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S1 Materials and Methods 1

S1.1 Data 2

HAT Atlas data The HAT Atlas data for DRC were provided in a spreadsheet format. Records were annually 3

aggregated gHAT case records, aggregated by year, surveillance type and location as defined by multiple fields. 4

There were 117,573 rows in this file; of which 111,408 had an entry in the geolocation (longitude and latitude) 5

fields. 6

Passive surveillance records with missing or zero case numbers; and active surveillance records with both 7

missing or zero numbers screened and missing or zero case numbers were dropped from the dataset. 8

This left 111,454 records (105,979 with filled geolocation fields). These records were associated with 23,424 9

unique combinations of former province, health zone, health area, location and territory identifiers; 20,423 of 10

which had geolocation information and 3,001 did not. We will refer to these 24,424 geographical records as 11

gHAT locations in this document. 12

Table S1: Number of HAT Atlas records with different combinations of former province, health zone and
health area recorded.

Recorded region identifiers: Number
Former province Health zone Health area n

X X X 106823
X X X 391
X X 3001
X X 14
X 1225

DRC Shapefile A recent shapefile for DRC was provided by UCLA (Personal communication). The shapefile 13

contains health zones (an organisational unit with a typical population size around 100,000) across DRC; 14

health areas (nested within health zones, these areas are typically home to around 10,000 people) for the 15
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former province of Bandundu and part of Equateur and Haut Lomami, and post–2015 province identifiers. 16

Former province was added to these records (post–2015 provinces being nested within former province). 17

Additional geographic information The following geographical information was obtained from the Human- 18

itarian Data Exchange [S9]: 19

• a health zone shapefile from the United Nations Office for the Coordination of Humanitarian Affairs 20

(OCHA); 21

• an OCHA file of geolocations of localities; and 22

• a file of geolocations of health facilities from the Global Healthsite Mapping Project. 23

These data were used to assist in matching and locating the gHAT data, by providing alternative spellings of 24

names and potentially geolocations for non-geolocated gHAT locations. The locality and health facility lists 25

were concatenated, and this enlarged locality set and the OCHA health zone map were assigned geographical 26

identifiers as per our shapefile of choice. 27

Matching HAT Atlas records to DRC shapefile Geographical identifiers associated with the HAT At- 28

las/gHAT location and geographical data were sanitised to assist with matching. This involved removing 29

diacritical marks, conversion to lowercase, collapsing whitespace within identifiers to a single space, removal 30

of leading and trailing whitespace, converting from roman to arabic numerals, removing leading m, n or g 31

from words where they were followed by a consonant, removing leading t from words when followed by an s, 32

and collapsing words into a single string. In addition some specific manual edits were performed during the 33

process as they became apparent. 34

Matching was then applied sequentially to the gHAT locations; such that once a match had been achieved for 35

any given gHAT location it did not act as input to subsequent steps. 36

1. gHAT locations with known former province (FP), health zone (HZ), health area (HA) and geolocation 37

were located on the UCLA and OCHA shapefiles. If the FP, HZ and HA matched the values for either 38

the UCLA or OCHA shapefiles at that point, a match was judged to have occurred and the geolocation 39

was accepted. This matched 3,579 of the gHAT locations. 40

2. gHAT locations with known former province (FP), health zone (HZ) and geolocation were located on 41

the UCLA and OCHA shapefiles. If the FP and HZ matched the values for either the UCLA or OCHA 42

shapefiles at that point, a match was judged to have occurred and the geolocation was accepted. 43

This matched 13,413 of the gHAT locations. The 16,992 gHAT locations matched in these two steps 44

accounted for 97,520 of the HAT records (87.5%). 45

3. Where a gHAT location was associated with a recent active screening event (defined as an active 46

screening record in or after 2012 with a number screened greater than 10), the geolocation was accepted. 47

This matched a further 454 of the gHAT locations to give a total of 100,747 gHAT records matched 48

(90.4%). 49

4. Matching to the locality information: 50

(a) if health zone and location identifier match, the locality’s geolocation was assigned to the gHAT 51

location. Matching 44 gHAT locations, giving a total of 100,811 gHAT records matched (90.5%). 52

