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S1 Methods

S1.1 Model description

We use the SIR(S) model from [1] depicted in Figure 1 of the main text, which assumes three

immunity profiles (fully susceptible, SP ; partially immune, SS; and fully immune, R) and two

infection types (primary, IP ; and secondary, IS), and allows for varying degrees of transmission

(α) of and susceptibility (ε) to secondary relative to primary infections (where α and ε are

assumed to lie between 0 and 1).

Individuals enter the fully susceptible class SP at the birth rate ν, assumed to be equal to

the death rate which, for non-fatal infections, is equivalent for all classes. Primary infections of

fully susceptible individuals occur via contacts with individuals experiencing primary (IP ) or

secondary (IS) infections at rate β(IP +αIS), which accounts for the assumed reduction in the

infectiousness of secondary infections relative to primary ones through the parameter α. The

parameter β is the transmission rate, which in general is allowed to vary in time i.e. β = β(t).

Recovery from primary and secondary infections occurs at the same rate γ, at which point

individuals enter the fully immune class R. Full immunity from natural infection is assumed to

wane at rate δ, and individuals then become partially susceptible to infection. Secondary (and

beyond) infections of partially susceptible individuals SS once again occur through contacts

with individuals experiencing primary or secondary infections at rate εβ(IP + αIS), which

accounts for the assumed reduction in susceptibility to secondary infections relative to primary

ones through the parameter ε. These transitions between immunity and infection profiles define

the following set of governing equations:

(S1a)
dSP
dt

= µ− β(t)SP (IP + αIS)− µSP ,

(S1b)
dIP
dt

= β(t)SP (IP + αIS)− (γ + µ)IP ,

(S1c)
dR

dt
= γ(IP + IS)− δR− µR,

(S1d)
dSS
dt

= δR− εβ(t)SS(IP + αIS)− µSS,

(S1e)
dIS
dt

= εβ(t)SS(IP + αIS)− (γ + µ)IS.

When a constant fraction ν of the fully and partially susceptible populations are vaccinated

each week (thus entering the vaccinated class V ), the governing equations are modified by the

addition of the vaccination terms to become:
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(S2a)
dSP
dt

= µ− β(t)SP (IP + αIS)− µSP − svaxνSP ,

(S2b)
dIP
dt

= β(t)SP (IP + αIS)− (γ + µ)IP ,

(S2c)
dR

dt
= γ(IP + IS)− δR− µR,

(S2d)
dSS
dt

= δR + δvaxV − εβ(t)SS(IP + αIS)− µSS − svaxνSS,

(S2e)
dIS
dt

= εβ(t)SS(IP + αIS)− (γ + µ)IS,

(S2f)
dV

dt
= svaxν(SP + SS)− (δvax + µ)V.

Individuals are assumed to lose vaccinal immunity at the rate δvax, at which point they enter

the partially susceptible class. As for primary infections, all infections subsequent to vaccination

are considered secondary and treated equivalently. Finally, the term svax is a switch that follows

svax =

0 t < tvax

1 t ≥ tvax,

where tvax is the time at which vaccination is introduced.

For all simulations, we take µ = 0.02y−1 corresponding to a yearly crude birth rate of 20

per 1000 people. Additionally, we take the infectious period to be 1/γ = 5 days, consistent

with the modeling in [2, 3] and the estimation of a serial interval of 5.1 days for Covid-19 in [4].

For the initial conditions of all simulations, we take IP = 1 × 10−9 and assume the remainder

of the population is in the fully susceptible class. The values of ε, α, δ, ν, tvax, and δvax used in

the various simulations are specified throughout the text.

