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1.  Extended Material and Methods 

Data preprocessing 

Microarray raw data were preprocessed using frozen GCRMA – a combination of two 

preprocessing methods: GCRMA (1) and frozen RMA (2). Reference preprocessing 

parameters including those required for non-specific binding adjustment were generated 

from 156 high quality microarrays (3) (and unpublished). For more detailed description of 

frozen GCRMA and the underlying methodology see Bindreither (2014) (4). Preprocessing 

of the microarrays was done using Bioconductor (5) packages ‘GCRMA’ and ‘frma’. 

Patients ALL subtype classification and GC-response quantification 

Six molecular signatures comprised of probe sets detecting highly subtype specific sets of 

mRNAs, were generated based on a large publicly available leukemia patient data set, 

consisting of 693 ALL samples (6). Six hundred sixty six high quality arrays of this data set 

were utilized for signature generation. Thereby two state of the art machine-learning 
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algorithms, ‘Random Forest’ and ‘Nearest Shrunken Centroids’ were employed. The 

newly generated signatures were benchmarked to already published signatures using 

another microarray data set obtained from a different microarray platform (7). The data 

driven classification of patients was done by hierarchical cluster analysis based on their 

zero hour gene expression profiles. A detailed description of signature generation and 

patient classification can be found in Bindreither (2014) (4).  

Differential gene expression and GO analyses 

For the identification of the common transcriptional response to GCs, a linear model 

including a factor for the time point was used and fitted to the M-values for each gene. 

The resulting coefficients and p-values for the 6 and 24 hour time point thus represent 

the average differential expression value (across all patients) and the significance thereof. 

For the subtype-specific response a linear model was defined that included a factor 

combining the patients’ subtype and samples’ time point resulting in per-subtype 

estimates of differential gene expression.  

Regression models 

Two different regression models were used to evaluate the relationship between gene 

expression/regulation with response to GC_treatment as measured by AUC after 72h. We 

will refer to them as “simple regression” and “extended regression”.  

The simple regression model was defined as: 

𝐸𝑀 = 𝛽0+𝛽𝐴𝑈𝐶𝐴𝑈𝐶72 (2) 

where: 
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𝐸𝑀 - expression or regulation of the gene, 

𝐴𝑈𝐶72 – area under the response curve representing the decrease in lymphoblast counts 

within the first 72h of GC therapy. 

Interpretation of evaluated parameters: 

𝛽0 - intercept, representing average expression/regulation of the gene when AUC = 0 (no 

response to GC treatment). 

𝛽𝐴𝑈𝐶  - effect of the log2-fold change in AUC on average gene expression/regulation. 

The model was fitted to the data for each gene and p-values for each coefficient were 

adjusted for multiple hypothesis testing using the method from Benjamini and Hochberg 

(8). 

The extended regression model for gene expression/regulation was defined as: 

𝐸𝑀 = 𝛽0 + 𝛽𝑇6𝑇6 + 𝛽𝑇24𝑇24 + 𝛽𝑇𝐴𝐿𝐿𝑆𝑇𝐴𝐿𝐿+𝛽𝐸𝑇𝑉/𝑅𝑋𝑆𝐸𝑇𝑉/𝑅𝑋

+ 𝛽𝐻𝑌𝑃𝐸𝑅𝑆𝐻𝑦𝑝𝑒𝑟+𝛽𝐺𝐺𝑚+𝛽𝐴𝑈𝐶𝐴𝑈𝐶72 
(1) 

where 

𝐸𝑀 - expression or regulation of the gene, 

𝑇6, 𝑇24 - factorial variable, indicating if the observation was made at 6-8 or 24h. The model 

for gene regulation has only a term with 𝑇24, as 𝑇6 is used as a base level of regulation. 

𝑆𝑇𝐴𝐿𝐿, 𝑆𝐸𝑇𝑉/𝑅𝑋, 𝑆𝐻𝑦𝑝𝑒𝑟 - factorial variable specifying the patient’s subtype (T-ALL, 

ETV6/RUNX1, hyperdiploid or “other preB”), 

𝐺𝑚 - factorial variable indicating whether the observation was made in a male patient, 

𝐴𝑈𝐶72 – area under the response curve quantifying the decrease in lymphoblast counts 

recorded in the first 72h of GC therapy. 
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Interpretation of evaluated parameters: 

𝛽0 - intercept, representing the average expression/regulation of the gene at time point 

0 (time point 6-8h for regulation) in female patients of the “other preB-ALL” subtype with 

AUC = 0 (no response to treatment). 

𝛽𝑇6, 𝛽𝑇24 - change of the gene’s average expression/regulation after 6-8 (only for 

expression) and 24h of GC treatment, respectively. 

 𝛽𝑇𝐴𝐿𝐿 ,  𝛽𝐸𝑇𝑉/𝑅𝑋, 𝛽ℎ𝑦𝑝𝑒𝑟 – difference of the gene’s average expression/regulation in TALL, 

ETV6/RUNX1 or hyperdiploid subtype to the base level (i.e. expression in “other preB-

ALL” subtype). 