(b) if former province and location identifier match, the locality’s geolocation was assigned to the gHAT 53

location. This matched 331 gHAT locations, giving a total of 101,508 gHAT records matched 54

(91.1%). 55

5. Matching to shapefile by geographic identifiers only: 56

(a) Former province, health zone and health area all match. Matched 523 gHAT locations, giving a 57

total of 102,349 gHAT records matched (91.8%). 58

(b) Former province and health zone match. Matched 3636 gHAT locations, giving a total of 110,021 59

gHAT records matched (98.7%). 60

(c) Former province and OCHA shapefile health zone name match. Matched 74 gHAT locations, giving 61

a total of 110,126 gHAT records matched (98.8%). 62
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(d) Former province and health area match. Matched 60 gHAT locations, giving a total of 110,195 63

gHAT records matched (98.9%). 64

(e) Health zone name match. Matched 10 gHAT locations, giving a total of 110,210 gHAT records 65

matched (98.9%). 66

S1.2 Modelling passive detection and its improvement 67

There are two sources of passive detection improvements considered in our model: a rapid improvement due 68

to the introduction of the card agglutination test for trypanosomes (CATT) test in all health zones in 1998 69

and a gradual improvement over time in the former Bandundu and Bas Congo provinces around 2008 and 70

mid-2015 respectively. Prior distributions and percentiles of parameters related to passive detection and it’s 71

improvement over time are summarised in Table S2. 72

Improvement in passive surveillance systems over time is considered across the whole of Bandundu and Bas 73

Congo. The province level staging data in Bandundu suggested that passive surveillance systems in Bandundu 74

have improved over time, which was confirmed by PNLTHA and is also supported by previous modelling 75

work [S2]. In Bas Congo, FIND implemented the use of rapid diagnostic tests (RDT) from 2015. Staging 76

information which was available at the province–level from 2000–2012 from the paper of Lumbala et al [S4], 77

and in the HAT Atlas data for 2015 and 2016. To inform the health zone-level analyses, a province level fit 78

was carried out to the staged case data of Lumbala et al. augmented with the HAT Atlas data aggregated 79

to the former province level for the years 2013-2016. These analyses provided no evidence for improvement in 80

passive surveillance systems (in line with the simple sigmoidal model assumed) for any provinces other than 81

Bandundu and Bas Congo. For Bandundu and Bas Congo, gamma distributions were fitted to the province 82

level posterior samples of ηHamp , γHamp and dsteep. The shape (k) and scale (θ) for these fitted distributions 83

were used as the parameters of gamma prior distributions of ηHamp , γHamp and dsteep in all health zones of 84

Bandundu and Bas Congo. In Bandundu health zones a scaled and shifted beta distribution was used as the 85

prior for dchange. The use of a broader prior for dchange than would have resulted from using the province–level 86

posterior distribution resulted from comparing aggregate health zone-level results with province-level observed 87

data. In Bas Congo health zones a fixed value of 2015.5 was used for dchange. 88

Priors for the health zone-level ηpostH and γpostH parameters were also informed by the province-level fits. Gamma 89

prior distributions were used which had the same mode (mode = (k − 1) θ as Gamma distributions fitted to 90

the province-level posterior distribution of the parameters; and a standard deviation (s.d. =
√
kθ) of 3× 10−3

91

for ηpostH and 1 × 10−4 for γpostH , being arbitrarily selected higher variation than the province-level posterior 92

distributions. 93

S1.3 Modelling vector control 94

Fig. S1 shows the dynamics of tsetse populations (under the simple model) where targets are either moderately 95

effective, with a 60% reduction (lower than in Guinea), or highly effective, with a 90% population density 96

reduction in a year (as seen in Uganda). 97

The function which describes the probability of both hitting a target and dying is time dependent (days) from 98

when the targets where placed: 99

fT (t) = fmax

(
1− 1

1 + exp(−0.068(mod(t, 182.5)− 127.75))

)
(S1.1)

and fmax is chosen such that the tsetse population after one year is at the observed/assumed percentage 100

reduction. For the simplified model this is given by fmax = 0.0305 for a 60% reduction and fmax = 0.0750 101

for a 90% reduction. 102

S2 Posteriors of fitted parameters 103

S2.1 Posterior characteristics for example health zones 104

Table S3 shows summaries of posterior distributions of all fitted parameters in two example health zones: 105

Kwamouth in the former Bandundu province and Tandala in the former Equateur province. Kwamouth is 106

categorised as a high-risk health zone and Tandala is at low-risk. Our fitting results show that Kwamouth has 107

higher R0 and r but lower active screening specificity, reporting rate and passive detection rate than Tandala. 108
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Table S2: Parameterisation of passive detection improvement. Notation and brief description of fitted
parameters related to passive detection improvement plus their within former province prior distributions and
[2.5th, 50th & 97.5th] percentile.

