Supplementary Text File 1

1 Model

Our model (equations 1-4) links two subpopulations (groups 1 and 2) by means of an interaction
matrix in which 6 (0<d<1) specifies the degree of within-group mixing in a subpopulation of
proportion p with the smaller total number of total contacts (equal to pc, , where ¢, is the contact rate
of that group). Thus, all contacts are within the respective groups (i.e. mixing is fully assortative) when
6=1, and between-group mixing is maximised at 6=0. Random mixing occurs when

0 = pc,/(pc; + (1 —pc,)) .

Z=0(1-z) —v,z, (1)
Vi =M(-z) — oy, (2)
A =Bye[dy, + (1-8)y,] (3)
M = Byoa Ly, + (1- 2y, (4)

The proportion infected (and infectious) is termed y and z (infected plus recovered) is the proportion
already exposed; A, and A, are the per capita rates of infection of group 1 (of proportion p) and group
2 (of proportion 1—p) and is determined by the product of the intrinsic transmission rate B,and
contact rate ¢; of each group (with i=1,2) in addition to the distribution of the contacts between the
different groups (70). We define the basic reproduction number (R,) for each group as the
fundamental transmission potential of the virus within a homogenous population consisting of
members of that group; hence Ry, = B.c,/o, where o, is the group-specific recovery rate and v, is the

group-specific rate of loss of immunity (with i=1,2).

If a fraction p of the population is resistant to infection (R =0), the ‘herd’ immunity threshold (HIT) is

given as z* = (1 —p)(1 — 5 [1/(1 - m)]) for all values of y.

The model was solved numerically in R.

2 Deriving incidence of deaths

Our overall approach rests on the assumption that only a fraction of the population is at risk of death.
This proportion is itself only a fraction of the risk groups already well described in the literature [1-5],
including the elderly and those carrying critical comorbidities (e.g. asthma). Cumulative death counts
(A) are obtained by considering that mortality occurs with frequency p (i.e. a small group of
proportion p exists in the population, whom will experience death upon infection), effectively defining
the infection fatality ratio (IFR) as p. We consider the delay between the time of infection and of
death () as a combination of incubation period and time to death after onset of symptoms.

If B,c, = B,c,, then:

A, = PNZH;
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We calibrate this model to cumulative reported SARS-CoV-2 associated deaths from the United
Kingdom (UK) starting on 05/03/2020 (first death) and ending 15 days later (19/03/2020) to avoid
potential effects of local control strategies implemented (for dates of interventions, see [5]). In Figure

1 we present a summary of model output after being fit to the number of deaths in the UK while

setting key parameters to restricted priors well within reported ranges (Table 1). The model was able

to approximate cumulative death counts (Figure 1A) for a wide range of possible IFRs.
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Figure 1: Fitting summary for R0=2.5 and various possible IFRs. (A) Data points (black diamonds)
and mean model output after fitting (full points) for cumulative mortality. Coloured areas are the
model 95% Cl. (B) Mean model output after fitting (full points) for the proportion of susceptibles.
Model posteriors for (C) time (day) of introduction, (D) herd-immunity on 19/03/2020, (E) RO, (F)
doubling time and (G) infectious period. Boxplot hinges present the 25th and 75th percentiles.
MCMC ran for 1 million steps. Results presented are the posteriors (model output) using 1000
samples after a burnout of 50%.

As the prior for the IFR is reduced from mean 0.66% to 0.01%, fitting death counts adjusts the
introduction date further back to late January, more than a month before the first reported death
(Figures 1D). As a consequence, accumulated herd-immunity by 19/03/2020 presents an inverse
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relationship with the assumed IFR prior (Figures 1C), with the possibility of thousands of infections
having occurred undetected [6-8], even before the first death is reported [9]. Generally, the model
respected the priors (Table 1) but also adjusted parameters (e.g. Figure 1G) required to replicate the
necessary doubling times (Figure 1F). The latter were estimated to be the same across all considered
IFRs (e.g. at 2.07 days, 95% ClI 1.78-2.40 for IFR=0.2%) [10,11], well within a range obtained in a
sensitivity analysis (Extra Figure 1).

