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Supplementary Text 22 

Supplemental - Modeling Individuals 23 

Individuals 24 

Agents in our model represent individuals defined by their age, sex, marital status, and immunity 25 

(see below, Supplemental – Modeling Immunity). Female individuals are also defined by their 26 

fertility, which determines the probability of birth given marital status and age. Death occurs when 27 
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individuals reach a pre-determined death age based on calibrated mortality rates. A visual 28 

summary of model calibration fits with regards to fertility and mortality are presented in Fig. S7. 29 

 30 

Fertility  31 

Fertility is determined using a joint probability function conditioned on four factors: 32 

 𝑃(𝐵𝑖𝑟𝑡ℎ) = 𝑃(𝐵𝑖𝑟𝑡ℎ|𝑎𝑔𝑒, 𝑛𝑐ℎ𝑖𝑙𝑑𝑟𝑒𝑛 , 𝑡𝑏𝑖𝑟𝑡ℎ, 𝑚𝑎𝑟𝑟𝑖𝑎𝑔𝑒) 

 

(1) 

 
𝑃(𝐵𝑖𝑟𝑡ℎ| 𝑥 = 𝑎𝑔𝑒) =   {

𝐴𝑥4 + 𝐵𝑥3 + 𝐶𝑥2 + 𝐷𝑥 + 𝐸          𝑖𝑓 50 < 𝑥 < 15
0                                        𝑒𝑙𝑠𝑒

 
(2) 

   

 33 

 
𝑃(𝐵𝑖𝑟𝑡ℎ| 𝑥 = 𝑛𝑐ℎ𝑖𝑙𝑑𝑟𝑒𝑛) =   {

𝑐

1 + 𝑒−𝑘(𝑥−𝑥0)
+ 𝑦0      𝑖𝑓    𝑥 > 1

1                                        𝑒𝑙𝑠𝑒
 

 

(3) 

   

 𝑃(𝐵𝑖𝑟𝑡ℎ| 𝑥 = 𝑡𝑏𝑖𝑟𝑡ℎ, 𝑎𝑔𝑒)

=   {𝛼 (
𝑘𝑎𝑔𝑒

𝜆𝑎𝑔𝑒
)(

𝑥

𝜆𝑎𝑔𝑒
)

𝑘𝑎𝑔𝑒−1

(1 − 𝑒(−𝑥 𝜆𝑎𝑔𝑒)⁄ 𝑘𝑎𝑔𝑒
)
𝛼𝑎𝑔𝑒−1

𝑒(−𝑥 𝜆𝑎𝑔𝑒)⁄ 𝑘𝑎𝑔𝑒
   𝑖𝑓  𝑥 >  1

0                                                     𝑒𝑙𝑠𝑒

 

(4) 

   

 𝑃(𝐵𝑖𝑟𝑡ℎ| 𝑚𝑎𝑟𝑟𝑖𝑎𝑔𝑒) =   {
1    𝑖𝑓 𝑚𝑎𝑟𝑟𝑖𝑒𝑑

0   𝑒𝑙𝑠𝑒
 

(5) 

 34 



Equation 2 is a polynomial equation that represents the maximum, base fertility of a married 35 

female for her age. The number of previous births (nchildren) and birth interval period (tbirth) are 36 

modifiers that decrease fertility based on the individual’s previous history. P(Birth|nchildren) is a 37 

sigmoid function that penalizes having additional children and P(birth| tbirth) is the probability 38 

density function of an exponentiated-weibull distribution that prevents births from occurring too 39 

close to one another. The parameters of this exponentiated-weibull distribution are age-specific to 40 

incorporate the increasingly large birth intervals associated with age. We assume that only 41 

married females give birth. P(Birth|marriage) is a binary flag that prevents single or widowed 42 

females from giving birth.  Parameter estimates are in the Supplemental Dataset S1. 43 

 44 

Birth Interval Calibration 45 

The birth interval function describes the expected wait-time between births and is defined by an 46 

exponentiated Weibull distribution. We calibrated this function to the data reported in the 2014 47 

Bangladesh Demographic Health Survey. Reported birth intervals were categorized into six bins 48 

(7-17 months, 18-23 months, 24-35 months, 36-47 months, 48-59 months, and 60+ months) for 49 

four age groups (15-19, 20-29, 30-39, and 40-49 years of age). We independently fit an 50 

exponentiated Weibull function to each of the age groups to obtain four sets of age-group specific 51 

parameters by maximizing a multinomial likelihood function: 52 

 
𝐿(𝜆𝑎𝑔𝑒 , 𝑘𝑎𝑔𝑒 , 𝛼𝑎𝑔𝑒) =∏𝑝

𝑖,𝑎𝑔𝑒

𝑥𝑖,𝑎𝑔𝑒

6

𝑖=1

 

 

(6) 

 
𝑝𝑖,𝑎𝑔𝑒 = ∫ 𝑃(𝐵𝑖𝑟𝑡ℎ|𝑥 = 𝑡𝑏𝑖𝑟𝑡ℎ, 𝑡)𝑑𝑡

𝑡2

𝑡1

 
(7) 

where pi is the proportion of births occurring in the time interval [t1, t2] in months for that age 53 

group. Parameter estimates are in the Supplemental Dataset S1. 54 



 55 

Marriage Calibration 56 

To incorporate marriage into our fertility calibrations, we defined marriage as:  57 

 
𝑃(𝑚𝑎𝑟𝑟𝑖𝑎𝑔𝑒| 𝑥 = 𝑎𝑔𝑒) = ∫

𝑘𝑝0𝑒
𝑟𝑥

𝑘 + 𝑝0𝑒
𝑟𝑥 − 1

𝑡

𝑡−1

 
(8) 

where t is the current timestep and the other parameters are associated with a logistic growth 58 

curve (Verhulst equation). We calibrated our marriage function to the proportion of married 59 

individuals by age data in the 2014 Bangladesh Demographic Health Report using the a non-60 

linear least-squares optimizer (scipy.optimize.curve_fit). Note that this equation is only used for 61 

calibration. The actual marriage rates in our full model are influenced by household and 62 

population dynamics (Supplemental - Household demographic structure). Parameter 63 

estimates are in the Supplemental Dataset S1. 64 

 65 

Base Fertility and Child Preference Calibration 66 

For the remaining parameters, we calibrated our fertility function to the lifetime number of children 67 

per married female and the age-specific fertility rates reported in both the 2004 and 2014 68 

Bangladesh Demographic Health Surveys. Reported lifetime children numbers per married 69 

female were split into eight different age groups (15-19, 20-24, 25-29, 30-34, 35-39, 40-44, 45-49 70 

years of age). We calibrated our model against age groups less than 35 years of age because 71 

older age groups are more likely to be influenced by past fertility trends.  72 

By assuming independence between each of the components of our fertility equation, our birth 73 

function (equation 1) can be rewritten as: 74 

 𝑃(𝐵𝑖𝑟𝑡ℎ) = 𝑃(𝐵𝑖𝑟𝑡ℎ|𝑎𝑔𝑒) ∗ 𝑃(𝐵𝑖𝑟𝑡ℎ|𝑛𝑐ℎ𝑖𝑙𝑑𝑟𝑒𝑛) ∗ 𝑃(𝐵𝑖𝑟𝑡ℎ|𝑡𝑏𝑖𝑟𝑡ℎ) ∗ 𝑃(𝑚𝑎𝑟𝑟𝑖𝑎𝑔𝑒|𝑎𝑔𝑒) (9) 



 

The parameters for 𝑃(𝐵𝑖𝑟𝑡ℎ|𝑡𝑏𝑖𝑟𝑡ℎ), the birth interval equation (equation 4) and  75 

𝑃(𝑚𝑎𝑟𝑟𝑖𝑎𝑔𝑒|𝑎𝑔𝑒), the marriage probability function (equation 8),were independently calibrated.  76 

