Supplementary Information

High levels of SARS-CoV-2 specific T-cells with restricted functionality in patients with severe course of COVID-19

David Schub¹, Verena Klemis¹, Sophie Schneitler², Janine Mihm³, Philipp M. Lepper⁴, Heinrike Wilkens⁴, Robert Bals⁴, Hermann Eichler⁵, Barbara C. Gärtner², Sören L. Becker², Urban Sester³, Martina Sester^{1,*}, and Tina Schmidt¹

¹Department of Transplant and Infection Immunology, ²Institute of Medical Microbiology and Hygiene, ³Department of Internal Medicine IV, ⁴Department of Internal Medicine V, ⁵Institute of Clinical Hemostaseology and Transfusion Medicine, Saarland University, 66421 Homburg, Germany

*Correspondence: martina.sester@uks.eu

Supplementary figures

Supplementary figure S1

Supplementary figure S1: Gating strategies for quantitation of lymphocyte populations. (A) To quantify lymphocyte subpopulations, lymphocytes were gated within all events according to SSC-A and FSC-A. Exclusion of doublets was performed using hight and area signal of FSC. Among single lymphocytes, B cells and T cells were identified according to expression of CD19 and CD3. T cells were further subdivided into helper T cells (CD4) and cytotoxic T cells (CD8). NK cells were determined by CD16 and/or CD56 expressing cells among single lymphocytes neither expressing CD19 nor CD3. (B) Among single lymphocytes, B cells were identified as CD19+CD3- and T cells were gated according to expression of CD19 and CD3. According to IgD-

and CD27-expression, B cells were subdivided in naïve (IgD+CD27-), non-switched memory (IgD+CD27+) or switched memory B cells (IgD-CD27+). Plasmablasts were identified among switched memory B cells by additional staining of CD38. As plasmablasts may also be extended in size and granularity compared with non-plasmablast, lymphocyte gates (FSC and SSC) were enlarged for quantitation of these cells. **(C)** CD3+ T cells were identified among single lymphocytes and further subdivided in CD4 and CD8 T cells. Both subpopulations were analyzed towards expression of Ki67 (percentage of positive cells) and CTLA-4 (MFI of CD4 or CD8 T cells). **(D)** CD4 and CD8 T cells were identified among total T cells (CD3) and analyzed towards expression of PD-1 (PD1 MFI). CTLA-4, cytotoxic T lymphocyte antigen 4; FSC, forward scatter; PD-1, programmed cell death 1; SSC, side scatter.

Supplementary figure S2

Supplementary figure S2: Gating strategy for analysis of cytokine and CTLA-4 expression of antigen-specific T cells. (A) Lymphocytes were gated among total events according to size (FSC) and granularity (SSC) followed by exclusion of doublets using hight and area signal of FSC. **(B)** To ensure accurate gating of lymphocytes, CD4/CD8 backgating was used which allows for an highlighted visualization of this population. **(C)** Among single lymphocytes, CD4 T cells

(fine) were identified by exclusion of CD4-negative and CD8-positive cells. **(D)** Similarly, CD8 T cells (fine) were identified among single lymohcytes by exclusion of CD8-negative and CD4-positive cells. To determine the percentage of antigen-specific cells, CD69+IFNγ+ T cells were identified among CD4 **(E)** and CD8 T cells **(F)**. CD69+IFNγ+ CD4 or CD8 T cells were subdivided according to expression of TNF α and IL-2. Among CD4 or CD8 T cells not coexpressing CD69 and IFNγ, "AND/OR-gating" of CD69+TNF α + and CD69+IL2+ CD4 or CD8 T cells allowed for identification of cells with single or combined expression of TNF α and IL-2. In addition expression of CTLA-4 (MFI) of CD69+IFNγ+ CD4 and CD8 T cells was analyzed. IFN, interferon; IL, interleukin; TNF, tumor necrosis factor.

Supplementary Figure S3: Gating strategy for analysis of Ki67-, Granzyme B- and PD-1expression of antigen-specific T cells. Among CD4 **(A)** and CD8 T cells **(B)** (fine gating s. supplementary figure S2), antigen-specific cells were identified by co-expression of CD69 and IFNγ. These cells were analyzed towards their expression of Ki67 and/or Granzyme B (percentage of positive cells) as well as expression of PD-1 (MFI). IFN, interferon; PD-1, programmed cell death 1.

Supplementary Table

Antigen	conjugate	clone	isotype	reactivity
CD3	APC, PerCP	SK7	lgG1 k	mouse anti-human
CD4	РЕ-Су7, АРС-Н7	SK3	lgG1 k	mouse anti-human
CD8	V500, PerCP	RPA-T8, SK1	lgG1 k	mouse anti-human
CD16	PE	3G8	lgG1 k	mouse anti-human
CD19	FITC	HIB19	lgG1 k	mouse anti-human
CD27	APC	L128	lgG1 k	mouse anti-human
CD38	PE	HB7	lgG1 k	mouse anti-human
CD56	PE	B159	lgG1 k	mouse anti-human
CD69	PE-Cy7	L78	lgG1 k	mouse anti-human
CD152 (CTLA-4)	PE, APC	BNI3	lgG2a k	mouse anti-human
CD279 (PD-1)	APC, PE	MIH4	lgG1 k	mouse anti-human
Granzyme B	V450	GB11	lgG1 k	mouse anti-human
IFNγ	FITC	4S.B3	lgG1 k	mouse anti-human
lgD	PE-Cy7	IA6-2	lgG2a k	mouse anti-human
IL-2	PE	MQ1-17H12	lgG2a k	rat anti-human
Ki67	AlexaFluor 647	B56	lgG1 k	mouse anti-human
ΤΝFα	V450	MAb11	lgG1 k	mouse anti-human

Supplementary Table S1: Antibodies for flow cytometric analysis

All antibodies were purchased from BD.