S1.2 Determination of climatically-driven reproduction numbers

Seasonal values for R0 enter the model via the transmission rate β(t) calculated as:

β(t) = γR0(t). (S3)

These values for R0 are based on [3] and determined by:

R0(t) = exp(a ∗ q(t) + log(R0max −R0min)) +R0min (S4)

where q(t) is specific humidity, a is the climate dependence parameter (set at -227.5) based

on model fits for the HKU1 betacoronavirus taken from [3], and R0max, R0min are the maximum
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and minimum reproductive numbers respectively, set at 2.5 and 1.5 reflecting estimated values

for SARS-CoV-2 [3, 2] (see Section S2). Specific humidity comes from NASA’s Modern-Era

Retrospective analysis for Research and Applications version 2 (MERRA-2) dataset [5] and is

based on an average thirty-year climatology. Latitude and longitude values are used to assign

average specific humidity values from the nearest land-based MERRA gridcell to city locations.

S1.3 Definition of secondary peaks

The R software [6] peak finding algorithm findpeaks was used to identify peaks in the time

series of total infections (I = IP + IS) for a minimum peak height of I = 0.01, i.e. 1% of the

population infected. Spurious peaks arising from small oscillations when seasonal transmission

rates permitted continuous population infection were eliminated by requiring that the value of

I at the peak exceed the value of I at the start of the peak by at least 1 × 10−4. Subsequent

to this procedure, if more than one identified peak remained, the time between the earliest two

peaks was selected as the time to the secondary peak, and the value of I during the second peak

was selected as the magnitude of the secondary peak. If only one identified peak remained, it

was determined that there was no secondary peak.

S1.4 Definition of clinically severe cases

We define the fraction of the population with severe disease as

Isev = xsev,pIP + xsev,sIS, (S5)

where xsev,p and xsev,s are the fractions of severe primary and secondary infections, respec-

tively. The former can be estimated as xsev,p = 0.14 based on a case series report published by

the Chinese Center for Disease Control and Prevention [7], which is in reasonable agreement

with the categorization as severe of 173 of 1099 (16%) patients hospitalized for Covid-19 in

China as of January 29, 2020 for whom clinical symptoms and outcomes data were available

[8]. In contrast, the fraction of severe secondary infections xsev,s is presently unknown and will

likely depend on the nature of the adaptive immune response to primary SARS-CoV-2 infec-

tions.
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S1.5 Equilibrium infection burdens as a function of vaccination rate

and strength of immune response

Assume that svax is eventually turned on (a vaccine is introduced) and remains so, and that

α = 1 and 0 ≤ ε ≤ 1. Then let IT = IP + IS and consider the following system:

(S6a)
dIT
dt

= βIT (SP + εSS)− (γ + µ)IT

(S6b)
dSP
dt

= µ− βITSP − (µ+ ν)SP

(S6c)
dSS
dt

= δR + δvaxV − εβITSS − (µ+ ν)SS

(S6d)
dR

dt
= γIT − (δ + µ)R

(S6e)
dV

dt
= ν(SP + SS)− (δvax + µ)V.

Note that the IS and IP equations decouple from this system, and so their behaviours follow

from the behaviours of SP , IT , and SS. At a non-disease-free equilibrium (IT > 0) it follows

that
(S7a)V ∗ =

ν

δvax + µ
(S∗P + S∗S)

(S7b)R∗ =
γ

δ + µ
I∗T

(S7c)S∗P =
µ

βI∗T + µ+ ν

(S7d)εβI∗TS
∗
S + (µ+ ν)S∗S =

δγ

δ + µ
I∗T +

δvax
δvax + µ

ν(S∗P + S∗S)

So that

(S8)S∗S =

δγ
δ+µ

I∗T + νδvax
δvax+µ

(
µ

βI∗T+µ+ν

)
εβI∗T + µ+ ν − δvaxν

δvax+µ

Letting Q = β
γ+µ

, then S∗P + εS∗S = 1
Q

at equilibrium. For simplification, we let

(S9)S∗P =
C

DI∗T + E
, S∗S =

AI∗T +B C
DI∗T+E

GI∗T +H
,

so that

(S10)
C

DI∗T + E
+ ε

AI∗T +B C
DI∗T+E

GI∗T +H
=

1

Q
.