For the remaining parameters associated with the base fertility rate (equation 2) and the child 77 

preference function (equation 3), we created a simplified, agent-based fertility simulator 78 

consisting of 10,000 female individuals. Simulated individuals track the number of previous births, 79 

the time since most recent birth (birth interval), age, and marital status. Individual starts at age = 80 

15 (the minimum fertility age) and are aged using one-year timesteps until they reach age 50, 81 

which we assumed to be the maximum fertility age. At each time step, we used our modified birth 82 

function (equation 9) to determine whether an individual will give birth given their age and past 83 

birth history. We then compared our simulated estimates to the reported data using a population 84 

Monte Carlo (PMC) Approximate Bayesian Computation (ABC) to obtain posterior parameter 85 

estimates. We did not re-calibrate our birth interval parameters. Our PMC contained 3000 86 

particles and was iterated four times. Initial priors were drawn from normal distributions whose 87 

parameters were loosely based off hand calibration attempts. After each iteration, we defined 88 

distance as the Kullback-Leibler divergence and modified our acceptance threshold such that 89 

only the top 30, ten, and five percent of the distance distribution would be accepted for the 90 

second, third, and fourth iteration.  The median posterior value for each parameter were used as 91 

our calibrated point estimates in our full model. Parameter estimates are in the Supplemental 92 

Dataset S1. 93 

 94 

Defining Mortality  95 

Individuals in our model are assigned a death age at birth. Mortality rates were defined using a 96 

piecewise function: 97 



 

𝑃(𝑑𝑒𝑎𝑡ℎ| 𝑠𝑒𝑥, 𝑥 = 𝑎𝑔𝑒) =   {

𝑚𝑎𝑥(𝑚,  𝑒(𝐵𝑐ℎ𝑖𝑙𝑑+𝐴𝑐ℎ𝑖𝑙𝑑𝑥)) 𝑖𝑓 𝑥 < 12

𝑚𝑎𝑥(𝑚,  𝑒(𝐵𝑒𝑙𝑑𝑒𝑟+𝐴𝑒𝑙𝑑𝑒𝑟𝑥)) 𝑖𝑓 𝑥 > 30

m                                       𝑒𝑙𝑠𝑒

 

(10) 

 98 

where m is the minimum mortality rate and calibrated to both the 2004 and 2015 WHO life tables 99 

for Bangladesh. These life tables reported the mortality rate per 10,000 individuals, split into 100 

different age groups. Individual fits were made for male and females. Linear regression models 101 

were fit to the natural log mortality rate using a non-linear least squares optimizer 102 

(scipy.optimize.curve_fit). We assume a minimum mortality rate of 0.001 (the minimum number of 103 

possible deaths per 1000 individuals) to ensure that death is possible at all ages. Point estimates 104 

for the linear regression model are in the Supplemental Dataset S1. 105 

 106 

Historical Fertility and Mortality Projection 107 

 To approximate the rapid, historical decline in fertility and mortality, we instituted a two-108 

phase burn-in lasting 180 years. This burn-in was divided into two phases: thistorical, a 140-year 109 

historical period with high fertility and mortality rates, and ttransition, a 40-year transition period 110 

where fertility and mortality rates decline to their 2014 levels. We defined the historical fertility rate 111 

as:   112 

 𝑃(𝐵𝑖𝑟𝑡ℎℎ𝑖𝑠𝑡𝑜𝑟𝑖𝑐𝑎𝑙|𝑎𝑔𝑒, 𝑛𝑐ℎ𝑖𝑙𝑑𝑟𝑒𝑛 , 𝑡𝑏𝑖𝑟𝑡ℎ, 𝑚𝑎𝑟𝑟𝑖𝑎𝑔𝑒, 𝑡 )

= 𝐻𝑓𝑒𝑟𝑡𝑖𝑙𝑖𝑡𝑦(𝑡) ∗  𝑃(𝐵𝑖𝑟𝑡ℎ2014|𝑎𝑔𝑒, 𝑛𝑐ℎ𝑖𝑙𝑑𝑟𝑒𝑛 , 𝑡𝑏𝑖𝑟𝑡ℎ, 𝑚𝑎𝑟𝑟𝑖𝑎𝑔𝑒) 

 

(11) 

 

 

 

𝐻𝑓𝑒𝑟𝑡𝑖𝑙𝑖𝑡𝑦(𝑡) = {

𝑡

40
(1 − 𝜔𝑓𝑒𝑟𝑡𝑖𝑙𝑖𝑡𝑦) + 𝜔𝑓𝑒𝑟𝑡𝑖𝑙𝑖𝑡𝑦      𝑖𝑓 𝑡 < 40

 𝜔𝐶       𝑒𝑙𝑠𝑒   
     

(12) 



 

 𝜔𝑓𝑒𝑟𝑡𝑖𝑙𝑖𝑡𝑦(𝑥 = 𝑎𝑔𝑒) =  𝜔𝐶(𝜔𝑎𝑥 + 𝜔𝛽) 

 

(13) 

Historical fertility rates are obtained by adding an age and time-dependent multiplier, H, 113 

to the 2014 fertility rate. t is the number of years prior to 2014. Assuming only the base fertility 114 

rate (equation 2) changes through time, 𝜔 represents the per-decade increase in base fertility for 115 

each decade prior to 2014. 𝜔𝐶 is the maximal historical increase in fertility, which was set to three 116 

to make fertility rates increase from 2 to 6 (an approximation of the historically high fertility rates 117 

in Bangladesh) children per female. 𝜔𝑎 and 𝜔𝛽 are parameters to a standard linear function and 118 

were calibrated to the 2014:2004 base fertility ratios in the 2014 and 2004 Bangladesh 119 

Demographic Health Survey data using a non-linear least squares optimizer (scipy.curve_fit). 120 

Point estimates for 𝜔𝐶 = 3, 𝜔𝑎 = 0.85,  𝜔𝛽 = 0.18.  121 

Similar logic was applied to the mortality rates, except that we scaled it proportionally to the 2004 122 

and 2014 mortality rates. This did not have a significant impact, as the mortality rates between 123 

these two time periods were relatively the same. Here, mortality was capped at their 2004 levels.  124 

𝑃(𝑑𝑒𝑎𝑡ℎ2014|𝑎𝑔𝑒, 𝑠𝑒𝑥, 𝑡) = 𝐻𝑑𝑒𝑎𝑡ℎ(𝑡) ∗ 𝑃(𝑑𝑒𝑎𝑡ℎ2014|𝑎𝑔𝑒, 𝑠𝑒𝑥) 

 

(14) 

𝐻𝑑𝑒𝑎𝑡ℎ(𝑡)

= {

𝑡

40
(𝑃(𝑑𝑒𝑎𝑡ℎ2014|𝑎𝑔𝑒, 𝑠𝑒𝑥) − 𝑃(𝑑𝑒𝑎𝑡ℎ2004|𝑎𝑔𝑒, 𝑠𝑒𝑥)) +  𝑃(𝑑𝑒𝑎𝑡ℎ2004|𝑎𝑔𝑒, 𝑠𝑒𝑥)     𝑖𝑓 𝑡 < 40

 𝛼𝐶       𝑒𝑙𝑠𝑒   
     

 

(15) 

𝛼𝐶 =  𝑃(𝑑𝑒𝑎𝑡ℎ2004|𝑎𝑔𝑒, 𝑠𝑒𝑥) 

 

(16) 



These equations were calibrated to the WHO Bangladesh life tables for 2014 and 2004 using the 125 

same procedure as above.  126 

  127 

  128 



Supplemental - Household demographic structure 129 

Model Structure 130 

Traditional, rural Bangladesh households are patriarchal, stem families. Stem families are a type 131 

of family system in which one child (commonly the firstborn son) stays within the family home 132 

while other children move out to live in with their in-laws or to start households of their own. 133 

