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1 The minimum number of random subsets to choose in the
ranking process

In Phase 1 of the method described in the main article, we perform a ranking process for the
SNPs using a combination of random subsets of SNPs with cross-validation. Here we show the
probability calculations guiding the choice of the number of random subsets of SNPs that we use,
first for one SNP and then for a SNP pair.

1.1 Number of subsets for single SNP sampling

We have a total of R SNPs, and draw S < R SNPs without replacement. Let A = 1 denote the
case where we study one randomly sampled subset of S SNPs, and A = a the case where we study
a different samples. The question is how large a at least should be in order to investigate the
whole genome to a sufficient extent.

Let Cj be the number of times a particular SNP j is chosen among all A = a subsets. Since the
SNPs are randomly sampled without replacement, the probability that SNP j is contained in at
least one of the a subsets, P (Cj ≥ 1|A = a), is given by:

P (Cj ≥ 1|A = a) = 1− P (Cj = 0|A = a) = 1− P (Cj = 0|A = 1)a = 1−
(
1− S

R

)a
,

since P (Cj = 0|A = 1) is given from the corresponding hypergeometric distribution:

P (Cj = 0|A = 1) =

(
1
0

)(
R−1
S

)(
R
S

) = 1− S

R
.
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If we want the probability to be larger than some preferred value p, we get the inequality referred
to in the main article:

a ≥ log(1− p)
log(1− S

R )
. (1)

However, after the SNPs are randomly sampled, we also perform a pruning to minimize the
correlation in the sample as explained in Section 2, so the number of subsets to create should be
even larger than this.

1.2 Number of subsets for pair SNP sampling

Similarly, assume the SNPs to be randomly sampled, and let Cj,k be the number of times SNP j
and SNP k are present simultaneously in a total of a subsets. We then have:

P (Cj,k ≥ 1|A = a) = 1− P (Cj,k = 0|A = a) = 1− P (Cj,k = 0|A = 1)a

= 1−
(
1− P (Cj,k = 1|A = 1)

)a
= 1−

(
1− S(S − 1)

R(R− 1)

)a
,

since P (Cj,k = 1|A = 1) is given from a corresponding hypergeometric distribution:

P (Cjk = 1|A = 1) =

(
2
2

)(
R−2
S−2

)(
R
S

) =
S(S − 1)

R(R− 1)
.

For this probability to be larger than a preferred value p, we get the inequality referred to in the
main article:

a ≥ log(1− p)

log
(
S(S−1)
R(R−1

) . (2)

Again, the total number of subsets should be larger due to the need for SNP pruning to ensure
low correlation among the SNPs. Anyhow, inequalities (1) and (2) can be used as guidance as to
how many subsets should at least be created.

2 SNP pruning with PLINK1.9

When creating the subsets explained in Section 3.1 (the ranking process) of the main article,
we create a subset of S SNPs with mutually low correlation together with G randomly sampled
individuals. This is implemented by using both R and PLINK1.9 [4].

First, S∗ SNPs and G individuals are sampled with equal probability and without replacement.
Next we apply the PLINK1.9 function −−indep-pairwise with the following parameter values
window size = 50 kb, step size = 5kb and r2 = 0.2 in order to get a subset of S SNPs were all pairs
of SNPs within a region of 50 kilobases have squared Pearson’s correlation less than 0.2. SNPs
that are more than 50 kilobases from each other are not expected to correlate to any significant
extent. Pearson correlation measures linear dependency, and therefore zero correlation does not
imply independence in general. We will anyhow rely on r2 as a measure of independence due to
its fast computation on large amounts of data. In the example analysis we manually find, by trial
and error, the appropriate size of S∗ corresponding to the chosen value for S.
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In a similar manner, the PLINK1.9 function −−indep-pairwise can be used to obtain a subset
of SNPs with mutually low correlation based on some ranked set of SNPs, as in Section 3.2 (model
fitting process) in the main article. However, the ranked list of SNPs should be added as a .frq-
datafile via −−read-freq, where the column variable MAF is edited such that it does not denote
the minor allele frequencies, but some feature importance score of each SNP. The larger the score
is, the higher priority the SNP will have to be kept among the subset.

3 Running BOLT-LMM on the ranking data

In the obesity example, we run BOLT-LMM on the ranking data (from Phase 1) with obesity as
trait in order to rank the importance of each SNP based on the their computed p-values by using
the BOLT-LMM-infinitesimal mixed-model statistic [2]. BOLT-LMM is intentionally constructed
for quantitative traits and not for case-control traits such as obesity, but it can be applied by
treating the binary trait as a quantitative trait. The caveat is however that the p-values may
be invalid. However, the p-values computed have been shown to be valid as long as the MAFs
of each SNP are larger than 1%, and that the case fraction is larger than 30% for a sample of
50 000 individuals [2]. The ranking data has a case fraction of 43 %, MAF greater than 1 %
and 80 000 individuals, and so we regard the p-values computed as valid. Obesity and covariates
were defined as described in Appendix B in the main article. Categorical covariates in the model
were genetic sex, alcohol intake frequency, sleep duration (in hours), and any events of illness,
injury, bereavement, or stress in the previous two years. Quantitative covariates were physical
activity, saturated fat intake, and age at initial assessment. All covariates excluding genetic sex
were self-reported during the initial assessment.