A higher R, (=4) leads to a commensurate increase in the level of herd immunity, but has a minimal
effect on the date of introduction; a longer infection period is required to fit the mortality data but this
is still within reported ranges (Extra Figure 2). Including an exposed (but not yet infectious) class
resulted in a longer doubling time with R, =2.5 (Extra Figure 3) but accords well with R, =4 provided
infectious periods are low (Extra Figure 4).

Finally we considered the effects of an external contribution to the risk of infection growing
exponentially with a doubling time of 5 days from the (estimated) time of first introduction until the
date of lockdown (similar to [12], see Methods) to reflect influx of infected individuals into the UK.
This had the general effect of delaying our estimates of the date of first introduction by ~7 days (on
average) (Extra Figure 5). Across such alternative exercises, model output still demonstrated the
inverse relationship between the IFR and the proportion currently immune, with the possibility of
accumulation of significant levels of herd immunity depending on the IFR considered.

An observation rate (0, ratio between confirmed cases and total infections) is not explicitly modelled,
but can be defined as 0 =IFR/CFR = (D/I)/(D/C)= C/I; where D is the number of deaths, | the
infections, C the confirmed infections (cases) and CFR the case fatality ratio. From the model's IFR
and four CFR independent estimations, we obtained possible distributions for 6. Introduction of the

virus is done as a single event (number of individuals 1/N) at estimated time of introduction T..

With the true IFR in the UK being unknown, the IFR-dependent scenarios presented (Figure 1) remain
theoretical projections of both the epidemic duration and accumulation of herd-immunity up to
19/03/2020. We thus looked at contextualizing such projections in light of four previous estimates of
the case fatality ratio (CRF) in other epidemiological contexts (see Methods). From the relationship
0 =IFR/CFR we obtain the observation rate 6 for each of our modelled scenarios using the
respective IFR prior and each of the literature CFRs - effectively considering that any of the reported
CFRs could apply to the UK epidemic (Figure 2). The CFR considered were: 2.6% (95% CI 0.89-6.7) for
the Diamond Princess cruise ship (Figure 2A)[13], 3.67% (95% Cl 3.56-3.80) for China (Figure 2B)[4],
1.2% (95% CI 0.3-2.7) for China (Figure 2C)[13], and 1.4% (95% CI 0.9-2.1) for Wuhan (China) (Figure
2D)[14]. Although there were significant differences when considering each of the four CRFs (Figures
2ABCD), there was a positive relationship between the IFR and the observation rate. The three
smallest IFRs modelled (/FR <= 0.04%) were found to be compatible with the reported CRFs when
the observation rate 0 was generally close to, or lower than 5% (i.e. 1 or less in 20 infections being
confirmed / reported). The IFR=0.66% is similar to the one recently estimated by Verity and
colleagues for China (0.66%, 95% CI 0.39-1.33) [4]. This IFR has been the basis of model projections
informing the UK government (see [5,12] for details). In our model (without control) it resulted in mean
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herd-immunity of 7.05% by 19/03/2020 (Figure 1C), estimated introduction on 07/02/2020 (Figure
1D), and was compatible with the CFR of the same study for an observation rate of 18.6% (Figure 2B).
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Figure 2: Model observation rates for R0=2.5 and various possible IFRs. Four CFR estimations from
the literature (panels A-D, see main text for references) are used to derive model observation rates
for each modelled IFR (color legend). Horizontal dotted line marks the 10% observation rate, and
dashed line marks the 5% observation rate. Observation rate is the ratio of reported cases and total
infections. See Methods for details. Boxplot hinges present the 25th and 75th percentiles. MCMC
ran for 1 million steps. Results presented are the posteriors (model output) using 1000 samples
after a burnout of 50%.

The UK exercises presented in Figure 1 for R, =2.5 and Extra Figure 2 for R, =4 were repeated for
Italy. This resulted in very similar conclusions (Extra Figures 6-7), albeit with higher population-level
immunity for Italy at 15 days post first reported death.

Overall, these results underscore the dependence of the inferred epidemic curve on the real IFR,
showing that accumulation of significant population-level immunity is possible, depending on the
currently unknown IFR and observation rate. They also demonstrate how informative the proportion of
the population already exposed to SARS-CoV-2 is to determining the IFR.