Households in our model are represented as trees and based off an anthropological framework 134 

described in (1). Each node represents either a single, unmarried individual or a marital unit (one 135 

male and female). Although other types of marital units exist in traditional Bangladeshi society 136 

(particularly polygynous unions), they were not simulated. The root node of each tree represents 137 

the founding couple. The male in the root node represents the patriarch. Newly born individuals 138 

are assigned a new node connected to its parental node. This allows households to grow 139 

organically while preserving the hierarchical relationship between household members. Nodes 140 

can have one of six statuses: single (never married), married, widow, widower, orphan, and dead. 141 

Dead terminal nodes are pruned at each timestep while dead internal nodes are preserved to 142 

maintain downstream hierarchies. We define orphans as individuals whose immediate parents 143 

have died and who are younger than the minimum eligible marriage age. Widowers, orphans, and 144 

single females are considered dependent states and preferentially kept in pre-existing 145 

households (see below—Succession and household splitting). Although this framework was 146 

designed with Bangladesh society in mind, it can be reasonably extended to other traditional, 147 

rural societies where large extended families are common. However, because our model equates 148 

household with families of related individuals, it does not simulate living arrangements resulting 149 

from non-familial roommate situations (ie working camps or dormitories). 150 

Our model updates individuals, households, baris, and villages using discrete time steps. During 151 

each timestep, our model: 152 

1. Accounts for births and deaths 153 

2. Updates the age, fertility, and immunity of living individuals 154 



3. Updates households by removing dead individuals  155 

4. Updates baris by removing dead households and creating new households 156 

generated during move out or succession events 157 

5. Updates villages by removing dead baris and creating married couples by 158 

moving eligible, single females to their spouse’s household. Newly married 159 

partners are sourced from different baris.    160 

Villages are generated from a collection of single-household baris using a two-phase burn-in to 161 

establish a simulated population with the rapid decline in fertility and mortality observed in 162 

Bangladesh (2). Our burn-in was divided into two phases (above, Historical Fertility and Mortality 163 

Projection): thistorical, a 140-year historical period with high fertility (six children per female) and 164 

mortality rates, and ttransition, a 40-year transition period where fertility and mortality rates decline to 165 

their 2014 levels (two children per female). As we are interested in transmission sourced from 166 

within Matlab over a short period of time, migration into or out of our simulated villages was not 167 

allowed for convenience.  168 

 169 

Marriage 170 

Newly born individuals are assigned an earliest marriage age drawn from normal distributions 171 

whose mean and standard deviations were obtained from the 2014 Bangladesh Demographic 172 

Health survey. The average earliest marriage ages are 27.3 and 19.3 for males and females 173 

respectively. Once eligible, individuals are randomly paired with a partner of the opposite sex. 174 

Eligible partners are drawn from the village but excludes bari members to avoid incest. During 175 

marriage, females are removed from their original household and added to their spouse’s node. 176 

Only females in married nodes can give birth. Should one member of the marital unit die, the 177 

node status is updated to either widow or widower. We do not allow remarriage in our model.   178 

Succession and household splitting 179 



The patriarchal, stem structure of Bangladesh households influences household composition 180 

through time, particularly with regards to inheritance and succession (3). Traditional Bangladesh 181 

households are governed by a patriarch (usually the eldest male) from which all other individuals 182 

either descend from or added through marriage. Inheritance and succession favor males, and 183 

elders preferentially live with their eldest son. This hierarchy reorganizes itself upon patriarch 184 

death, with the eldest son assuming the role of patriarch; younger male siblings leave after 185 

marriage to form their own households in the bari. 186 

Succession is the primary mechanism for household formation in our model. Our household 187 

model initiates succession when the patriarch in the root node dies. During succession, our 188 

model: 189 

1. Identifies viable subtrees within the original household tree. Viable subtrees are 190 

identified by traversing the household tree in level order (visiting every node on a 191 

level before going to a lower level, excluding the root node) and identifying the 192 

inner-most, still-living nodes. Internal nodes identified through this process 193 

represent married couples with descendants or widows/widowers with 194 

descendants. Terminal nodes represent childless couples, unmarried individuals 195 

of eligible marriage age, childless widows/widowers, or orphans whose parents 196 

have died but are too young to marry.  197 

a. If the root node still contains a living member (the matriarch), it is treated 198 

as a terminal node containing a childless widow.    199 

2. Creates new households by extracting viable subtrees from the original 200 

household. Subtrees are rooted on the inner-most, still-living nodes identified in 201 

step one. Those rooted on couples (with or without children). Those rooted on 202 

single individuals, widows or orphans are considered unviable (see step three). 203 

Once extracted, these new trees represent new households within the bari. One 204 

of these trees is randomly chosen to be the successor and inherit the original 205 

household.  206 



3. Reassigns non-viable subtrees to the newly created successor household as 207 

immediate descendants of the root.  208 

a. If no viable successor household was created, non-viable subtrees are 209 

assigned to a random pre-existing household in the bari. Only if no pre-210 

existing households exist will these non-viable subtrees be used to 211 

create new households. 212 

Our succession framework preserves the familial relationships between individuals within 213 

subtrees but does not preserve the familial relationships between subtrees (cousin, uncle, and 214 

other distant relationships are more likely to be lost). Despite this, we can still identify whether 215 

individuals are generally related to one another as new households are placed in the original bari. 216 

Our framework also prevents elders, widowers, orphans from living on their own. This is 217 

motivated by the living arrangements of these individuals in traditional, rural Bangladesh society.  218 

Bangladeshi elders almost exclusively live with their descendants, with a strong preference for 219 

the eldest son (3). Widowers have historically moved back to their childhood household. Although 220 

our model does not simulate these dynamics exactly, allowing these individuals to live on their 221 

own resulted in a higher proportion of single households than expected for Bangladesh society. 222 

Only after incorporating step three were we able to reduce the proportion of simulated single 223 

households to match that of Bangladesh society. In many ways, this mirrors the difficulty of real 224 

societies to care for marginalized or otherwise non-independent members.  225 

 226 

Supplemental: Modeling Immunity 227 

We model immunity using the mathematical model described a previous study (4). Our model 228 

relates oral susceptibility to infection, shedding duration, and viral shed concentrations to pre-229 

exposure immunity (𝑁𝑎𝑏𝑝𝑟𝑒); high 𝑁𝑎𝑏𝑝𝑟𝑒reduces oral susceptibility to infection, shedding duration, 230 

and viral shed concentrations. Our model also allows for waning immunity, which depends on the 231 

peak post-infection immunity (𝑁𝑎𝑏𝑝𝑒𝑎𝑘). Immunity is defined as the OPV-equivalent antibody titer, 232 



an indirect measure of immunity representing the serum neutralizing antibody titers due to OPV 233 

immunization or natural wild poliovirus infection. OPV induced antibody responses are predictive 234 

of fecal shedding and susceptibility while inactivated poliovirus (IPV) induced responses are not 235 

(5–9). Equations for shedding duration after OPV challenge, poliovirus stool concentrations, oral 236 

susceptibility to infection, and waning immunity were taken from supplemental equations S1-S6 237 

from the previous study (4) and are copied here for clarity.  238 

 239 

Oral susceptibility 240 

Oral susceptibility is modeled as a dose-response relationship between infection, oral poliovirus 241 

ingestion, and pre-exposure immunity.: 242 

 

𝑃 (𝑖𝑛𝑓𝑒𝑐𝑡𝑖𝑜𝑛|𝑑𝑜𝑠𝑒, 𝑁𝑎𝑏𝑝𝑟𝑒 , 𝑠𝑡𝑟𝑎𝑖𝑛) = 1 − (1 +
𝑑𝑜𝑠𝑒

𝛽𝑠𝑡𝑟𝑎𝑖𝑛
)
−𝛼(𝑁𝑎𝑏𝑝𝑟𝑒)