Multiplying both sides by (GI∗T +H)(DI∗T + E) gives

(S11)C(GI∗T +H) + εAI∗T (DI∗T + E) + εBC =
1

Q
(GI∗T +H)(DI∗T + E),
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so that subtracting the LHS on both sides gives f(I∗T ) = MI∗
2

T +NI∗T + P = 0, where

(S12a)M = εAD − GD

Q

(S12b)N = GC + εAE − GE

Q
− DH

Q

(S12c)P = CH + εBC − HE

Q

where A = δγ
δ+µ

, B = δvaxν
δvax+µ

, C = µ, D = β, E = µ+ ν, G = εβ, H = µ+ ν − δvaxν
δvax+µ

.

Next, we show that if the associated R0 > 1, then there is a unique positive root that lies

between 0 and 1. Otherwise, if R0 < 1, there is no positive root.

Substituting A,D,G,D,Q into M gives that

(S13)M = εβµ

(
− γ

δ + µ
− 1

)
< 0.

At the disease-free equilibrium, R(0) = I
(0)
T = 0, and it can be shown that S

(0)
P = µ

µ+ν
, and

S
(0)
S = ν

ν+µ
δvax

µ+ν+δvax
. Thus, the basic reproduction number of this system is

(S14)R0 =
β

γ + µ

(
µ

µ+ ν
+ ε

ν

ν + µ

δvax

µ+ ν + δvax

)
.

If IT > 0 and small, and R0 < 1, then dIT
dt

< 0 and the disease dies out, i.e. the disease-free

equilibrium is locally stable if R0 < 1. On the other hand, if R0 > 1 and IT is small, then

dIT
dt
> 0.

Substituting the values of C,H,B,C,E,Q in P gives that

(S15)P = µ(µ+ ν)

(
δvax + µ+ ν

δvax + µ

)(
γ + µ

β

)
(R0 − 1).

Thus, P > 0 if and only if R0 > 1.

Since M < 0, and P > 0 if and only R0 > 1, then by Descartes’ Rule of Signs, f(I∗T ) has

exactly one positive real root if R0 > 1. Further, since f(0) > 0 and f(1) < 0 this positive root

lies between 0 and 1. Therefore, there is a unique endemic equilibrium if R0 > 1.

For R0 < 1, it can be shown using Equations (S12b) and (S14) that N < 0, and so with

P < 0 and M < 0, this guarantees that f(I∗T ) has no positive root when R0 < 1 and so no

subthreshold equilibrium exists when R0 < 1.
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S1.6 Minimal vaccination rate for R0 < 1

Finally, we find the vaccination rate νmin so that R0 = 1, and so for ν > νmin then R0 < 1.

Thus, we solve R0 = 1 for ν. Letting a1 = β
γ+µ

, a2 = µ, a3 = εδvax, and a4 = µ+ δvax. Then,

(S16)1 =
a1

a2 + νmin

(
a2 +

a3νmin

a4 + νmin

)
.

Rearranging the above equation gives

(S17)0 = ν2min + νmin (a2 + a4 − a1a2 − a1a3) + a2a4 − a1a2a4 = ν2min + b1νmin − b0 = g(νmin).

Note that b0 = a2a4(a1 − 1). For ν > 0, then β
γ+µ

> R0. (cf. Eq. S14). Since a1 = β
γ+µ

> 1,

then b0 > 0 if R0 > 1. Thus, the positive root of g(νmin) is

(S18)νmin =
−b1 +

√
b21 + 4b0

2
.

Note that for a1 = β
γ+µ

= 1 (i.e. the reproduction number for fully immunizing infections

ε = 0), νmin = 0. To gain further intuition, assume that a1 is close to 1, i.e. a1 = 1 + w, for

w > 0 and small, which implies νmin is small. Then, neglecting higher order terms in νmin, the

linearization of Equation (S17) gives

νmin =
b0
b1
,

which for small w, simplifies to

νmin =
a2a4
a4 − a3

w.