Parameter

Province Prior distribution Percentiles of prior
distribution

ηpost
H – Treatment rate from stage 1, 1998 onwards

Bandundu Γ
(
3.54, 5.32× 10−5

)
[4.59, 17.1, 42.9]×10−5

Bas Congo Γ
(
12.0, 2.89× 10−5

)
[1.78, 3.36, 5.68]×10−4

Equateur Γ
(
4.92, 4.51× 10−5

)
[7.12, 20.7, 45.7]×10−5

Kasai Occidental Γ
(
10.9, 3.03× 10−5

)
[1.64, 3.20, 5.53]×10−4

Kasai Oriental Γ
(
2.90, 5.87× 10−5

)
[3.38, 15.1, 41.5]×10−5

Katanga Γ
(
1.29, 8.79× 10−5

)
[5.88, 86.2, 376]×10−6

Kinshasa Γ
(
1.26, 8.91× 10−5

)
[5.44, 84.4, 376]×10−6

Maniema Γ
(
4.25, 4.85× 10−5

)
[5.90, 19.0, 44.3]×10−5

Orientale Γ
(
1.16, 9.27× 10−5

)
[4.24, 79.0, 373]×10−6

γpost
H – Treatment rate from stage 2, 1998 onwards

Bandundu Γ
(
2.45, 1.92× 10−3

)
[7.59, 40.7, 121]×10−4

Bas Congo Γ
(
1.48, 2.47× 10−3

)
[2.54, 28.7, 114]×10−4

Equateur Γ
(
1.95, 2.15× 10−3

)
[4.88, 35.0, 118]×10−4

Kasai Occidental Γ
(
1.71, 2.29× 10−3

)
[3.65, 31.9, 116]×10−4

Kasai Oriental Γ
(
1.49, 2.46× 10−3

)
[2.60, 28.8, 114]×10−4

Katanga Γ
(
1.53, 2.43× 10−3

)
[2.78, 29.4, 115]×10−4

Kinshasa Γ
(
1.68, 2.31× 10−3

)
[3.50, 31.5, 116]×10−4

Maniema Γ
(
2.60, 1.86× 10−3

)
[8.45, 42.3, 122]×10−4

Orientale Γ
(
2.54, 1.88× 10−3

)
[8.11, 41.7, 122]×10−4

ηHamp – Relative improvement in passive stage 1 detection rate

Bandundu Γ(2.01, 1.05) [0.258, 1.77, 5.87]
Bas Congo Γ(5.23, 1.70) [2.98, 8.33, 18.0]

γHamp – Relative improvement in passive stage 2 detection rate

Bandundu Γ(1.001, 5) [0.127, 3.47, 18.5]
Bas Congo Γ(1.46, 1.26) [0.126, 1.45, 5.81]

dsteep – Speed of improvement in passive detection rate

Bandundu Γ
(
39.6, 2.70× 10−2

)
[0.761, 1.06, 1.42]

Bas Congo Γ(3.21, 1.45) [1.03, 4.18, 10.9]

These factors provide some possible explanation for why gHAT is more persistent in Kwamouth, as well as 109

having more cases reported every year. 110

S2.2 Posterior distribution maps 111

The posterior distribution maps (Figure S2–S15) illustrate both the level and variability of the parameter 112

estimates between health zones. We partition the national or province level map into tessellated equilateral 113

hexagons, or partial hexagons at national and health zone borders, and then fill each of these shapes with 114

colour based on the value of randomly sampled values from the posterior distribution of the parameter being 115

plotted from the analysis of the health zone in which that hexagon, or partial hexagon, lies. In this way, 116

the ‘overall’ impression of the colour for a health zone gives an indication of the most probable value of the 117

parameter, while the variation in colour reflects the uncertainty in the parameter estimates. 118
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Table S3: Posteriors of fitted parameters. Notation, brief description, and [2.5th, 50th & 97.5th] percentile
of posteriors for fitted parameters.

