Supplementary Information:

Quantifying epidemiological drivers of gambiense human African trypanosomiasis across the Democratic Republic of Congo

Ronald E Crump^{1,2,32*}, Ching-I Huang^{1,22}, Ed Knock^{1,4}, Simon E F Spencer^{1,4}, Paul Brown^{1,2}, Erick Mwamba Miaka⁵, Shampa Chancy⁵, Matt J Keeling^{1,2,3}, and Kat S Rock^{1,2}

¹Zeeman Institute for System Biology and Infectious Disease Epidemiology Research, The University of Warwick, Coventry, U.K. ²Mathematics Institute, The University of Warwick, Coventry, U.K. ³The School of Life Sciences, The University of Warwick, Coventry, U.K. ⁴The Department of Statistics, The University of Warwick, Coventry, U.K. ⁵PNLTHA, Kinshasa, D.R.C.

June 23, 2020

These authors contributed equally to this work.

* Corresponding author: r.e.crump@warwick.ac.uk

S1 Materials and Methods 1988 and 1988 and

S1.1 Data ²

HAT Atlas data The HAT Atlas data for DRC were provided in a spreadsheet format. Records were annually 3 aggregated gHAT case records, aggregated by year, surveillance type and location as defined by multiple fields. There were 117,573 rows in this file; of which 111,408 had an entry in the geolocation (longitude and latitude) ⁵ ϵ fields.

Passive surveillance records with missing or zero case numbers; and active surveillance records with both 7 missing or zero numbers screened and missing or zero case numbers were dropped from the dataset.

This left 111,454 records (105,979 with filled geolocation fields). These records were associated with 23.424 unique combinations of former province, health zone, health area, location and territory identifiers; 20.423 of 10 which had geolocation information and 3,001 did not. We will refer to these 24,424 geographical records as 11 gHAT locations in this document. $\frac{12}{12}$

Table S1: Number of HAT Atlas records with different combinations of former province, health zone and health area recorded.

DRC Shapefile A recent shapefile for DRC was provided by UCLA (Personal communication). The shapefile 13 contains health zones (an organisational unit with a typical population size around 100,000) across DRC; 14 health areas (nested within health zones, these areas are typically home to around 10,000 people) for the 15 former province of Bandundu and part of Equateur and Haut Lomami, and post–2015 province identifiers. ¹⁶ Former province was added to these records (post–2015 provinces being nested within former province).

Additional geographic information The following geographical information was obtained from the Humanitarian Data Exchange [\[S9\]](#page-27-0): ¹⁹

- a health zone shapefile from the United Nations Office for the Coordination of Humanitarian Affairs $_{20}$ $(OCHA);$ 21
- an OCHA file of geolocations of localities; and 22 a
- a file of geolocations of health facilities from the Global Healthsite Mapping Project.

These data were used to assist in matching and locating the gHAT data, by providing alternative spellings of 24 names and potentially geolocations for non-geolocated gHAT locations. The locality and health facility lists 25 were concatenated, and this enlarged locality set and the OCHA health zone map were assigned geographical $_{26}$ identifiers as per our shapefile of choice. 27

Matching HAT Atlas records to DRC shapefile Geographical identifiers associated with the HAT At- \log_{10} HAT location and geographical data were sanitised to assist with matching. This involved removing \approx diacritical marks, conversion to lowercase, collapsing whitespace within identifiers to a single space, removal 30 of leading and trailing whitespace, converting from roman to arabic numerals, removing leading m, n or g 31 from words where they were followed by a consonant, removing leading t from words when followed by an s, 32 and collapsing words into a single string. In addition some specific manual edits were performed during the 33 process as they became apparent. $\frac{34}{34}$

Matching was then applied sequentially to the gHAT locations; such that once a match had been achieved for 35 any given gHAT location it did not act as input to subsequent steps. $\frac{36}{100}$