Substituting in the values of a2, a3, and a4, and dividing by a4, we then obtain the following

linear approximation for νmin:

νmin =
µ

1− εδvax
µ+δvax

w.

S2 Caveats

Our model explores the impact of the strength and duration of individual immunity on the

epidemic dynamics of Covid-19, accounting for seasonally- and NPI-induced changes in trans-

mission rates as well as a simplified vaccination scenario. However, to reduce the complexity of

our framework and focus on key determinants, we have made a number of simplifying assump-

tions.
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• First, we assume exponential waiting times for immune duration, and that tertiary (and

beyond) infections are equivalent to secondary infections due to the relatively short

timescales that we examined. However, repeated subsequent viral exposures may heighten

adaptive immune responses and thus lead to stronger and longer immunity. With increases

in infection, viral evolution and immune escape could also alter immunity landscapes. Ex-

tending our framework to address these nuances would aid in characterizing longer-term

endemic dynamics.

• Second, informed by phylogenetic relationships, we have assumed that climatic influences

on SARS-CoV-2 transmission are very similar to the β–CoV HCoV-HKU1. With further

data tying climate with transmission, more accurate seasonal variation could be incorpo-

rated.

• Third, we have assumed that social distancing scenarios result in a fixed reduction in the

transmission rate for specific time periods. However, it is likely that reductions in β due to

NPIs will vary over time due to changes in a number of factors including human behaviour.

Further, NPIs may result in changes in contact patterns and hence non-uniform effects

across age groups [9] and heterogeneities in populations can decrease the herd immunity

threshold [10]. In our model, these could be investigated through the addition of age-

structure, although here we follow [3] and [2] in assuming a well-mixed urban population.

Additionally, the specific time periods during which the NPIs are assumed to be enforced

in this work were designed to capture a variety of policy scenarios. In reality, the timing

of NPIs will vary by location, and consequently the incorporation of spatial structure and

stochasticity as well as these data as they become more readily available could be used

to tailor model predictions.

• Fourth, we assume qualitatively uniform adaptive immune responses among individuals.

However, it is increasingly being recognized that both T-cell- and antibody-mediated

adaptive immune responses are associated with recovery from SARS-CoV-2 infection,

possibly to different degrees among individuals. Similarly, vaccine efficacy may vary

within groups owing to demographic, physiological, or environmental factors. Given that

the strength and duration of immunity conferred by T and B cells may vary, an important

area for future work will be to assume heterogeneities between individuals in adaptive

immune responses after primary infection or vaccination.

• Fifth, the proportion of severe primary cases xsev,p assumed in this work from case series
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reports may be an overestimation since these reports focus on confirmed or suspected

cases of Covid-19 rather than total infections, although our qualitative predictions of

epidemic dynamics should be robust to changes in the magnitude of this value. It is

plausible, however, that the severity of secondary infections may be correlated with viral

loads and hence the transmissibility of secondary infections, and therefore a direction for

future work may be to incorporate within-host and cross-scale modeling frameworks (see

for example [11]).

• Sixth, we have modelled a highly simplified vaccination scenario in which a constant

proportion of the fully and partially susceptible populations are immunized weekly. How-

ever, our model results are qualitatively similar if other scenarios such as a more pulse-like

campaign immunizing a larger portion of the population is implemented (see Figure S12),

although without sustained immunization policies the possibility of waning vaccine im-

munity may result in less efficient outbreak control under this scenario. Models exploring

immune and behavioural responses to multiple vaccine doses could be developed to ad-

dress this. Further, in light of the severity of the current Covid-19 pandemic, it is likely

that increases in the production and deployment capacity over time could lead to higher

vaccination rates than our conservative estimate based on H1N1 data. As these pro-

cesses are implemented, these group-dependent rates could be inferred from data and

implemented into our model to refine our predictions. Nevertheless, in the early stages

of vaccine deployment, limitations in supply may necessitate the prioritization of higher-

risk groups (i.e. the elderly and health-care workers), and a meta-population approach

that incorporates these complexities could be developed. Additionally, our simple model

assumes that vaccines and primary infections confer the same degree of protection to

secondary infection following immune waning (i.e. the reduction in susceptibility to sec-

ondary infection is ε for both), although more complex scenarios could be simulated in

which this level of protection differs.