−𝛾

 

(11) 

where dose refers to the viral dose and 𝑁𝑎𝑏𝑝𝑟𝑒 refers to pre-exposure immunity. 𝛼 and βstrain are 243 

standard beta-Poisson parameters and 𝛾 captures the reduction in infection probability with 244 

increasing immunity. βstrain is type-specific and different for Sabin 1, Sabin 2, Sabin 3, and wild 245 

poliovirus. Parameter estimates for Sabin 2 and WPV are found in the supplemental of the 246 

original paper (4). 247 

 248 

Shedding Duration and Shedding concentration 249 

We assumed a log-normal survival distribution for shedding duration: 250 

 𝑃 (𝑠ℎ𝑒𝑑𝑑𝑖𝑛𝑔 𝑎𝑡 t|𝑁𝑎𝑏𝑝𝑟𝑒; 𝑖𝑛𝑓𝑒𝑐𝑡𝑒𝑑 𝑎𝑡 𝑡 = 0)

=
1

2
(1 − 𝑒𝑟𝑓 (

𝑙𝑛(𝑡)  −  (𝑙𝑛(μ)  −  𝑙𝑛(δ)𝑙𝑜𝑔_2 (𝑁𝑎𝑏𝑝𝑟𝑒)

√2𝑙𝑛(σ)
)) 

(12) 

 251 



where μ is the median duration in days for immunologically naiive individuals (𝑁𝑎𝑏 = 1),  δ 252 

describes the decrease in median duration with increasing immunity, and σ describes the shape 253 

of the distribution. Infection durations (tduration) are assigned at the start of the infection and 254 

determined by sampling from the inverse distribution. Once infection age exceeds infection 255 

duration, individual cease to shed virus and are considered uninfected. 256 

To model viral load over time, we assume a quasi-log-normal shedding profile: 257 

 𝑐𝑜𝑛𝑐𝑒𝑛𝑡𝑟𝑎𝑡𝑖𝑜𝑛(𝑡 | 𝑁𝑎𝑏𝑝𝑟𝑒 , 𝑎𝑔𝑒)  =  𝑚𝑎𝑥(10
2.6,  

(𝑝𝑒𝑎𝑘 𝐶𝐼𝐷50/𝑔|𝑁𝑎𝑏𝑝𝑟𝑒 , 𝑎𝑔𝑒)  ∗  

(

 
 
𝑒𝑥𝑝(η − 

𝑣2

2
−

(𝑙𝑜𝑔(𝑡) −)2

2(𝑣 + 𝜉𝑙𝑜𝑔(𝑡))
2

𝑡

)

 
 
) 

(13) 

   

 𝑙𝑜𝑔10 (𝑝𝑒𝑎𝑘 𝐶𝐼𝐷50/𝑔|𝑁𝑎𝑏𝑝𝑟𝑒 , 𝑎𝑔𝑒)

= (1 − 𝑘𝑙𝑜𝑔2(𝑁𝑎𝑏))𝑙𝑜𝑔10 (𝑝𝑒𝑎𝑘 𝐶𝐼𝐷50/𝑔|𝑁𝑎𝑏𝑝𝑟𝑒 = 1, 𝑎𝑔𝑒) 

(13a) 

   

 

 

𝑙𝑜𝑔10 (𝑝𝑒𝑎𝑘 𝐶𝐼𝐷50/𝑔|𝑁𝑎𝑏𝑝𝑟𝑒 = 1, 𝑎𝑔𝑒) =    {

𝑆𝑚𝑎𝑥

(𝑆𝑚𝑎𝑥 − 𝑆𝑚𝑖𝑛)𝑒𝑥𝑝 (
7 − 𝑎𝑔𝑒

𝜏
) + 𝑆𝑚𝑖𝑛

 
(13b) 

   

Shedding concentrations are evaluated at time points, t, falling within the interval (0, tduration]. 258 

Parameter estimates and further details are found in the supplemental of the original paper (4). 259 

 260 

Immune Waning 261 

Immune waning is modeled as a power law: 262 



 

 

𝑁𝑎𝑏(𝑡) = 𝑚𝑎𝑥 (1, Nabpeak𝑡
−𝜆) 

 

(14) 

where t is measured in months and Nabpeak is the peak post-infection immunity. Parameter 263 

estimates are found in the supplemental of the original paper (4). 264 

Immune boosting 265 

 Previously, we inferred Nabpeak based on the shedding durations of individuals whose 266 

vaccination history was known. Conditioning our analysis to individuals with known vaccination 267 

histories allowed us to infer Nabpeakfrom individuals with multiple reinfection histories (e.g. a 3x 268 

bOPV vaccination course) without having to specify the relationship between Nabpre  and Nabpeak. 269 

However, this approach was untenable for this study because individuals in Matlab, Bangladesh 270 

have complicated immune histories due to overlapping vaccination campaigns and because we 271 

wanted to dynamically model immune dynamics following transmission and potential reinfection. 272 

To dynamically model reinfection, we needed to quantify the boost in immunity (θ) following 273 

infection. Previous serology and viral shed studies strongly suggest θ diminishes with higher pre-274 

exposure immunity (10, 11). 275 

We defined Nabpeak and  θ as: 276 

 Nabpeak = 𝑁𝑎𝑏 ∗  𝜃(𝑁𝑎𝑏) (15a) 

   

 𝜃(𝑁𝑎𝑏) =  𝑎 + 𝑏𝑙𝑜𝑔2(𝑁𝑎𝑏) (15b) 

 277 

where Nab represents the pre-exposure antibody titer and θ is the boost response measured in 278 

log2 units. We calibrated θ to the post-exposure antibody ratios obtained from sera collected from 279 

150 newborn infants monitored for poliovirus infection in 1953 (11). We define post-exposure 280 



antibody ratios are defined as the ratio between post-exposure and pre-exposure antibody titers 281 

and a direct measurement of immune boost.  We first fit an ordinary least squares model to the 282 

post-exposure antibody ratios against the pre-exposure antibody titers, which revealed a negative 283 

correlation between θ and log2 𝑁𝑎𝑏 but with heteroskedastic variance (Fig. S8).   284 

The heteroskedasticity associated with high 𝑁𝑎𝑏 could be due to biological factors, such as 285 

immune exhaustion, or an artifact due to limit of quantification issues associated with sampling 286 

methodology. To differentiate these two, we split θ into two components, θbio and θsampling where: 287 

 𝜃̅(𝑁𝑎𝑏) =  𝜃̅𝑏𝑖𝑜(𝑁𝑎𝑏) + 𝜃̅𝑠𝑎𝑚𝑝𝑙𝑖𝑛𝑔 

 

(16) 

 

 𝜃̅(𝑁𝑎𝑏) =  𝛼 + 𝛽𝑙𝑜𝑔2(𝑁𝑎𝑏)  + 𝜃̅𝑠𝑎𝑚𝑝𝑙𝑖𝑛𝑔   (16a) 

 

 𝑉𝑎𝑟(𝜃(𝑁𝑎𝑏)) = 𝛾 +  𝛿𝑙𝑜𝑔2(𝑁𝑎𝑏)  +  𝑉𝑎𝑟(𝜃𝑠𝑎𝑚𝑝𝑙𝑖𝑛𝑔)  (17) 

 288 

For θbio, we assumed that both mean and variance decreased linearly with Nab but that the mean 289 

and variance of θsampling were constant. We evaluated the six parameters in equations 12-13 (α, β, 290 