4 Computations of SHAP values

The SHAP value, φi,j(xi), for a model f(xi), individual i and feature j given all features xi is
defined in Lundberg et al. [3] and Janzing, Minorics, and Blöbaum [1] as:

φi,j(xi) =
∑
S⊆M\{j}

|S|!(M−|S|−1)!
M !

[
E[f(Xi,S∪{j} = x∗i,S∪{j},Xi,S∪{j})]− E[f(Xi,S = x∗i,S ,Xi,S)]

]
(3)

where E[f(Xi,S∪{j} = x∗i,S∪{j},Xi,S∪{j})] is the expected prediction when only the values of the

feature subset S as well as feature j, denoted x∗i,S∪{j}, are known, while the vector of unknown

values from the complement set, X
i,S∪{j} are regarded as a random vector. Notice that S∪S =M.

4.1 SHAP values for tree ensemble models

We consider a tree ensemble model where the prediction, f(xi), is a linear sum of outputs from
all regression trees given features xi. By the linearity property of expectation, the marginal
expectation, E[f(Xi,S = x∗i,S ,Xi,S)], given in Equation (3) is equal to the sum of the marginal
expectation of the output from each regression tree, denoted E[fτ (Xi,S = x∗i,S ,Xi,S)]:

E[f(Xi,S = x∗i,S ,Xi,S)] =

T∑
τ=1

E[fτ (Xi,S = x∗i,S ,Xi,S)].

The marginal expectation for each regression tree, assuming only continuous features, is mathe-
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matically expressed as:

E[fτ (Xi,S = x∗i,S ,Xi,S)] =

∫
xi,S

fτ (Xi,S = x∗i,S ,Xi,S = x∗
i,S)p(Xi,S̄ = x∗

i,S)dxi,S , (4)

where we denote x∗i = (x∗i,S ,x
∗
i,S̄) as the constant vector where all feature values are known. As

each regression tree fτ only takes a distinct number of values equal to the number of leaves Bτ in
the regression tree, the integral in (4) can be expressed as a sum of integrals:

E[fτ (Xi,S = x∗i,S ,Xi,S)] =

Bτ∑
k=1

cτ,k

∫
xi,Sτ,k

p(Xi,S = x∗
i,Sτ,k

)dxi,Sτ,k ,

where each x∗
i,Sτ,k

is such that fτ (x∗i = (x∗i,S ,x
∗
i,Sτ,k

)) = cτ,k where cτ,k is leaf value number k for

tree τ .

If we assume the complement subset S̄ of features are mutually independent, the integral can be
further partitioned into a product of integrals , where each integral will be integrated over the
range of the corresponding feature in S̄ that leads to the path from root to leaf node with leaf
node value cτk:

E[fτ (Xi,S = x∗i,S ,Xi,S)] =

Bτ∑
k=1

cτ,k

l∏
`=1

∫ b`,τ,k

xi,`=a`,τ,k

p(Xi,` = x∗i,`)dxi,`,

where xi,` denotes the feature value of feature number ` among a total of l unknown features in
the subset S̄, while (a`,τ,k, b`,τ,k) is the range in which feature number ` must be integrated over
in order to get the output value cτ,k for regression tree τ . For features in S̄ that are not present in
the regression tree τ , these features can take any value. We define the value of the corresponding
integrals in the product operator to be one.

What remains in order to compute the marginal expectation given in Equation (3) is to estimate
each of the integrals given above. In Lundberg et al. [3] these are estimated by using the proportion
of samples in each node in each tree in the training phase of the tree ensemble model that goes in the
same direction from a particular node to another. Under the assumption of mutual independence
this is a reasonable estimate, but the estimate naturally relies on the total number of individuals
that are used for estimation, and so these estimations will be poorer the deeper the trees are.
Finally, and most importantly, in order to compute the SHAP values for a tree ensemble model,
Lundberg et al. [3] have constructed an algorithm with polynomial running time, O(TLD2), for
maximum depth D and leaves L.
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5 Logistic regression with different additivity assumptions

In the main article, all likelihood ratio tests are based on the assumption of both additive marginal
effects and additive interaction effects. Here we provide two additional tests with less stricter
additive assumptions.

For the case of SNP-SNP interactions, the first model is unconstrained in both main effects and
interactions [5]:

logit(P (Yi = 1|gi,a, gi,b,xi,c)) =

xTi,cγ + α1I(gi,a = 1) + α2I(gi,a = 2) + β1I(gi,b = 1) + β2I(gi,b = 2)

+ ν11I(gi,a = 1)I(gi,b = 1) + ν12I(gi,a = 1)I(gi,b = 2)

+ ν21I(gi,a = 2)I(gi,b = 1) + ν22I(gi,a = 2)I(gi,b = 2),

(5)

where xTi,c is a vector of features such as intercept, age, environmental features and principal
components, γ is the vector of corresponding parameters for each covariate, I() is the indicator
function, α1, α2, β1 and β2 are marginal effects of the SNPs gi,a and gi,b when the genotype value
is one or two respectively, while ν11, ν12, ν21 and ν22 are unconstrained interaction parameters for
gi,a and gi,b.