• Finally, asymptomatic transmission has been identified as an important driver of Covid-

19 disease spread [12]. Although our findings are robust to moderate assumptions on the

proportion of asymptomatic cases (results not shown), more refined models incorporating

heterogeneity in primary infection could assess this effect more quantitatively.

In all cases, the relaxation of the assumptions made in the underlying model framework

and the integration of additional complexities are important areas of future work to properly

predict the course of SARS-CoV-2 infections in a post-pandemic world.
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S3 Supplementary Figures and Results

S3.1 Schematic of possible population-level immune responses to

SARS-CoV-2 infection

Full susceptibility Primary Infection Natural Immunity

Vaccine Immunity

Partial susceptibilitySecondary infection

Waning?

Waning?

Vaccination

Viral shedding

Hospitalizations

SARS-CoV-2-specific 
immune response: 
antibodies and T 
cells

Key

Figure S1: Schematic of possible population-level immune responses to SARS-CoV-2 infection. Fully
susceptible individuals can experience a primary infection through contact with infectious individuals. Fol-
lowing infection, individuals may acquire varying levels of natural immunity, denoted by the presence of
SARS-CoV-2 specific immune responses such as antibodies and T cells. Over time, this natural immunity
may wane, and individuals may be susceptible to secondary infections. Individuals experiencing primary
infections may experience greater amounts of viral replication and shedding than individuals experiencing
secondary infections, resulting in a greater contribution to the force infection (larger red arrows than pink
arrows). Further, individuals with partial immunity may be less susceptible to secondary infections than
fully susceptible individuals are to primary infections, as illustrated by the smaller red and pink arrows
leading away from partially susceptible individuals compared to fully susceptible ones. Additionally, the
proportion of severe cases requiring hospitalization in individuals experiencing secondary infections may be
smaller than that for primary infections, as shown by the number of red crosses, but there are also possible
scenarios where severity of secondary infections could exceed that of primary ones due to phenomena such as
antibody-dependent enhancement, as shown by the faded-out crosses. Finally, the availability of a vaccine
would provide immunity to fully susceptible individuals without requiring infection, although this immunity
may also wane, possibly at a different rate than natural immunity.
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S3.2 Time series of weekly reproduction numbers
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Figure S2: Weekly reproduction numbers for assuming seasonality derived from the climate of NYC. The
lags in seasonality relative to the epidemic onset considered in Figures S3-S5 are indicated by the dashed
black lines. (b) Seasonal weekly reproduction numbers derived from the climates of NYC (solid line),
Delhi (dashed line), and Jakarta (dotted line). (c) Weekly reproduction numbers assuming no seasonality
determined as the mean of the seasonal values in (a). The time series in (a)-(c) are repeated to achieve
continuous five-year transmission rates in the epidemiological modeling. (d) and (e): weekly reproduction
numbers with seasonality derived from the climate of NYC and social distancing resulting in a reduction in
R0 to 60% of its original value between weeks 16 and 55 (d), and between weeks 16 and 55 as well as weeks
82 and 93 (e).