- 1. gHAT locations with known former province (FP), health zone (HZ), health area (HA) and geolocation $\frac{37}{2}$ were located on the UCLA and OCHA shapefiles. If the FP, HZ and HA matched the values for either 38 the UCLA or OCHA shapefiles at that point, a match was judged to have occurred and the geolocation ³⁹ was accepted. This matched 3,579 of the gHAT locations. 40
- 2. gHAT locations with known former province (FP), health zone (HZ) and geolocation were located on 41 the UCLA and OCHA shapefiles. If the FP and HZ matched the values for either the UCLA or OCHA 42 shapefiles at that point, a match was judged to have occurred and the geolocation was accepted. 43 This matched 13,413 of the gHAT locations. The 16,992 gHAT locations matched in these two steps 44 accounted for $97,520$ of the HAT records (87.5%) .
- 3. Where a gHAT location was associated with a recent active screening event (defined as an active 46 screening record in or after 2012 with a number screened greater than 10), the geolocation was accepted. 47 This matched a further 454 of the gHAT locations to give a total of 100,747 gHAT records matched 48 (90.4%) .
- 4. Matching to the locality information: $\frac{50}{50}$
	- (a) if health zone and location identifier match, the locality's geolocation was assigned to the gHAT $_{51}$ location. Matching 44 gHAT locations, giving a total of 100,811 gHAT records matched (90.5%). 52
	- (b) if former province and location identifier match, the locality's geolocation was assigned to the gHAT $\frac{53}{10}$ location. This matched 331 gHAT locations, giving a total of 101,508 gHAT records matched 54 (91.1%) .
- 5. Matching to shapefile by geographic identifiers only: 56
	- (a) Former province, health zone and health area all match. Matched 523 gHAT locations, giving a 57 total of 102,349 gHAT records matched (91.8%) .
	- (b) Former province and health zone match. Matched 3636 gHAT locations, giving a total of 110,021 $\frac{59}{2}$ gHAT records matched (98.7%). $\frac{1}{60}$ and $\frac{1}{60}$
	- (c) Former province and OCHA shapefile health zone name match. Matched 74 gHAT locations, giving 61 a total of 110,126 gHAT records matched (98.8%) .

- (d) Former province and health area match. Matched 60 gHAT locations, giving a total of 110,195 $\,$ 63 gHAT records matched (98.9%). ϵ
- (e) Health zone name match. Matched 10 gHAT locations, giving a total of 110,210 gHAT records 65 matched (98.9%) .

S1.2 Modelling passive detection and its improvement

There are two sources of passive detection improvements considered in our model: a rapid improvement due 68 to the introduction of the card agglutination test for trypanosomes (CATT) test in all health zones in 1998 69 and a gradual improvement over time in the former Bandundu and Bas Congo provinces around 2008 and τ_0 mid-2015 respectively. Prior distributions and percentiles of parameters related to passive detection and it's $\frac{71}{11}$ improvement over time are summarised in Table [S2.](#page-3-0) $\frac{1}{2}$ 72

Improvement in passive surveillance systems over time is considered across the whole of Bandundu and Bas $\frac{73}{13}$ Congo. The province level staging data in Bandundu suggested that passive surveillance systems in Bandundu $_{74}$ have improved over time, which was confirmed by PNLTHA and is also supported by previous modelling 75 work [\[S2\]](#page-27-1). In Bas Congo, FIND implemented the use of rapid diagnostic tests (RDT) from 2015. Staging τ information which was available at the province–level from 2000–2012 from the paper of Lumbala et al $[S4]$, π and in the HAT Atlas data for 2015 and 2016. To inform the health zone-level analyses, a province level fit π was carried out to the staged case data of Lumbala et al. augmented with the HAT Atlas data aggregated 79 to the former province level for the years 2013-2016. These analyses provided no evidence for improvement in $\frac{80}{100}$ passive surveillance systems (in line with the simple sigmoidal model assumed) for any provinces other than an Bandundu and Bas Congo. For Bandundu and Bas Congo, gamma distributions were fitted to the province 82 level posterior samples of $\eta_{H_{\rm amp}},\,\gamma_{H_{\rm amp}}$ and $d_{\rm steep.}$ The shape (k) and scale (θ) for these fitted distributions $_{\rm ss}$ were used as the parameters of gamma prior distributions of $\eta_{H_{\rm amp}},\,\gamma_{H_{\rm amp}}$ and $d_{\rm steep}$ in all health zones of $_{84}$ Bandundu and Bas Congo. In Bandundu health zones a scaled and shifted beta distribution was used as the ⁸⁵ prior for d_{change} . The use of a broader prior for d_{change} than would have resulted from using the province–level \Box 86 posterior distribution resulted from comparing aggregate health zone-level results with province-level observed 87 data. In Bas Congo health zones a fixed value of 2015.5 was used for d_{change} .