γ, δ, 𝜃̅𝑠𝑎𝑚𝑝𝑙𝑖𝑛𝑔, 𝑉𝑎𝑟(𝜃𝑠𝑎𝑚𝑝𝑙𝑖𝑛𝑔)) using a joint log-likelihood function. Our log-likelihood function is 291 

evaluated by splitting the serum antibody responses into two categories: seroconverted 292 

responses and non-seroconverted responses. We defined seroconverted individuals as those 293 

with post-exposure to pre-exposure titer ratios of at least four.   294 

 𝑙𝑜𝑔𝐿 = 𝑙𝑜𝑔𝐿seroconverted (𝛼, 𝛽, 𝛾, 𝛿, 𝜃̅𝑠𝑎𝑚𝑝𝑙𝑖𝑛𝑔 , 𝑉𝑎𝑟(𝜃𝑠𝑎𝑚𝑝𝑙𝑖𝑛𝑔))

+ 𝑙𝑜𝑔𝐿nonseroconverted (𝜃̅𝑠𝑎𝑚𝑝𝑙𝑖𝑛𝑔 , 𝑉𝑎𝑟(𝜃𝑠𝑎𝑚𝑝𝑙𝑖𝑛𝑔)) 

   

(18) 



   

 𝑙𝑜𝑔𝐿s=seroconverted

= ∑[−
𝑛𝑗𝑠
2
(𝑙𝑜𝑔(2𝜋)  +  𝑙𝑜𝑔(𝑉𝑎𝑟(𝜃(𝑁𝑎𝑏)))  

𝑘𝑠

𝑁𝑎𝑏

− ∑
1

2𝑉𝑎𝑟(𝜃(𝑁𝑎𝑏))
2
(𝑥𝑖 − 𝜃̅(𝑁𝑎𝑏))

2

𝑛𝑁𝑎𝑏

𝑖

] 

   

(18a) 

 𝑙𝑜𝑔𝐿n=nonseroconverted

= 
𝑛𝑛𝑜𝑛
2
(𝑙𝑜𝑔(2𝜋)  +  𝑙𝑜𝑔(𝑉𝑎𝑟(𝜃𝑠𝑎𝑚𝑝𝑙𝑖𝑛𝑔))  

− ∑
1

2𝑉𝑎𝑟(𝜃𝑠𝑎𝑚𝑝𝑙𝑖𝑛𝑔)
(𝑥𝑖 − 𝜃̅𝑠𝑎𝑚𝑝𝑙𝑖𝑛𝑔)

2

𝑛𝑛𝑜𝑛

𝑖

 

   

(18b) 

 295 

where ks represents the binned Nab categories reported in the data, nNab is the number of data 296 

points in in the Nab bin, and nnon is the total number of datapoints in the non-seroconverted 297 

dataset. Our log-likelihood is the sum of two gaussian log-likelihoods, one for the seroconverted 298 

data and one for the non-seroconverted data. Our log-likelihood function assumes that changes 299 

in nonseroconverted individuals are due to sampling methodology while changes in 300 

seroconverted individuals is due to a combination of both sampling methodology and real biology.  301 

Once mle estimates for 𝜃̅(𝑁𝑎𝑏) and 𝑉𝑎𝑟(𝜃(𝑁𝑎𝑏)) were obtained, we defined peak post-exposure 302 

immunity as:  303 

 𝑁𝑎𝑏𝑝𝑒𝑎𝑘 = 𝑁𝑎𝑏𝑒
𝑇 (19) 



 

   

where T is a random value drawn from a normal distribution with mean 𝜃̅(𝑁𝑎𝑏) and variance 304 

𝑉𝑎𝑟(𝜃(𝑁𝑎𝑏)). Parameter estimates are in the Supplemental Dataset S1. 305 

Initializing population-level immunity  306 

Infants 307 

We assumed that pre-mOPV2 challenge immunity in infants was defined by a bOPV vaccination 308 

regiment with either 1x or 2x IPV given at ages six, ten, and 14 weeks of age. Despite not 309 

containing live Sabin 2 poliovirus, bOPV does induce a small amount of heterotypic immunity 310 

against Sabin 2. The amount of heterotypic immunity can be inferred from the shedding duration 311 

of infants challenged with mOPV2. To simulate this, we devised a reinfection model where infants 312 

are administered a vaccine-equivalent dose of Sabin 1 poliovirus (106
 infectious viruses) at six, 313 

ten, and 14 weeks of age. We assumed bOPV-induced immunity could be simulated as 314 

monotypic Sabin-1 immunity with a reduced probability of infection. At 18 weeks of age, infants 315 

were then challenged with mOPV2. We assumed infants were immunologically naiive prior to six 316 

weeks of age and that Sabin 1 shedding durations, shedding concentrations, immune boosting, 317 

and immune waning were identical to those of Sabin 2 (4). To simulate lower heterotypic 318 

immunity, we modified the oral susceptibility equation (equation 11) by introducing multiplicative 319 

modifier, ρ, that reduces infection probability: 320 

 𝑃(𝑖𝑛𝑓𝑒𝑐𝑡𝑖𝑜𝑛) = 𝑃(𝑖𝑛𝑓𝑒𝑐𝑡𝑖𝑜𝑛|𝑑𝑜𝑠𝑒, 𝑆1, 𝑁𝑎𝑏) ρ 

   

(20) 

We estimated ρ using our reinfection model by calibrating it to the Sabin 2 shedding duration of 321 

infants challenged with mOPV2 using a PMC-ABC with 1000 particles and four iterations. 322 

Distance was defined as the squared difference between simulated and empirical shedding 323 



prevalence collected weekly for five weeks post-mOPV2 challenge. Each iteration modified its 324 

acceptance threshold such that only the top 30, ten, and five percent of the distance distribution 325 

were accepted for the second, third, and fourth iteration.  326 

Non-Infants 327 

 We assumed that pre-mOPV2 challenge in non-infants resulted from a complex immune 328 

history due to repeated vaccination or secondary transmission exposure from multiple vaccination 329 

campaigns and wild poliovirus. To simulate this, we devised a reinfection model where individuals 330 

are administered a vaccine-equivalent dose of Sabin 2 poliovirus (106
 infectious viruses) at time 331 

intervals randomly drawn from a gamma distribution: 332 

 𝑡𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙~𝑔𝑎𝑚𝑚𝑎(𝑠ℎ𝑎𝑝𝑒(𝑥 = 𝑎𝑔𝑒), 𝑠𝑐𝑎𝑙𝑒 = 1) 

   

(21) 

 𝑠ℎ𝑎𝑝𝑒(𝑥 = 𝑎𝑔𝑒)  =  β(1 − 𝑒𝑥𝑝(−α𝑥))  +  γ 

   

(21a) 

The shape of this gamma distribution ensures that the time interval between infection increases 333 

with age. We fit our simulation using a PMC-ABC with 1000 particles and four iterations to the 334 

previously fit equation of immunity vs age in the household contact population of Matlab, 335 

Bangladesh (5): 336 

 𝑁𝑎𝑏,𝑥=𝑎𝑔𝑒 = 𝑁𝑎𝑏(1 + (12𝑥 − 30))
−0.24

 (22) 

 337 

Distance was defined as the squared difference between simulated immunity values and 338 

immunity values estimated using equation 22 for all integer ages between five and 100. Each 339 

iteration modified its acceptance threshold such that only the top 30, ten, and five percent of the 340 

distance distribution were accepted for the second, third, and fourth iteration. The mean posterior 341 

estimates of each parameter were used as our point-estimates. Immunity was consistent with an 342 



age-dependent exposure rate, with children inferred to have been re-exposed more frequently 343 

than adults. 344 

 345 

Supplemental – Calibrating Transmission 346 

We calibrated two different transmission models: a single parameter (𝛽𝑚𝑎) mass action 347 

transmission model and a four parameter (𝛽ℎℎ, 𝛽𝑏𝑎𝑟𝑖, 𝛽𝑣𝑖𝑙𝑙𝑎𝑔𝑒 , 𝛽𝑖𝑛𝑡𝑒𝑟𝑣𝑖𝑙𝑙𝑎𝑔𝑒) multiscale transmission 348 

model. 𝛽 represents the number of contacts per shedding individual per timestep. We first 349 

obtained priors for village and intervillage transmission based on Sabin 2 shedding during the 350 

enrollment period across all routine immunization trial arms (villages receiving tOPV and bOPV). 351 