S3.3 Effect of climate-driven seasonality on timing and magnitude

of subsequent peaks

Recent work suggests that climate may play an important role in the timing of longer-term

SARS-CoV-2 endemic cycles, although the dynamics of the pandemic stage are dominated by
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the near complete population susceptibility at the time of the first case [3]. We find that

transmission seasonality significantly modulates the dynamics of the second and subsequent

epidemic peaks. In particular, seasonality drives non-monotonicity in the size and timing of

the secondary peak as a function of either the duration of immunity or the reduction in suscepti-

bility to secondary infections ε (Figures S3a and S3b). Thus, counter-intuitively, the size of the

secondary peak can be larger under conditions when ε is smaller or immunity to SARS-CoV-2

has a longer duration due to the seasonal variation in the transmission rate and consequently

the relative timing of susceptible accumulation (Figures S3c and S3d). These results are robust

to initiating the epidemic at other points along the seasonal cycle (Figures S4-S6), and in loca-

tions with smaller annual fluctuations in climate (e.g. Delhi and Jakarta), this non-monotonic

behaviour is increasingly suppressed (Figures S2b, S7, and S8). In the limit of a constant

transmission rate, taken here to be derived from the mean value of these seasonal NYC-based

weekly reproduction numbers (R0 = 1.75, see Methods and Figure S2c), secondary peaks are

smaller in magnitude and occur later if susceptibility to secondary infection ε is reduced or if

the duration of immunity is increased (see Figure S9 of the supplementary material). These

dynamics are driven by a decrease in the number of infected individuals (and hence the force

of infection) when ε is decreased and an increase in the proportion of partially and fully im-

mune individuals for larger values of 1/δ. The trend is further amplified if secondary infections