Notation Description Kwamouth Tandala

R0 Basic reproduction number
(NGM approach)

[1.06, 1.09, 1.14] [1.006, 1.009, 1.014]

r Relative bites taken on
high-risk humans

[3.15, 6.61, 10.75] [1.30, 2.04, 4.26]

k1 Proportion of low-risk peo-
ple

[0.82, 0.90, 0.95] [0.85, 0.95, 0.99]

ηpostH Treatment rate from stage
1, 1998 onwards (days−1)

[0.60, 1.24, 2.74] ×10−4 [1.11, 2.74, 4.99]×10−4

γpostH Exit rate from stage 2
(treatment or death), 1998
onwards (days−1)

[0.46, 1.88, 5.42] ×10−3 [1.72, 3.60, 8.98]×10−3

bγpre
H

Relative exit rate from
stage 2 factor, pre-1998

[0.74, 0.93, 1.00] [0.54, 0.69, 0.94]

γpreH Exit rate from stage 2
(treatment or death), pre-
1998 (days−1)

[0.38, 1.72, 4.88] ×10−3 [1.03, 2.53, 7.15]×10−3

Spec Active screening diagnostic
specificity

[0.9987, 0.9991, 0.9997] [0.9997, 0.9998, 0.9999]

u Proportion of stage 2 pas-
sive cases reported

[0.18, 0.27, 0.40] [0.29, 0.39, 0.51]

dchange Midpoint year for passive
improvement

[2004.4, 2005.8, 2007.3] –

ηHamp Relative improvement in
passive stage 1 detection
rate

[0.92, 2.52, 5.46] –

γHamp Relative improvement in
passive stage 2 detection
rate

[0.24, 0.51, 0.97] –

dsteep Speed of improvement
in passive detection rate
(years−1)

[0.68, 0.94, 1.29] –
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Figure S1: Impact of tiny targets on tsetse density. The figures show the how varying target efficacy
(red line) impacts tsetse population density (blue line). Target efficacy is measured as the proportion of a
host-seeking tsetse which will both hit the tiny target and die as a result. The graphs, reproduced from [S7],
show the necessary efficacy of targets needed to reduce density by 60% (top) and 90% (bottom) by the end
of the first year.
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Figure S2: Within health zone posterior distribution of ηpost
H , treatment rate from stage 1, 1998 onwards. fill

colours are a randomly sampled from the posterior distribution for the health zone.
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Figure S3: Within health zone posterior distribution of γpost
H , the exit rate from stage 2 (treatment or death),

1998 onwards. The fill colours are a randomly sampled from the posterior distribution for the health zone.
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Figure S4: Within health zone posterior distribution of the specificity of the diagnostic algorithm, fill colours
are a randomly sampled from the posterior distribution for the health zone.
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Figure S5: Within health zone posterior distribution of u, the proportion of stage 2 passive cases reported.
The fill colours are a randomly sampled from the posterior distribution for the health zone.
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Figure S6: Within health zone posterior distribution of k1, the proportion of low-risk people. The fill colours
are randomly sampled from the posterior distribution for the health zone.
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Figure S7: Within health zone posterior distribution of meff; the effective, relative density of tsetse to humans.
Fill colours are determined by randomly sampled values from the posterior distribution of meff from the analysis
of the health zone.
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Figure S8: Within health zone posterior distribution of r, the relative bites taken on high-risk humans. Fill
colours are determined by randomly sampled values from the posterior distribution of r from the analysis of
the health zone.
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Figure S9: Within health zone posterior distribution of dchange, the midpoint year for passive improvement, for
the former province of Bandundu. Fill colours are randomly sampled from the posterior distribution for the
health zone.
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Figure S10: Within health zone posterior distribution of dsteep, the speed of improvement in passive detection
rate, for the former province of Bandundu, fill colours are randomly sampled from the posterior distribution
for the health zone.
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Figure S11: Within health zone posterior distribution of dsteep, the speed of improvement in passive detection
rate, for the former province of Bas Congo, fill colours are randomly sampled from the posterior distribution
for the health zone.
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Figure S12: Within health zone posterior distribution of ηHamp , the relative improvement in passive stage 1
detection rate, for the former province of Bandundu, fill colours are randomly sampled from the posterior
distribution for the health zone.