Variable / Parameter Assumptions / Priors Support
proportion infectious y equation 1
proportion of populgtlon no 5 equation 2
longer susceptible
cumulative deaths A equation 3




time (day) of introduction T, Uniform distribution (-0o, +00)
Gaussian distributions
basic reproduction number R, G1(M=2.5,SD=0.05) [5,20-23]
G2(M=4.0,SD=0.05)
infectious period (days) 1/o Gaussian distribution [20,24-26]
1/G1(M=1/4,SD=0.05) !
transmission coefficient B B=oR,
time (days) between Gaussian distribution [24]
symptom onset and death v G1(M=15,SD=1.5)
Gaussian distribution
infection fatality ratio IFR=p p =G1(M=m,SD=0.05*m),
m € {1/150, 1/500,1/1250 ...}
population size N UK 66.87M, Italy 60M

Table 1 - Model variables and parameters. M=mean. SD=standard deviation. S=scale. R=rate.

Italy: A time series was obtained from the Italian Department of Civil Protection GitHub repository [27]
(accessed on 17/03/2020). We trimmed the data to the first 15 days of death counts above zero
(21/02/2020 to 06/03/2020) to include only the initial increase free of effects from local control
measures.

United Kingdom: A time series was obtained from the John Hopkins University Centre for Systems
Science and Engineering COVID-19 GitHub repository [28](accessed 19/03/2020). We trimmed the

data to the first 15 days of death counts above zero (05/03/2020 to 19/03/2020) to include only the
initial increase free of effects from local control measures.

2.3 Extra Figures
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Extra Figure 1 - Doubling time sensitivity. Data on cumulative mortality (time series, TS) was downloaded from the Johns
Hopkins (JH) Center for Systems Science and Engineering (CSSE) data set [i,iil on 12 April 2020. For each TS, a growth rate was
extracted using growthcurver R-package (v0.3), used to calculate a doubling time. Each TS was used to create six new TS
starting at the date of first reported death(s) and ending 14, 21, 28, 35, 42 and 49 days after (‘days since first death’, colour
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scale). (A) Doubling times for all available TS. As more ‘days since first death’ were considered, a smaller number of TS were
available. TS for which obtaining a growth rate was not possible are not shown (e.g. when deaths were constant). (B) Summary
of panel (A) using boxplots.

[i] https://qgithub.com/CSSEGISandData/COVID-19

[ii] https://systems.jhu.edu/research/public-health/ncov/

[iii] https://CRAN.R-project.org/package=growthcurver
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Extra Figure 2 - SIR model, UK, single introduction, R, = 4. Figure legend the same as Figure 1 main text.
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Extra Figure 3 - SEIR model, UK, single introduction, R, = 2.5 . Figure legend the same as Figure 1 main text.

We implemented SEIR by introducing an extra variable e to represent the exposed class and the
following parameters:

Gaussian distribution
1/G1(M=1/5,SD=0.05)
time (days) between symptom Gaussian distribution [24]

onset and death G1(M=12,SD=1.5)

incubation period (days) /v [20,24,25]

equation 1a: de/dt =By (1 -z) — ye
equation 2a: dy/dt =ye —oy
equation 3a: dz/dt =By (1-2)

equation4a: A, =pNz_,

equation 5a: R =p/(c +7)
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Extra Figure 4 - SEIR model, UK, single introduction, R, =4. Figure legend the same as Figure 1 main text. Model details
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identical to Extra Figure 3.
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Extra Figure 5 - SIR model, UK, with influx of infected, R, = 4. Figure legend the same as Figure 1 main text.
We model an external contribution to the force of infection growing at an exponentially rate (with a doubling time
of 5 days) starting at estimated time of introduction T, (similar to [12]); stopping on 24/03/2020 for the UK and
11/03/2020 for IT (according to lockdown dates [5]). This external forcing was modelled by changing the term
Bi (1-2z) in equations 1, 2 (SIR model) or equations 1a, 3a (SEIR model) to B +m) (1 —2), with m =€""/N . Model

variables are summarized in Table 1, except:

introduction external forcing

12
growth rate ! 0.1386 2l
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Extra Figure 6 - SIR model, IT, single introduction, R, = 2.5 . Figure legend the same as Figure 1 main text.
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Extra Figure 7 - SIR model, IT, single introduction, R, = 4. Figure legend the same as Figure 1 main text.
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