transmit less readily (i.e. α < 1, Figure S10).
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Figure S3: Effect of immunity length (1/δ) and reduction in relative susceptibility to secondary infections
(ε) on primary and secondary infection burden and timing when secondary infections are equally transmis-
sible (α = 1) with a seasonal transmission rate derived from the climate of NYC. In (a) the number of
days between the first and second peak, and in (b) the total fraction of the population infected during the
second peak are shown as a function of ε and 1/δ with grey regions indicating no secondary peak satisfying
the threshold size within a period of five years (see the Methods). In (c) the times series of primary (solid
lines) and secondary (dashed lines) infections are shown for various values of ε and a duration of immunity
of 1/δ = 1 year. In (d) the times series of the fully susceptible (SP , solid lines), immune (R, dashed lines),
and partially immune (SS , dotted lines) populations are shown for various values of ε and a duration of
immunity of 1/δ = 1 year.
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Figure S4: Effect of immunity length (1/δ) and reduction in relative susceptibility to secondary infections
(ε) on primary and secondary infection burden and timing when secondary infections are equally transmis-
sible (α = 1) with a seasonal transmission rate derived from the climate of NYC lagged 13 weeks. In (a) the
number of days between the first and second peak, and in (b) the total fraction of the population infected
during the second peak are shown as a function of ε and 1/δ with grey regions indicating no secondary
peak satisfying the threshold size within a period of five years (see the Methods). In (c) the times series of
primary (solid lines) and secondary (dashed lines) infections are shown for various values of ε and a duration
of immunity of 1/δ = 1 year. In (d) the times series of the fully susceptible (SP , solid lines), immune (R,
dashed lines), and partially immune (SS , dotted lines) populations are shown for various values of ε and a
duration of immunity of 1/δ = 1 year.
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Figure S5: Effect of immunity length (1/δ) and reduction in relative susceptibility to secondary infections
(ε) on primary and secondary infection burden and timing when secondary infections are equally transmis-
sible (α = 1) with a seasonal transmission rate derived from the climate of NYC lagged 26 weeks. In (a) the
number of days between the first and second peak, and in (b) the total fraction of the population infected
during the second peak are shown as a function of ε and 1/δ with grey regions indicating no secondary
peak satisfying the threshold size within a period of five years (see the Methods). In (c) the times series of
primary (solid lines) and secondary (dashed lines) infections are shown for various values of ε and a duration
of immunity of 1/δ = 1 year. In (d) the times series of the fully susceptible (SP , solid lines), immune (R,
dashed lines), and partially immune (SS , dotted lines) populations are shown for various values of ε and a
duration of immunity of 1/δ = 1 year.
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Figure S6: Effect of immunity length (1/δ) and reduction in relative susceptibility to secondary infections
(ε) on primary and secondary infection burden and timing when secondary infections are equally transmis-
sible (α = 1) with a seasonal transmission rate derived from the climate of NYC lagged 39 weeks. In (a) the
number of days between the first and second peak, and in (b) the total fraction of the population infected
during the second peak are shown as a function of ε and 1/δ with grey regions indicating no secondary
peak satisfying the threshold size within a period of five years (see the Methods). In (c) the times series of
primary (solid lines) and secondary (dashed lines) infections are shown for various values of ε and a duration
of immunity of 1/δ = 1 year. In (d) the times series of the fully susceptible (SP , solid lines), immune (R,
dashed lines), and partially immune (SS , dotted lines) populations are shown for various values of ε and a
duration of immunity of 1/δ = 1 year.
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Figure S7: Effect of immunity length (1/δ) and reduction in relative susceptibility to secondary infections
(ε) on primary and secondary infection burden and timing when secondary infections are equally transmis-
sible (α = 1) with a seasonal transmission rate derived from the climate of Delhi. The weekly reproduction
numbers used are those plotted in Figure S2b. In (a) the number of days between the first and second peak,
and in (b) the total fraction of the population infected during the second peak are shown as a function of
ε and 1/δ with grey regions indicating no secondary peak satisfying the threshold size within a period of
five years (see the Methods). In (c) the times series of primary (solid lines) and secondary (dashed lines)
infections are shown for various values of ε and a duration of immunity of 1/δ = 1 year. In (d) the times
series of the fully susceptible (SP , solid lines), immune (R, dashed lines), and partially immune (SS , dotted
lines) populations are shown for various values of ε and a duration of immunity of 1/δ = 1 year.
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Figure S8: Effect of immunity length (1/δ) and reduction in relative susceptibility to secondary infections
(ε) on primary and secondary infection burden and timing when secondary infections are equally transmissi-
ble (α = 1) with a seasonal transmission rate derived from the climate of Jakarta. The weekly reproduction
numbers used are those plotted in Figure S2b. In (a) the number of days between the first and second peak,
and in (b) the total fraction of the population infected during the second peak are shown as a function of
ε and 1/δ with grey regions indicating no secondary peak satisfying the threshold size within a period of
five years (see the Methods). In (c) the times series of primary (solid lines) and secondary (dashed lines)
infections are shown for various values of ε and a duration of immunity of 1/δ = 1 year. In (d) the times
series of the fully susceptible (SP , solid lines), immune (R, dashed lines), and partially immune (SS , dotted
lines) populations are shown for various values of ε and a duration of immunity of 1/δ = 1 year.
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Figure S9: Effect of immunity length (1/δ) and reduction in relative susceptibility to secondary infections
(ε) on primary and secondary infection burden and timing when secondary infections are equally transmis-
sible (α = 1) and the transmission rate is constant (as plotted in Figure S2c). In (a) the number of days
between the first and second peak, and in (b) the total fraction of the population infected during the second
peak are shown as a function of ε and 1/δ with grey regions indicating no secondary peak satisfying the
threshold size within a period of five years (see the Methods). In (c) the times series of primary (solid lines)
and secondary (dashed lines) infections are shown for various values of ε and a duration of immunity of
1/δ = 1 year. In (d) the times series of the fully susceptible (SP , solid lines), immune (R, dashed lines),
and partially immune (SS , dotted lines) populations are shown for various values of ε and a duration of
immunity of 1/δ = 1 year.