When testing the presence of interaction effects, the null hypothesis is ν11 = ν12 = ν21 = ν22 = 0,
with null model:

logitH0
(P (Yi = 1|gi,a, gi,b,xi,c)) =

xTi,cγ + α1I(gi,a = 1) + α2I(gi,a = 2) + β1I(gi,b = 1) + β2I(gi,b = 2).
(6)

If we assume additive interaction effects, corresponding to ν11 = ν, ν12 = ν21 = 2ν and ν22 = 4ν,
we get the alternative model:

logit(P (Yi = 1|gi,a, gi,b,xi,c)) = xTi,cγ + α1I(gi,a = 1) + α2I(gi,a = 2)

+ β1I(gi,b = 1) + β2I(gi,b = 2) + νgi,agi,b.
(7)

We will then have two new tests based on the following null and alternative models: Models (6)
and (5) in the case of no assumptions and models (6) and (7) in the case of additive interactions.
We denote these tests as Test 1 and Test 2 respectively. The test applied in the main article is
denoted as Test 3 with null and alternative models:

logitH0,add(P (Yi = 1|gi,a, gi,b,xi,c)) = xTi,cγ + αgi,a + βgi,b. (8)

logitH1,add(P (Yi = 1|gi,a, gi,b,xi,c)) = xTi,cγ + αgi,a + βgi,b + νgi,agi,b. (9)

For the case of SNP-environment interactions, the logistic models will look similar in the case
where the environmental feature is discrete. For the case where the environmental feature, xi,e, is
continuous, the unconstrained Test 1 will for instance have the following alternative model:

logit(P (Yi = 1|gi,a, xi,e,xi,c)) = xTi,cγ + α1I(gi,a = 1) + α2I(gi,a = 2) + βexi,e

+ φ1I(gi,a = 1)xi,e + φ2I(gi,a = 2)xi,e,
(10)
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where βe, φ1 and φ2 are the marginal effect of the environmental feature, and interaction effects
respectively.

The results when applying all three tests for each of the interactions based on both the evaluation
data and all individuals is given in Table 1.

Table 1: Results from all likelihood ratio tests with different assumptions of additivity. The tests
are applied on the top four ranked interactions found from the model explainability process based
on the evaluation data.

Test Interaction p-value LRT
Test 1 evaluation data rs171329 and rs180743 0.49
Test 1 all individuals rs171329 and rs180743 0.0063
Test 2 evaluation data rs171329 and rs180743 0.85
Test 2 all individuals rs171329 and rs180743 0.024
Test 3 evaluation data rs171329 and rs180743 0.85
Test 3 all individuals rs171329 and rs180743 0.024
Test 1 evaluation data rs17817449 and genetic sex 0.96
Test 1 all individuals rs17817449 and genetic sex 0.00022
Test 2 evaluation data rs17817449 and genetic sex 0.79
Test 2 all individuals rs17817449 and genetic sex 4.78e-05
Test 3 evaluation data rs17817449 and genetic sex 0.77
Test 3 all individuals rs17817449 and genetic sex 4.09e-05
Test 1 evaluation data rs17817449 and saturated fat intake 0.59
Test 1 all individuals rs17817449 and saturated fat intake 0.0019
Test 2 evaluation data rs17817449 and saturated fat intake 0.45
Test 2 all individuals rs17817449 and saturated fat intake 0.0017
Test 3 evaluation data rs17817449 and saturated fat intake 0.44
Test 3 all individuals rs17817449 and saturated fat intake 0.0017
Test 1 evaluation data rs757318 and rs12123815 0.48
Test 1 all individuals rs757318 and rs12123815 0.49
Test 2 evaluation data rs757318 and rs12123815 0.25
Test 2 all individuals rs757318 and rs12123815 0.71
Test 3 evaluation data rs757318 and rs12123815 0.25
Test 3 all individuals rs757318 and rs12123815 0.71

Even though the three statistical tests have different assumptions, the p-values for the three tests
for each interaction do not vary greatly. Therefore, in this case, the assumptions of additivity do
not have any significant impact of the computed p-values.
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6 PCA plots - Evaluation data and full dataset

Figure 1: PCA plot for the first and second principal components for unrelated individuals in the
full dataset.

Figure 2: PCA plot for third and fourth principal components for unrelated individuals in the full
dataset.
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Figure 3: PCA plot for first and second principal components for unrelated individuals in the
evaluation dataset.

Figure 4: PCA plot for third and fourth principal components for unrelated individuals in the
evaluation dataset.
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