With these priors, we then calibrated our model to the shedding prevalences in bOPV villages. 352 

Shedding was observed in household cohorts defined by household/bari membership and 353 

mOPV2 challenge status.  354 

Identifying priors for village and intervillage transmission counts  355 

Intervillage  356 

During enrollment, a small number of subjects in bOPV2 routine immunization villages were 357 

positive for Sabin 2 due to transmission from villages assigned to tOPV routine immunization or 358 

the community outside Matlab. While exposure could come from anywhere in Bangladesh (and 359 

beyond), we by assumed all Sabin 2 exposure in the bOPV villages was due to transmission 360 

originating from villages assigned with tOPV routine immunization. This allowed us to derive an 361 

upper-bound for 𝛽𝑖𝑛𝑡𝑒𝑟𝑣𝑖𝑙𝑙𝑎𝑔𝑒. 362 

First, we calculated the intervillage transmission rate between tOPV and bOPV villages during the 363 

enrollment period.  We define the intervillage transmission rate as the number of observed Sabin 364 

2 transmission events per observed susceptible subjects in bOPV villages per number of tOPV 365 

vaccinations in tOPV villages.  366 



 
𝜆𝑖𝑛𝑡𝑒𝑟𝑘 =

𝑛𝑠ℎ𝑒𝑑𝑑𝑖𝑛𝑔𝑘
𝑛𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑𝑘 𝑛𝑡𝑂𝑃𝑉⁄

 
(23) 

 

   

where k refers the type of individual (infant or noninfants), 𝑛𝑠ℎ𝑒𝑑𝑑𝑖𝑛𝑔𝑘 the number of individuals of 367 

type k shedding Sabin 2, 𝑛𝑠ℎ𝑒𝑑𝑑𝑖𝑛𝑔𝑘 the number of individuals of type k observed throughout the 368 

enrollment period, and 𝑛𝑡𝑂𝑃𝑉 is the total number of tOPV vaccinations administered. 369 

For infants, we followed 625 infants in the bOPV villages during the enrollment period, of which 370 

six shed Sabin 2. Similarly, we followed 1137 noninfants (the household contacts of enrolled 371 

individuals), of which one shed Sabin 2.  372 

 373 

 

 

𝜆𝑖𝑛𝑡𝑒𝑟𝑖𝑛𝑓𝑎𝑛𝑡 =
6

625 600⁄
= 1.6 ∗ 10−5 

(24) 

 374 

𝜆𝑖𝑛𝑡𝑒𝑟𝑛𝑜𝑛𝑖𝑛𝑓𝑎𝑛𝑡 =
1

1137 600⁄
= 1.5 ∗ 10−6 

 375 

The estimated ten-fold lower rate to noninfants is consistent with the differences in immunity 376 

between infants who did not receive live Sabin 2 vaccination verses older individuals who have. 377 

Using these rates, we then estimated intervillage transmission events after the onset of the 378 

mOPV2 campaign. For simplicity, we assumed that mOPV2 challenge provides an equivalent 379 

source of virus as tOPV vaccination in unimmunized infants (5). We also assume that all non-380 

infant people in the population have equivalent intervillage exposure as household contacts.  The 381 

expected number of intervillage transmissions is estimated as 382 



 𝑁𝑖𝑛𝑡𝑒𝑟 = 𝜂 [𝜆𝑖𝑛𝑡𝑒𝑟𝑖𝑛𝑓𝑎𝑛𝑡 ∗ 𝑛𝑖𝑛𝑓𝑎𝑛𝑡𝑠 + 𝜆𝑖𝑛𝑡𝑒𝑟𝑛𝑜𝑛𝑖𝑛𝑓𝑎𝑛𝑡 ∗ 𝑛𝑛𝑜𝑛𝑖𝑛𝑓𝑎𝑛𝑡] 
(25) 

 
𝜂 = 𝑛𝑖𝑛𝑓𝑎𝑛𝑡𝑠𝑚𝑂𝑃𝑉2 +

𝑛𝑛𝑜𝑛𝑖𝑛𝑓𝑎𝑛𝑡𝑚𝑂𝑃𝑉2
15

 
 

   

Where 𝑁𝑖𝑛𝑡𝑒𝑟 is the number of intervillage transmission events in bOPV villages post-mOPV2 383 

challenge, 𝜂 is the number of infant-equivalent mOPV2 recipients, 𝑛𝑖𝑛𝑓𝑎𝑛𝑡𝑠𝑚𝑂𝑃𝑉2 is the number of 384 

infants challenged with mOPV2,  𝑛𝑛𝑜𝑛𝑖𝑛𝑓𝑎𝑛𝑡𝑚𝑂𝑃𝑉2 is the number of household contacts challenged 385 

with mOPV2, and 𝑛𝑖𝑛𝑓𝑎𝑛𝑡, 𝑛𝑛𝑜𝑛𝑖𝑛𝑓𝑎𝑛𝑡 are the number of susceptible (not challenged with mOPV2) 386 

infants and noninfants. Because household contacts were older and received tOPV as routine 387 

immunization prior to our study, they were observed to shed 15x less virus after mOPV2 388 

challenge (5) . 𝜂 normalizes the difference in shedding following mOPV2 challenge in infants who 389 

received bOPV2 and noninfants who received tOPV2 during routine immunization.  390 

In the bOPV villages, 199 infants and 2822 noninfants were challenged with mOPV2. The total 391 

number of susceptible infants and household contacts was ~1200 and ~80000.  392 

 
𝜂 = 199 +

2822

15
≈ 387 

 

 𝑁𝑖𝑛𝑡𝑒𝑟 = 387 [𝜆𝑖𝑛𝑡𝑒𝑟𝑖𝑛𝑓𝑎𝑛𝑡 ∗ 1200 + 𝜆𝑖𝑛𝑡𝑒𝑟ℎℎ𝑐 ∗ 80000] ≈ 54 (26) 

 393 

Thus, to constrain intervillage transmission in our multiscale transmission model, we assume a 394 

prior for 𝛽𝑖𝑛𝑡𝑒𝑟𝑣𝑖𝑙𝑙𝑎𝑔𝑒 using a normal distribution with mean 𝑁𝑖𝑣 and variance 10*𝑁𝑖𝑣. The ten 395 

serves to inflate variance because 𝑁𝑖𝑣 was only crudely estimated. The log-likelihood component 396 

for intervillage transmission was defined as 397 



 
𝑙𝑜𝑔𝐿𝑖𝑛𝑡𝑒𝑟 = −

(𝑁𝑖𝑛𝑡𝑒𝑟𝑠𝑖𝑚𝑢𝑙𝑎𝑡𝑒𝑑 − 𝑁𝑖𝑛𝑡𝑒𝑟)
2

2 ∗ (10 ∗ 𝑁𝑖𝑛𝑡𝑒𝑟)
 

 

 398 

Within-Village  399 

To constrain the within-village transmission parameter, we examined enrollment data from the 400 

tOPV villages. For subjects in the tOPV villages, exposure prior to the first dose of routine 401 

immunization at six weeks of age (Table S1 of (5)) is most likely due transmission from older 402 

infants in the village shedding Sabin 2 following tOPV routine immunization. Following this logic, 403 

we observed one infant and household contact infection due to within-village transmission (Table 404 