Priors for the health zone-level $\eta_H^{\rm post}$ and $\gamma_H^{\rm post}$ parameters were also informed by the province-level fits. Gamma $_{\rm ss}$ prior distributions were used which had the same mode $(\text{mode} = (k-1) \theta)$ as Gamma distributions fitted to 90 the province-level posterior distribution of the parameters; and a standard deviation $(s.d. = \sqrt{k}\theta)$ of 3×10^{-3} for $\eta_H^{\rm post}$ and 1×10^{-4} for $\gamma_H^{\rm post}$, being arbitrarily selected higher variation than the province-level posterior 92 distributions. And the contract of the contrac

S1.3 Modelling vector control example of the state of

Fig. [S1](#page-5-0) shows the dynamics of tsetse populations (under the simple model) where targets are either moderately 95 effective, with a 60% reduction (lower than in Guinea), or highly effective, with a 90% population density 96 reduction in a year (as seen in Uganda). In the set of th

The function which describes the probability of both hitting a target and dying is time dependent (days) from 98 when the targets where placed: $\frac{99}{2}$

$$
f_T(t) = f_{\text{max}} \left(1 - \frac{1}{1 + \exp(-0.068(\text{mod}(t, 182.5) - 127.75))} \right)
$$
 (S1.1)

and f_{max} is chosen such that the tsetse population after one year is at the observed/assumed percentage $_{100}$ reduction. For the simplified model this is given by $f_{\text{max}} = 0.0305$ for a 60% reduction and $f_{\text{max}} = 0.0750$ 101 for a 90% reduction. 102

S2 Posteriors of fitted parameters 103

$S2.1$ Posterior characteristics for example health zones 104

Table [S3](#page-4-0) shows summaries of posterior distributions of all fitted parameters in two example health zones: ¹⁰⁵ Kwamouth in the former Bandundu province and Tandala in the former Equateur province. Kwamouth is 106 categorised as a high-risk health zone and Tandala is at low-risk. Our fitting results show that Kwamouth has 107 higher R_0 and r but lower active screening specificity, reporting rate and passive detection rate than Tandala. 108

91

Table S2: Parameterisation of passive detection improvement. Notation and brief description of fitted parameters related to passive detection improvement plus their within former province prior distributions and [2.5th, 50th & 97.5th] percentile.

Parameter						
	Province	Prior distribution	Percentiles of prior distribution			
	η_H^{post} – Treatment rate from stage 1, 1998 onwards					
	Bandundu	$\Gamma(3.54, 5.32 \times 10^{-5})$	[4.59, 17.1, 42.9] $\times 10^{-5}$			
	Bas Congo	$\Gamma(12.0, 2.89 \times 10^{-5})$	[1.78, 3.36, 5.68] $\times 10^{-4}$			
	Equateur	$\Gamma(4.92, 4.51 \times 10^{-5})$	$[7.12, 20.7, 45.7] \times 10^{-5}$			
	Kasai Occidental	$\Gamma(10.9, 3.03 \times 10^{-5})$	$[1.64, 3.20, 5.53] \times 10^{-4}$			
	Kasai Oriental	$\Gamma(2.90, 5.87 \times 10^{-5})$	[3.38, 15.1, 41.5] \times 10 ⁻⁵			
	Katanga	$\Gamma(1.29, 8.79 \times 10^{-5})$	[5.88, 86.2, 376] $\times 10^{-6}$			
	Kinshasa	$\Gamma(1.26, 8.91 \times 10^{-5})$	[5.44, 84.4, 376] \times 10 ⁻⁶			
	Maniema	$\Gamma(4.25, 4.85 \times 10^{-5})$	[5.90, 19.0, 44.3] $\times 10^{-5}$			
	Orientale	$\Gamma(1.16, 9.27 \times 10^{-5})$	[4.24, 79.0, 373] $\times 10^{-6}$			
	γ_H^{post} – Treatment rate from stage 2, 1998 onwards					
	Bandundu	$\Gamma(2.45, 1.92 \times 10^{-3})$	[7.59, 40.7, 121×10^{-4}			
	Bas Congo	$\Gamma(1.48, 2.47 \times 10^{-3})$	$[2.54, 28.7, 114] \times 10^{-4}$			
	Equateur	$\Gamma(1.95, 2.15 \times 10^{-3})$	$[4.88, 35.0, 118] \times 10^{-4}$			
	Kasai Occidental	$\Gamma(1.71, 2.29 \times 10^{-3})$	[3.65, 31.9, 116] \times 10 ⁻⁴			
	Kasai Oriental	$\Gamma(1.49, 2.46 \times 10^{-3})$	[2.60, 28.8, 114] \times 10^{-4}			
	Katanga	$\Gamma(1.53, 2.43 \times 10^{-3})$	[2.78, 29.4, 115×10^{-4}			
	Kinshasa	$\Gamma(1.68, 2.31 \times 10^{-3})$	[3.50, 31.5, 116] \times 10 ⁻⁴			
	Maniema	$\Gamma(2.60, 1.86 \times 10^{-3})$	[8.45, 42.3, 122×10^{-4}			
	Orientale	$\Gamma(2.54, 1.88 \times 10^{-3})$	[8.11, 41.7, 122×10^{-4}			
	$\eta_{H_{\text{amp}}}$ – Relative improvement in passive stage 1 detection rate					
	Bandundu	$\Gamma(2.01, 1.05)$	[0.258, 1.77, 5.87]			
	Bas Congo	$\Gamma(5.23, 1.70)$	[2.98, 8.33, 18.0]			
$\gamma_{H_{\text{amp}}}$ – Relative improvement in passive stage 2 detection rate						
	Bandundu	$\Gamma(1.001,5)$	[0.127, 3.47, 18.5]			
	Bas Congo	$\Gamma(1.46, 1.26)$	[0.126, 1.45, 5.81]			
d_{steep} – Speed of improvement in passive detection rate						
	Bandundu	$\Gamma(39.6, 2.70 \times 10^{-2})$	[0.761, 1.06, 1.42]			
	Bas Congo	$\Gamma(3.21, 1.45)$	[1.03, 4.18, 10.9]			