17



Figure S13: Within health zone posterior distribution of ηHamp , the relative improvement in passive stage 1
detection rate, for the former province of Bas Congo, fill colours are randomly sampled from the posterior
distribution for the health zone.
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Figure S14: Within health zone posterior distribution of γHamp , the relative improvement in passive stage 2
detection rate, for the former province of Bandundu, fill colours are randomly sampled from the posterior
distribution for the health zone.
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Figure S15: Within health zone posterior distribution of γHamp , the relative improvement in passive stage 2
detection rate, for the former province of Bas Congo, fill colours are randomly sampled from the posterior
distribution for the health zone.
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S2.3 Joint posteriors for example health zones 119
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Figure S16: Joint posterior distributions for Kwamouth health zone in the former Bandundu province.
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Figure S17: Joint posterior distributions for Tandala health zone in the former Equateur province.
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S3 Using posteriors to infer time infected and reporting 120

S3.1 Time spent infected 121

In order to provide a straightforward metric to assess the improvements to passive detection over time we 122

compute the average time spent infected by people not picked up by active screening (for example by people 123

in the high-risk group) using the following equation: 124

Tinfected(Y ) = P(Passively detected in S1)
× Time spend infected in S1

+P(Passively detected in S2 or unreported)
× Time spend infected in S1 and S2

=

[
ηH(Y )

ηH(Y ) + ϕH
× 1

ηH(Y ) + ϕH

]
+

[
ϕH

ηH(Y ) + ϕH
×

(
1

γH(Y )
+

1

ηH(Y ) + ϕH

)]
(S3.1)

The inferred change in average time spent infected in Kwamouth and Tandala is shown in Figure S18; in 125

Kwamouth health zone the time has decreased due to improvements in passive surveillance. In Kwamouth 126

the average time changes from 1153 (95% CI: 676–2387) days to 784 (95% CI: 546–1265) days. In Tandala 127

no improvement in passive detection over time was modelled, and hence the amount of time spent infected 128

remains at 716 days on average (95% CI: 548–974). Active screening will have further brought these durations 129

down for those in the population who participate in active screening (low-risk individuals). It is interesting to 130

note that our estimates for mean time spent infected are a little larger than those estimated by Checchi et al 131

[S3], even though their estimate for stage 2 duration informed our prior on γpostH ; their combined estimate of 132

expected duration (S1 and S2 with no treatment) is 778 days (95% CI: 525–1232). 133
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Figure S18: Change in the average time spend infected if not picked up by active screening. Kwamouth is
shown on the left, and Tandala on the right.

S3.2 Proportion of successful treatments or deaths reported 134

In order to estimate the change in the proportion of infections reported over time we use sampled model 135

outputs of deaths and case reporting (active and passive for both stages): 136

Proportion reported = 1− Deaths

Active1 + Active2 + Passive1 + Passive2 + Deaths
(S3.2)

The estimated change in proportion reported over time in Kwamouth and Tandala is shown in Figure S19; in 137

both locations the proportion of reporting is inferred to vary in time, although the overall decrease in infection 138

and case reporting results in larger credible intervals for 2016, especially in Tandala. In Kwamouth the model 139

estimates the proportion of cases and deaths reported changed from 0.67 (95%: 0.53–0.82) in 2000 to 0.81 140
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(95%: 0.62–0.93) in 2016; the consistent high level active screening in conjunction with improving passive 141

surveillance results in an improving trend through time. In Tandala the proportion reported fluctuated over 142

time from 0.65 (95%: 0.53–0.75) in 2000 and finishing back at 0.65 (95%: 0.0–1.0) in 2016 with the median 143

varying between 0.40 (in 2010) and 0.76 (in 2003); the amount of active screening was substantially lower in 144

2008–2015 than in the 2000–2007 period which is why the average proportion reported is lower in that time 145

period. 146
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Figure S19: Change in the estimated proportion of infections reported over time. Box plots show estimates
for the median (center line), 50% percentiles (boxes) and 95% percentiles (whiskers). Kwamouth is shown on
the left, and Tandala on the right.