S5 of (5)) among 294 infants and 547 household contacts. As above, approximately 600 children 405 

received tOPV in routine immunization, spread out across 22 villages. Thus, the average number 406 

of tOPV vaccine recipients in each village was 600/22 ≈27. However, using the average tOPV 407 

vaccine recipient count would overestimate the expected within-village transmission rate, due to 408 

the heavy skew in village sizes.  409 

The village-size weighted transmission rate was estimated as a weighted sum across all villages 410 

 

𝜆𝑣𝑖𝑙𝑙𝑎𝑔𝑒𝑘 = ∑
𝑛𝑠ℎ𝑒𝑑𝑑𝑖𝑛𝑔𝑖,𝑘

𝑛𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑𝑘,𝑖 𝑛𝑡𝑂𝑃𝑉𝑖⁄

𝑛_𝑣𝑖𝑙𝑙𝑎𝑔𝑒𝑠𝑡𝑂𝑃𝑉

𝑖

 (
𝑛𝑖𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙𝑠𝑖
𝑛𝑖𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙𝑠𝑡𝑜𝑡𝑎𝑙

) 

(27) 

 411 

Which yielded: 412 

 𝜆𝑣𝑖𝑙𝑙𝑎𝑔𝑒𝑖𝑛𝑓𝑎𝑛𝑡 = 1 ∗ 10
−4 

 

(28) 

 𝜆𝑣𝑖𝑙𝑙𝑎𝑔𝑒𝑛𝑜𝑛𝑖𝑛𝑓𝑎𝑛𝑡 = 7.5 ∗ 10
−5 (29) 



 

 413 

Similarly, the weighted total number of within village events was defined as 414 

 415 

 𝑁𝑣𝑖𝑙𝑙𝑎𝑔𝑒 = 𝜂 [𝜆𝑣𝑖𝑙𝑙𝑎𝑔𝑒𝑖𝑛𝑓𝑎𝑛𝑡 ∗ 𝑛𝑖𝑛𝑓𝑎𝑛𝑡𝑠 + 𝜆𝑣𝑖𝑙𝑙𝑎𝑔𝑒𝑛𝑜𝑛𝑖𝑛𝑓𝑎𝑛𝑡 ∗ 𝑛𝑛𝑜𝑛𝑖𝑛𝑓𝑎𝑛𝑡]

∗ ∑ (
𝑛𝑖𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙𝑠𝑖
𝑛𝑖𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙𝑠𝑡𝑜𝑡𝑎𝑙

)

𝑛_𝑣𝑖𝑙𝑙𝑎𝑔𝑒𝑠𝑡𝑂𝑃𝑉

𝑖

 

 

(30) 

 
𝜂 = 𝑛𝑖𝑛𝑓𝑎𝑛𝑡𝑠𝑚𝑂𝑃𝑉2 +

𝑛𝑛𝑜𝑛𝑖𝑛𝑓𝑎𝑛𝑡𝑚𝑂𝑃𝑉2
15

 
 

 416 

We found that 𝑁𝑣𝑖𝑙𝑙𝑎𝑔𝑒 = 140. As with intervillage transmission, we assumed a prior for within 417 

village transmission events as a normal distribution with mean 𝑁𝑣𝑖𝑙𝑙𝑎𝑔𝑒 = 140 and variance 418 

10 ∗ 𝑁𝑣𝑖𝑙𝑙𝑎𝑔𝑒. The log-likelihood component for within village transmission was defined as: 419 

 

𝑙𝑜𝑔𝐿𝑣𝑖𝑙𝑙𝑎𝑔𝑒 = −
(𝑁𝑣𝑖𝑙𝑙𝑎𝑔𝑒𝑠𝑖𝑚𝑢𝑙𝑎𝑡𝑒𝑑 − 𝑁𝑣𝑖𝑙𝑙𝑎𝑔𝑒)

2

2 ∗ (10 ∗ 𝑁𝑣𝑖𝑙𝑙𝑎𝑔𝑒)
 

 

 420 

Shedding proportions in household cohorts 421 

Stool samples were collected from enrolled study participants 0-10, 14, 18, and 22 weeks 422 

post-mOPV2 challenge. Shed prevalence was calculated as the proportion of shedding 423 

individuals per household cohort. We assumed that shed prevalence followed a binomial 424 

distribution at that timepoints were independent. Under these assumptions, our combined 425 

likelihood function was defined as 426 



 𝑙𝑜𝑔𝐿 = 

∑
⌈∑ [𝑝

𝑖,𝑘

𝑛𝑠ℎ𝑒𝑑𝑑𝑖𝑛𝑔𝑖,𝑘 ∗ (1 − 𝑝𝑖,𝑘)
(𝑛𝑡𝑜𝑡𝑎𝑙𝑖,𝑘

−𝑛𝑠ℎ𝑒𝑑𝑑𝑖𝑛𝑔𝑖,𝑘
)
] + 𝑙𝑜𝑔𝐿𝑣𝑖𝑙𝑙𝑎𝑔𝑒,𝑘 + 𝑙𝑜𝑔𝐿𝑖𝑛𝑡𝑒𝑟,𝑘

ℎℎ𝑐𝑜ℎ𝑜𝑟𝑡𝑠
𝑖 ⌉

𝑛𝑡𝑟𝑎𝑐𝑒𝑠

𝑛𝑡𝑟𝑎𝑐𝑒𝑠

𝑘

 

(31

) 

   

Where k is the simulation trace, i refers to the ith household cohort, p is the proportion of 427 

shedding in Matlab, 𝑛𝑠ℎ𝑒𝑑𝑑𝑖𝑛𝑔,𝑖 is the number of shedding individuals in the ith household cohort 428 

from our simulation, and 𝑛𝑡𝑜𝑡𝑎𝑙,𝑖 the total number of simulated individuals for the ith household 429 

cohort. Due to the stochastic nature of our model, we calculated the log-likelihood for each of the 430 

30 simulation traces run and used the average log-likelihood (12).  431 

 For our multiscale model, we first sampled 600 parameter combinations from a four-432 

dimensional latin hyperspace cube where each dimension corresponded to one component of 𝛽 433 

used in the multiscale model. We then evaluated the profile likelihoods for each dimension (13). 434 

For the multiscale model, the profile likelihood surfaces for 𝛽ℎℎ and 𝛽𝑏𝑎𝑟𝑖 were intractable; low 435 

values for either of these parameters could be compensated by increasing transmission at any of 436 

the other levels. Because it is unlikely that transmission does not occur at either the household or 437 

bari, to obtain point estimates for each of these parameters, we: 438 

1. Resampled a total of 1800 points from a 4-dimensional latin hyperspace cube. The 439 

dimension associated with 𝛽ℎℎ was replaced with one examining fecal-oral dose 440 

concentrations and assumed 𝛽ℎℎ = 1. This forces the model to contact one household 441 

member in each timestep. Three fecal-oral doses were examined: 1e-6g/contact, 2.5e-442 

6g/contact, and 5e-6g/contact. Of these, 2.5e-6g/contact was the optimal choice. The 443 

range of values explored for 𝛽𝑏𝑎𝑟𝑖, 𝛽𝑣𝑖𝑙𝑙𝑎𝑔𝑒, and 𝛽𝑖𝑛𝑡𝑒𝑟𝑣𝑖𝑙𝑙𝑎𝑔𝑒ranged from [1,30], [1,9], and 444 

[1,4], respectively. 445 

2. We then identified the maximum profile likelihood point-estimates for 𝛽𝑣𝑖𝑙𝑙𝑎𝑔𝑒 and 446 

𝛽𝑖𝑛𝑡𝑒𝑟𝑣𝑖𝑙𝑙𝑎𝑔𝑒  from the subset of points where the fecal-oral dose was 2.5e-6g/contact.  447 