19



0.0 0.2 0.4 0.6 0.8 1.0

0.
5

1.
0

1.
5

2.
0

0.00

0.02

0.04

0.06

0.08

0.10

0.0 0.2 0.4 0.6 0.8 1.0

0.
5

1.
0

1.
5

2.
0

0

500

1000

1500

2000
a

b

c

d

Du
ra

tio
n 

of
 im

m
un

ity
(
⁄ 1
𝛿)

(y
ea

rs
)

Relative secondary infection 
susceptibility (𝜖)

Time (years)
Fr

ac
tio

n 
of

 p
op

ul
at

io
n

Time (years)

Fr
ac

tio
n 

of
 p

op
ul

at
io

n Primary infection 
Secondary infection

Fully susceptible
Immune
Partially immune

Du
ra

tio
n 

of
 im

m
un

ity
(
⁄ 1
𝛿)

(y
ea

rs
)

Inter-epidemic 
period (days)

Secondary 
peak I

Relative secondary infection 
susceptibility (𝜖)

Figure S10: Effect of immunity length (1/δ) and reduction in relative susceptibility to secondary infections
(ε) on primary and secondary infection burden and timing when secondary infections are relatively less
transmissible (α = 0.8) and the transmission rate is constant (as plotted in Figure S2c). In (a) the number
of days between the first and second peak, and in (b) the total fraction of the population infected during the
second peak are shown as a function of ε and 1/δ with grey regions indicating no secondary peak satisfying
the threshold size within a period of five years (see the Methods). In (c) the times series of primary (solid
lines) and secondary (dashed lines) infections are shown for various values of ε and a duration of immunity
of 1/δ = 1 year. In (d) the times series of the fully susceptible (SP , solid lines), immune (R, dashed lines),
and partially immune (SS , dotted lines) populations are shown for various values of ε and a duration of
immunity of 1/δ = 1 year.
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S3.4 Effect of vaccination on timing and magnitude of subsequent

peaks
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Figure S11: (a) Modified model flowchart that incorporates vaccination. In (b) and (c), the ratio of the
total number of primary (b) and secondary (c) infections with vaccination versus without during years 1.5-5
inclusive (i.e. after the introduction of the vaccine) are plotted as a function of the weekly vaccination rate
ν and the duration of vaccine immunity 1/δvax. In (d) and (e), time series of the various immune classes
are plotted for different values of the vaccination rate ν. (d) contains the time series of primary (solid lines)
and secondary (dashed lines) infections, while (e) contains the time series of the fully susceptible (solid
lines), immune (dashed lines), and partially immune (dotted lines) subpopulations. The duration of vaccine
immunity is taken to be 1/δvax = 2 years (longer than natural immunity). In (b) - (e), the susceptibility to
secondary infection, relative transmissibility of secondary infections, and duration of natural immunity are
taken to be ε = 0.7, α = 1, and 1/δ = 1 year, respectively. Vaccination is introduced 1.5 years after the
onset of the epidemic following a 40 week period of social distancing during which the force of infection was
reduced to 60% of its original value during weeks 16 to 55 (i.e. the scenario described in Figure 2b of the
main text), and a seasonal transmission rate derived from the climate of NYC with no lag is assumed.

21



S3.5 Immune landscapes with pulse vaccination
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Figure S12: Time series of fraction of the population with severe cases Isev (top) and area plots of the
fraction of the population comprising each immune class (bottom) over a five year time period. In both
plots, the relative transmissibility of secondary infections is taken to be α = 1, a seasonal transmission rate
derived from the climate of NYC with no lag is assumed, and a period of social distancing during which the
force of infection is reduced to 60% of its original value during weeks 16 to 55 (i.e. the scenario described
in Figure 2b of the main text) is enforced. Vaccination is introduced as a pulse in which 27% of the fully
and partially susceptible populations are vaccinated with a transmission-blocking vaccine at tvax = 1.5 years
after the onset of the epidemic. (a) Corresponds to all the same parameters as in Figure 3a of the main text
along with vaccine immunity lasting 1/δvax = 0.25 years, while (b) corresponds to all the same parameters
as in Figure 3b of the main text along with vaccine immunity lasting 1/δvax = 1 year.
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