^1.GHQ12)	0.00006	0.00006	0.00001	0.00015	76301
Var((Age-gm)^1.SWE)	0.00016	0.00016	0.00009	0.00029	91785
Level: Region					
Var(cons.GHQ12)	0.07145	0.06598	0.03287	0.14227	131458
Covar(cons.SWE/cons.GHQ12)	0.05529	0.05029	0.01628	0.12358	130293
Var(cons.SWE)	0.09874	0.09159	0.04741	0.19199	143765
Covar((Age-gm)^1.GHQ12/cons.GHQ12)	0.00016	0.00014	-0.00149	0.00193	148349
Covar((Age-gm)^1.GHQ12/cons.SWE)	0.00033	0.00030	-0.00154	0.00240	156988
Var((Age-gm)^1.GHQ12)	0.00014	0.00013	0.00007	0.00027	174403
Covar((Age-gm)^1.SWE/cons.GHQ12)	0.00088	0.00081	-0.00210	0.00431	214429
Covar((Age-gm)^1.SWE/cons.SWE)	0.00041	0.00037	-0.00320	0.00424	219803
Covar((Age-gm)^1.SWE/(Age-gm)^1.GHQ12)	0.00011	0.00010	-0.00001	0.00029	226413
Var((Age-gm)^1.SWE)	0.00062	0.00058	0.00034	0.00111	245857
Level: PSU					
Var(cons.GHQ12)	0.15670	0.14990	0.06290	0.28986	400
е	0.12026	0.11521	0.01980	0.24860	420
Var(cons.SWE)	0.24660	0.24051	0.10261	0.42647	474
Level: Household					
е	6.52681	6.52642	6.02135	7.03529	7754
Covar(cons.SWE/cons.GHQ12)	5.73008	5.73100	5.27056	6.19074	9083
Var(cons.SWE)	7.12998	7.12918	6.53879	7.72811	5857
Level: Individual					
Var(cons.GHQ12)	21.67128	21.66973	21.18001	22.17282	17795
Covar(cons.SWE/cons.GHQ12)	12.89450	12.89340	12.45744	13.34203	21597
Var(cons.SWE)	26.14173	26.14033	25.54740	26.74432	15278

Supplementary Table 2: Unadjusted, Complex Age, Random part model estimates (350,000 iterations).

500k Adjusted Run	Mean Estimate	Median	Cred Int 2.5%	Cred Int 97.5%	ESS		
Level: Area Classification							
Var(cons.GHQ12)	0.01996	0.01844	0.00820	0.04030	38046		
Covar(cons.SWE/cons.GHQ12)	0.02975	0.02779	0.01201	0.05863	40172		
Var(cons.SWE)	0.05542	0.05219	0.02494	0.10446	41250		
Covar((Age-gm)^1.GHQ12/cons.GHQ12)	0.00069	0.00065	0.00008	0.00157	41977		
Covar((Age-gm)^1.GHQ12/cons.SWE)	0.00120	0.00113	0.00021	0.00256	44253		
Var((Age-gm)^1.GHQ12)	0.00008	0.00008	0.00004	0.00015	44518		
Covar((Age-gm)^1.SWE/cons.GHQ12)	0.00014	0.00012	-0.00047	0.00083	39899		
Covar((Age-gm)^1.SWE/cons.SWE)	0.00013	0.00012	-0.00089	0.00123	41161		
Covar((Age-gm)^1.SWE/(Age-gm)^1.GHQ12)	0.00002	0.00002	-0.00002	0.00006	43534		
Var((Age-gm)^1.SWE)	0.00006	0.00006	0.00003	0.00012	45592		
Level: Region							
Var(cons.GHQ12)	0.05006	0.04573	0.02103	0.10429	49030		
Covar(cons.SWE/cons.GHQ12)	0.04295	0.03879	0.01544	0.09368	48373		
Var(cons.SWE)	0.05479	0.05001	0.02325	0.11378	48565		
Covar((Age-gm)^1.GHQ12/cons.GHQ12)	0.00042	0.00038	-0.00106	0.00216	49701		
Covar((Age-gm)^1.GHQ12/cons.SWE)	0.00039	0.00034	-0.00119	0.00219	48947		
Var((Age-gm)^1.GHQ12)	0.00018	0.00017	0.00009	0.00034	52070		
Covar((Age-gm)^1.SWE/cons.GHQ12)	0.00059	0.00052	-0.00083	0.00233	50248		
Covar((Age-gm)^1.SWE/cons.SWE)	0.00054	0.00048	-0.00096	0.00232	51219		
Covar((Age-gm)^1.SWE/(Age-gm)^1.GHQ12)	0.00004	0.00004	-0.00004	0.00014	50052		
Var((Age-gm)^1.SWE)	0.00017	0.00016	0.00008	0.00031	50460		
Level: PSU							
Var(cons.GHQ12)	0.10651	0.09932	0.03215	0.22236	300		
Covar(cons.SWE/cons.GHQ12)	0.06009	0.05196	-0.01237	0.16827	252		
Var(cons.SWE)	0.13557	0.12473	0.03378	0.29145	260		
Level: Household							
Var(cons.GHQ12)	5.79977	5.80188	5.30977	6.28062	9110		
Covar(cons.SWE/cons.GHQ12)	4.88642	4.88610	4.45310	5.31734	10408		
Var(cons.SWE)	6.10820	6.10593	5.54319	6.68771	6135		
Level: Individual							
Var(cons.GHQ12)	21.25361	21.25211	20.77385	21.73882	17613		
Covar(cons.SWE/cons.GHQ12)	12.78338	12.78307	12.35453	13.22179	19056		
Var(cons.SWE)	26.10370	26.10181	25.51664	26.70489	14415		

Supplementary Table 3: Random part estimates for final model with covariates and complex age term (500,000 iterations). Reference categories as in Table 5 – female, white, higher education, married, not in employment, house owned outright.

Supplementary Figure 1: Region level residuals for final model adjusted for covariates and complex age term. Highlighted regions demonstrate variation in random effects. Red = West Midlands Conurbation, Light Blue = Rest of Scotland, Green = West Yorkshire. Top to bottom, left to right. Fig 1a indicates regional residuals for the average respondent for GHQ-12 and SWE. Fig. 1b gives regional residuals for GHQ-12 age slope and GHQ-12 intercept. Figure 1c gives regional residuals for GHQ-12 age slope and GHQ-12 intercept. Figure 1e gives regional residuals for SWE age slope and SWE intercept. Figure 1f gives regional residuals for SWE age slope and GHQ-12 age slope and GHQ-12 age slope and GHQ-12 intercept. Figure 1e gives regional residuals for SWE age slope and SWE intercept. Figure 1f gives regional residuals for SWE age slope and GHQ-12 age slope.

Supplementary Figure 1a illustrates the consensually poor mental health response in the West Midlands Conurbation (covering Birmingham and Coventry), the consensually good mental health response in the Rest of Scotland (Scotland excluding Strathclyde and East/Central Scotland), and the average mental health response in West Yorkshire. Figures 1b, 1c, 1d and 1e highlight positive covariance (evidenced in Supplementary Table 3) between response intercept and response ageslope, which indicates that areas with poorer mental health overall (on a given metric) tend to see steeper slopes of mental health decline with age. However, as seen in Supplementary Table 3 these are imprecisely estimated and as with complex variance functions in general, should not be interpreted in isolation. Interestingly, Fig 1f shows almost no pattern between regional residuals for age slopes across the two measures.