3. Finally, we examined the subset of parameter combinations where the fecal-oral dose 448 

was 2.5e-6g/contact,  𝛽𝑣𝑖𝑙𝑙𝑎𝑔𝑒 and 𝛽𝑖𝑛𝑡𝑒𝑟𝑣𝑖𝑙𝑙𝑎𝑔𝑒  were equal to the maximum profile 449 

likelihood point-estimates identified in step 2 to obtain our maximum profile likelihood 450 

point-estimate for  𝛽𝑏𝑎𝑟𝑖. 451 

 452 

The final maximum profile likelihood point-estimates for our multiscale model was: fecal-oral dose 453 

= 2.5e-6g/contact, 𝛽ℎℎ=1, 𝛽𝑏𝑎𝑟𝑖=15, 𝛽𝑣𝑖𝑙𝑙𝑎𝑔𝑒=4, and 𝛽𝑖𝑛𝑡𝑒𝑟𝑣𝑖𝑙𝑙𝑎𝑔𝑒=2. 454 

For our mass action model, we sampled 𝛽𝑚𝑎 from a set of consecutive integer values 455 

ranging from 0-50 and evaluated the average log-likelihood at each point. To make it equivalent 456 

with the multiscale model, we assumed fecal-oral dose was 2.5e-6g/contact. We evaluated 𝛽𝑚𝑎 457 

using two different log-likelihood functions, one with the village and inter-village priors (above 458 

equation), and one without: 459 

 

𝑙𝑜𝑔𝐿 = ∑
∑ [𝑝

𝑖,𝑘

𝑛𝑠ℎ𝑒𝑑𝑑𝑖𝑛𝑔𝑖,𝑘 ∗ (1 − 𝑝𝑖,𝑘)
(𝑛𝑡𝑜𝑡𝑎𝑙𝑖,𝑘

−𝑛𝑠ℎ𝑒𝑑𝑑𝑖𝑛𝑔𝑖,𝑘
)
]

ℎℎ𝑐𝑜ℎ𝑜𝑟𝑡𝑠
𝑖

𝑛𝑡𝑟𝑎𝑐𝑒𝑠

𝑛𝑡𝑟𝑎𝑐𝑒𝑠

𝑘

 

(32) 

With the village and inter-village priors, our point estimate for 𝛽𝑔𝑙𝑜𝑏𝑎𝑙 = 1. Without the village and 460 

inter-village priors, our point-estimate for  𝛽𝑔𝑙𝑜𝑏𝑎𝑙=19. 461 

 462 

 463 

  464 



 465 

Fig. S1. mOPV2 clinical trial design. A) Routine immunization and enrollment phase and B) the 466 

mOPV2 campaign and the 22week longitudinal surveillance period. The post-mOPV2 campaign 467 

surveillance data from tOPV villages was excluded due to the larger potential of unmodeled 468 

secondary vaccine transmission from routine immunization. 469 

 470 

  471 



472 

Fig. S2. Household structure. Household demography simulations (orange) compared against 473 

demography data from the 2014 BDHSS (blue). Error bars for simulation output represent middle 474 

95 percentile as estimated from 20 random iterations. Error bars for the BDHSS or clinical trial 475 

data represent the 95% binomial confidence interval around the mean. A) Household size 476 

distribution. B) Housed contact age distributions. C) Age pyramid D) Village size. For D, only 477 

simulated confidence intervals are shown.   478 

 479 

  480 



481 

Fig. S3. Shedding profile in primary vaccine recipients. Orange: multiscale, Green: fully 482 

calibration mass action, and Purple: partially calibrated mass action. Cohort-specific longitudinal 483 

shedding profiles in mOPV2 vaccination recipients (left to right: cohorts one, four, seven) 484 

compared to the multiscale model (A) and two mass action models (B, green = fully-calibrated 485 

mass action, purple = partially-calibrated mass action). The solid lines are the simulated average 486 

and the shading indicates two standard deviations from the mean. Error bars for the data points 487 

represent two binomial standard errors of the mean. 488 

 489 

  490 



491 

Fig. S4. Population Immunity Following Vaccination Cessation. Average immunity (log2 492 

antibody titers) against Sabin 2 in our populations immediately after (zero years), one, five, ten, 493 

and 40 years post-vaccination cessation. Solid line indicates the population average and the 494 

shading the boundaries of the middle 95th percentile. Note the age-structured erosion of 495 

population immunity due to new births and immune waning 496 

 497 

  498 



499 

Fig. S5. Sabin 2 point importation spaghetti plots. Top row: Multiscale model Bottom row: 500 

partially-calibrated mass action model. A/F immediately post-vaccination cessation, B/G one year 501 

post-vaccination cessation, C/H five years post-vaccination, D/I ten years post-vaccination, and 502 

E/J 20 years post-vaccination cessation. 503 

 504 

  505 



506 

Fig. S6. WPV point importation. Simulation traces immediately after vaccination cessation using 507 

the A) multiscale and B) partially-calibrated mass action model.  Simulation traces ten years post-508 

vaccination cessation using the C) multiscale and B) partially-calibrated mass action model. 509 

Colored traces indicate those that have shedding individuals after ten years. Grey traces indicate 510 

those simulations that fadeout and cease transmission.    511 
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514 

Fig. S7. Fertility and mortality fits in the demographic model. Simulated (orange) birth 515 

interval periods for individuals aged A) 15-19, B) 20-29, C) 30-39, and D) 40-49 compared 516 

against the 2014 Bangladesh Demographic Health Survey data (blue). Simulated (orange) 517 

number of children per married female for individuals aged E/I) 15-19, F/J) 20-24, G/K) 25-29, 518 

and H/L) 30-34 compared against the 2014 (E-H) and 2004 (I-L) Bangladesh demographic health 519 

surveys. Error bars in all bar plots indicate one binomial standard error from the mean. Simulated 520 

(orange) age specific fertility rates (ASFR, number of births per 1000 individuals) for 2014 (M) 521 

and 2004 (N). The solid line is the average and the shading two standard errors from the mean. 522 

Sex (male = blue, female = pink) and age specific mortality rates for 2014 (O) and 2004 (P). Data 523 

are represented by dots.  524 



 525 

 526 

Fig. S8. Immune boosting. A) Ordinary least squares fit relating pre-exposure log2 antibody titers 527 

to the ratio of post-exposure to pre-exposure antibody titer observed in 1953 Louisiana.(11) 528 

Overlapping points are randomly jittered to better represent point density. Line represents the 529 

ordinary least squares fitted equation. B) Residual plot of our ordinary least squares fit. The fan-530 

shaped distribution is classic signature of heteroskedasticity. C) Fitted ordinary least square 531 

function relating variance with pre-exposure titer. D) Final immune boosting model predictions 532 

(orange) compared against the original data (blue). 533 

 534 

Table S1. Cohort definitions. Cohorts 1-3 are infants while cohorts 4-8 are household contacts. 535 

The “challenged with mOPV2 “column indicates whether the individuals in this cohort received 536 

Sabin 2 vaccine (+ for yes, - for no) during the mOPV2 campaign. For cohorts 4-8, the “Infant 537 



status” column indicates whether the infant of the household contact received mOPV2. The “Bari 538 

status” column indicates whether any member in the bari received mOPV2. The “Infection 539 

Source” column indicates the type of transmission each cohort is most sensitive to. Individuals in 540 

cohorts one, four, and seven received mOPV2 and shedding in these cohorts largely reflect 541 

individual infection dynamics. 542 

Cohort 
Number 

Individual 
Type 

Challenged 
with 
mOPV2 

Infant 
Status 

Bari 
Status 

Infection 
Source 

1 infant +  + Vaccination 

2 infant -  + Household/Bari 

3 infant -  - Village/Region 

4 Household 
contact 

+ + + Vaccination  

5 Household 
contact 

- - + Household/Bari 

6 Household 
contact 

- + + Household/Bari 

7 Household 
contact 

+ - + Vaccination 

8 Household 
contact 

- - - Village/Region 

 543 

  544 



Dataset S1 (separate file). Parameter Table  545 

 546 
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