𝛽𝐺 - difference of average expression/regulation levels in male compared to female 

patients. 

𝛽𝐴𝑈𝐶  - effect of log2-fold change in AUC on average gene expression/regulation. 

The above model was fitted for each gene and the resulting p-values for the coefficients 

were adjusted for multiple hypothesis testing using the method from Benjamini and 

Hochberg (8). 

Feature selection: elastic-net regression 

For elastic-net regression we combined expression and regulation estimates of pre-

selected probe sets in order to identify a possible combination of genes that may act 

together in order to facilitate GC-response in patients. First, the gene expression was 

adjusted for subtype, gender and time point by fitting a regression model: 

𝐸 = 𝛽0 + 𝛽𝑇6𝑇6 + 𝛽𝑇24𝑇24 + 𝛽𝑇𝐴𝐿𝐿𝑆𝑇𝐴𝐿𝐿 + (3) 
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+𝛽𝐸𝑇𝑉/𝑅𝑋𝑆𝐸𝑇𝑉/𝑅𝑋 + 𝛽𝐻𝑌𝑃𝐸𝑅𝑆𝐻𝑦𝑝𝑒𝑟+𝛽𝐺𝐺𝑚, 

 

and then adjusting the observed expression values using fitted values: 

𝐸𝑎𝑑𝑗 = 𝐸𝑜𝑏𝑠 − 𝐸𝑓𝑖𝑡 (4) 

Pre-selection of the probe sets was based on median absolute deviation (MAD) and 

absolute value for estimated coefficient 𝛽𝐴𝑈𝐶. A probe set was considered for the elastic 

net analysis, if its MAD was higher then 50% of all probe sets and its |𝛽𝐴𝑈𝐶| was within 

the top 5%.  

Elastic net regression was applied to the combined data set of adjusted average 

expression values and average regulation values of approximately 1000 probe sets each 

using the R package glmnet (9) with the elastic net mixing parameter α set to 0.1. 

The regularization parameter 𝜆 was estimated using a 10x10-fold cross validation 

selecting the average value within 1 standard error from the minimum of the cross-

validation error curve in the direction of increased regularization.  

To ensure a robust analysis, the above approach was performed with the following 

bootstrapping: in each of in total 100 iterations, 90% of all patients were randomly 

selected and the above described regression models, feature pre-selection and elastic net 

regression was applied on the data of this subset. Probe sets with non-zero coefficients 

in more than 50 iterations were reported as significant probe sets.  
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2. Supplementary Figures and Legends to Supplementary Figures 

Supplementary Figure S1: Examples of response curves 

The graph depicts 5 response curves of individual children (see Supplementary Table 

S1). On the y-axis, the decrease in absolute blast relative to the blast counts at initiation 

of treatment counts is plotted against different time point during the first 72h of 

systemic GC monotherapy. The area under the curve (AUC) was calculated. One patient 

showed an increase in blast during the first 72h, hence a positive AUC (indicated as red 

area), all others (like the 4 depicted in the graph) showed decreases in blast counts, 

hence negative AUC values (green areas). 

 

Supplementary Figure S2: Volcano plot 24h 

A “Volcano plot” showing the mean M values of all 46 patients GC-treated for 24h (M) 

and the Benjamini-Hochberg adjusted p values (left scale in log10) or percent false 

discovery rate (right scale in log2). The corresponding graph for 6-8h is depicted in 

Figure 2B in the main text. 

 

Supplementary Figure S3: Hierarchical clustering of GC response genes with GBSs 

A “Heat map” depicting the 110 genes with GBS regulated after 24h systemic GC 

monotherapy. A corresponding heat-map for 6-8h is shown in Figure 3 in the main text, 

the values for the individual genes are summarized in Supplementary Table S2A. 
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3. List of Supplementary Tables 

All 6 Supplementary Tables are supplied as separate searchable and sortable xlsx-files 

with their legends presented at the top or the end of each table. 

 

Supplementary Table 1: Patient´s characteristics 

Supplementary Table 2A: 2307 "GC-regulated" probe sets in vivo 

Table 2B: M-values of the 2307 "GC-regulated" probe sets of all 46 patients 

Supplementary Table 3: Gene ontology analysis 

Supplementary Table 4: Extended linear regression (to identify individual “effectors”) 

Supplementary Table 5: Ordinary least squares regression (to identify individual 

“modulators”) 

Supplementary Table 6: 1283 probe sets selected by the "Elastic Net" approach 

 

4. Links to additional data available through the Internet 

Raw and preprocessed expression data has been deposited at the Gene Expression 

Omnibus (Accession number: GSE73578); during review process the data is accessible 

using the link:  

http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?token=sfktcoyghzavrup&acc=GSE7357

8. 
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