Assessing the impact of preventive mass vaccination campaigns on yellow fever outbreaks in Africa : a population-level self-controlled case-series study

Kévin Jean^{1,2,3}, Hanaya Raad^{1,2,4}, Katy A. M. Gaythorpe³, Arran Hamlet³, Judith E. Mueller^{2,4}, Dan Hogan⁵, Tewodaj Mengistu⁵, Heather J. Whitaker^{6,7}, Tini Garske³, Mounia N. Hocine^{1,2}

¹ Laboratoire MESuRS, Conservatoire national des Arts et Métiers, Paris, France

² Unité PACRI, Institut Pasteur, Conservatoire National des Arts et Métiers, Paris, France

³ MRC Centre for Global Infectious Disease Analysis, Department of Infectious Disease Epidemiology, Imperial College London, United Kingdom

⁴ EHESP French School of Public Health, Paris, France

5 Gavi, the Vaccine Alliance, Geneva, Switzerland

⁶ Statistics, Modelling and Economics Department, National Infection Service, Public Health England, Colindale, London, United Kingdom

⁷ Department of Mathematics & Statistics, The Open University, Milton Keynes, United Kingdom

Corresponding author: kevin.jean@lecnam.net

Supplementary Material

Supplementary Text S1 : Cohort models and adjustment

In a cohort design, the choice of covariates to include is critical to prevent bias due to residual confounding. As no clear consensus has emerged on the demographical and environmental drivers of yellow fever, we considered two (partially overlapping) sets of covariates that were previously used to reproduce the occurrence of yellow fever records in Africa at the province level. The first model is a statistical model reproducing the spatial distribution of yellow fever records with no explicit aims at reproducing underlying biological processes. The second model is a mechanistic model that aimed at reproducing the spatial distribution of the disease while including these processes, here the temperature-dependence of the yellow fever virus cycle. Variables included in each model are presented in Table S1.

Variable	Data source	Statistical model [1]	Mechanistic model [2]
Human population size (log-	[3,4]	X	X
transformed)			
Proxy for surveillance	Yellow Fever Surveillance	X	X
quality: country-level per	Database, surveillance		
capita rate of reporting	database established by		
suspected cases of fever and	the African Regional		
jaundice	Office of WHO		
Longitude	[5]	X	
Land cover type	[6]	X	
Enhanced Vegetation Index:	[7]	X	X
optimised remote-sensing			
measure of vegetation			
Rainfall	[8]		X
Temperature suitability	[2]		Х
index			

Table S1: Covariates entered for the statistical and mechanistic models used in the cohort-style analysis measuring the association between the implementation of preventive mass vaccination campaign and yellow fever outbreak.

Supplementary Figure S1 : Temporal trends in the estimate of population-level vaccination coverage in the study sample provinces.

Figure S1: Temporal trend in the estimate of population-level vaccination coverage in 33 African provinces having experienced both YF outbreak and the implementation of preventive mass vaccination campaigns over the 2005-2018 study period. Each province is represented by a unique colour.

Supplementary Figure S2 : Distribution of the difference in the population-level vaccination coverage between the post and the pre-PMVC periods.

Figure S2: Distribution of the difference in the population-level vaccination coverage between the post and the pre-PMVC periods. PMVC: preventive mass vaccination campaign.

Supplementary Tables S1 : Sensitivity analysis for the SCCS method

Model	Imputed date of outbreak when missing (within the same year)	Imputed date of PMVC when missing (within the same year)	Exposure category	Number of events	IRR*	95% confidence interval
SCCS Model 1 (main	July, 1st	Dec, 31st	Unexposed (Ref.)	26	1.00	-
analysis)			Exposed	7	0.14	0.06-0.34
Sensitivity analysis #1	July, 1st	Jan, 1st	Unexposed (Ref.)	23	1.00	-
			Exposed	10	0.16	0.07-0.36
Sensitivity analysis #2	Dec, 31st	Jan, 1st	Unexposed (Ref.)	21	1.00	-
			Exposed	12	0.22	0.10-0.48
Sensitivity analysis #3	Jan, 1st	Dec, 31st	Unexposed (Ref.)	26	1.00	-
			Exposed	7	0.14	0.06-0.34

Table S1: Sensitivity of the self-controlled case-series method results to the imputation of the missing dates of events (utbreak) or exposure (Preventive mass vaccination campaign, PMVC). IRR: incidence rate ratio.

Supplementary Tables S2 to S4 : Univariate and multivariate results of the cohort design analysis

Variable	PRR
Log population	0.83 (0.66 - 1.05)
Surveillance quality	1.21 (1.15 - 1.27)
Longitude	0.43 (0.37 - 0.5)
Land cover type	0.60 (0.45 - 0.81)
EVI	1.02 (1.01 - 1.02)
Rainfall	1.23 (1.11 - 1.38)
Temperature suitability	1.48 (1.26 - 1.75)

Table S2: Exposure model: Univariate associations between demographic and environmental variables and implementation of preventive mass vaccination campaigns. PRR: prevalence rate ratio calculated from a modified Poisson regression.

Variable	uIRR
Exposure to PMVC	0.71 (0.34 – 1.51)
Log population	2.23 (1.54 – 3.22)
Surveillance quality	0.86 (0.69 – 1.07)
Longitude	0.76 (0.65 – 0.90)
Land cover type	0.59 (0.38 – 0.92)
EVI	1.24 (1.03 – 1.50)
Rainfall	1.28 (1.08 – 1.5)
Temperature suitability	0.99 (0.97 – 1.00)

Table S3: Univariate associations between PMVC, demographic and environmental variables and yellow fever outbreak. uIRR: univariate incidence rate ratio.

Model	Variable	aIRR
Statistical	Exposure to PMVC	0.43 (0.18 – 1.02)
model (cohort		
model 1)		
	Log population	3.19 (1.87 – 5.45)
	Surveillance quality	1.09 (0.88 – 1.34)
	Longitude	0.63 (0.49 – 0.81)
	Land cover type	0.44 (0.21 – 0.94)
	EVI	1.62 (1.28 – 2.03)
Mechanistic	Exposure to PMVC	0.76 (0.32 – 1.81)
model (cohort		
model 3)		
	Log population	2.15 (1.33 – 3.50)
	Surveillance quality	0.98 (0.77 – 1. 25)
	EVI	1.25 (0.84 – 1.86)
	Rainfall	1.17 (0.93 – 1.48)
	Temperature suitability	1.01 (0.98 - 1.04)

Table S4: Multivariate association between PMVC, demographic and environmental variables and yellow fever outbreak, according to a statistical and a mechanistic model. aIRR: adjusted incidence rate ratio.