S4 Online Results 147

Results for each health zone level fit can be viewed at https://hatmepp.warwick.ac.uk/fitting/v1/. 148

An example screenshot from this graphical user interface is available on page 25, Fig S20. 149

S5 PRIME-NTD criteria 150

It has been recommended that good modelling practises should meet the five key principles relating to com- 151

munication, quality and relevance of analyses - known as Policy-Relevant Items for Reporting Models in 152

Epidemiology of Neglected Tropical Diseases (PRIME-NTD) [S1]. We demonstrate how these PRIME-NTD 153

criteria have each been addressed in Table S4. 154
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Figure S20: Screenshot of the online results website which accompanies this publication.
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Table S4: PRIME-NTD criteria fulfillment. How the NTD Modelling Consortium’s “5 key principles of good
modelling practice” have been met in the present study.

Principle What has been done to satisfy the
principle?

Where in the manuscript is this described?

1. Stakeholder engagement
This study was lead by modellers and guided
by members of the national sleeping sickness
control programme in DRC (PNLTHA-DRC)
– coauthors E Mwamba Miaka and S Chancy.
PNLTHA-DRC have contributed to improved
modeller understanding of the epidemiologi-
cal data and changes to the programme over
time and in different geographic regions, both
of which impacted model fitting over several
rounds of revision (via in-person meetings and
email). The GUI (and several variants of it)
was designed in conjunction with PNLTHA-
DRC to improve communication of the mod-
elling outputs to non-modellers. It has been re-
fined through various in-person meetings with
different collaborators with the goal of provid-
ing understandable, policy-relevant outputs as
well as scientific communication; over 20 non-
modellers have had opportunities to interact
with and provide feedback on the GUI during
development.

Authorship list

2. Complete model documentation
Full model fitting code and documentation
is available through OpenScienceFramework
(OSF). The model is fully described in the
main text and SI.

See Materials and Methods section in
the main text, Section S1.3 and at OSF
(https://osf.io/ck3tr/?view_only=
526344c12324492083db1e49c76136af)

3. Complete description of data used
The original data and how we aggregated the
data for fitting were described in detail in
the main text and SI. Aggregate data can be
viewed next to model fits in our GUI.

See Materials and Methods section, Sec-
tion S1.1 and the GUI (https://hatmepp.
warwick.ac.uk/fitting/v1/)

4. Communicating uncertainty
Structural uncertainty: The variant of the
model presented here (“Model 4”) was chosen
as it had good support compared to other plau-
sible model structures when fitting to data sets
from Yasa Bonga and Mosango health zones
in DRC [S6] and in the Mandoul focus, Chad
[S5].

Structural uncertainty: Materials and Methods
section in main text.

Parameter uncertainty: We provide estimates
for the parameter uncertainty in each health
zone within our posterior parameter maps (ran-
domly sampled values from posteriors) and
joint posterior distributions of fitted parame-
ters (main text and SI) and also show distribu-
tions (histograms) in the GUI.

Parameter uncertainty: Figures 6–7, Fig-
ures S2–S15 and model uncertainty maps
in GUI (https://hatmepp.warwick.ac.uk/
fitting/v1/)

Continued on next page
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Table S4 – continued from previous page
Principle What has been done to satisfy the

principle?
Where in the manuscript is this described?

Prediction uncertainty: We represent uncer-
tainty in our results by: (i) summarising
province-level estimates of changes to new in-
fections; and (ii) providing box and whisker
plots for fitted dynamics (median, 50% and
95% credible intervals).

Prediction uncertainty: (i) Table 3 (ii) Figure 5

5. Testable model outcomes
Previous versions of this model have under-
gone validation exercises (data censoring) to
examine the robustness of the predictive abil-
ity of the model [S5, S8]. Whilst this was not
performed here, the multiple rounds of model
fitting, critical review and refinement in dis-
cussion with PNLTHA produced very clear im-
provements to the fit by altering assumptions
about the passive detection rates and changes
to diagnostic specificity over time. This was
most improved for former Bandundu province
where we are now able to match “humped”
trends in passive detection.

See main text results for explanation of
“humped” trends in passive reporting.
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