These factors provide some possible explanation for why gHAT is more persistent in Kwamouth, as well as 109 having more cases reported every year. The same state of the state

S2.2 Posterior distribution maps 111

The posterior distribution maps (Figure S2-[S15\)](#page-19-0) illustrate both the level and variability of the parameter 112 estimates between health zones. We partition the national or province level map into tessellated equilateral 113 hexagons, or partial hexagons at national and health zone borders, and then fill each of these shapes with 114 colour based on the value of randomly sampled values from the posterior distribution of the parameter being 115 plotted from the analysis of the health zone in which that hexagon, or partial hexagon, lies. In this way, ¹¹⁶ the 'overall' impression of the colour for a health zone gives an indication of the most probable value of the 117 parameter, while the variation in colour reflects the uncertainty in the parameter estimates.

Notation	Description	Kwamouth	Tandala
R_0	Basic reproduction number (NGM approach)	[1.06, 1.09, 1.14]	[1.006, 1.009, 1.014]
\mathcal{r}	Relative bites taken on high-risk humans	[3.15, 6.61, 10.75]	[1.30, 2.04, 4.26]
k_1	Proportion of low-risk peo- ple	[0.82, 0.90, 0.95]	[0.85, 0.95, 0.99]
$\eta_H^{\rm post}$	Treatment rate from stage 1, 1998 onwards $\text{(days}^{-1})$	$[0.60, 1.24, 2.74] \times 10^{-4}$	$[1.11, 2.74, 4.99] \times 10^{-4}$
$\gamma_H^{\rm post}$	Exit rate from stage 2 (treatment or death), 1998 onwards $(days^{-1})$	[0.46, 1.88, 5.42] $\times 10^{-3}$	$[1.72, 3.60, 8.98] \times 10^{-3}$
$b_{\gamma_H^{\text{pre}}}$	Relative exit rate from stage 2 factor, pre-1998	[0.74, 0.93, 1.00]	[0.54, 0.69, 0.94]
$\overline{\gamma_H^{\rm pre}}$	Exit rate from stage 2 (treatment or death), pre- 1998 $(days^{-1})$	$[0.38, 1.72, 4.88] \times 10^{-3}$	$[1.03, 2.53, 7.15] \times 10^{-3}$
Spec	Active screening diagnostic specificity	[0.9987, 0.9991, 0.9997]	[0.9997, 0.9998, 0.9999]
\boldsymbol{u}	Proportion of stage 2 pas- sive cases reported	[0.18, 0.27, 0.40]	[0.29, 0.39, 0.51]
$d_{\sf change}$	Midpoint year for passive improvement	[2004.4, 2005.8, 2007.3]	—
$\eta_{H_{\rm amp}}$	Relative improvement in passive stage 1 detection rate	[0.92, 2.52, 5.46]	
$\gamma_{H_{\text{amp}}}$	Relative improvement in passive stage 2 detection rate	[0.24, 0.51, 0.97]	
$d_{\sf steep}$	improvement Speed of in passive detection rate $(years^{-1})$	[0.68, 0.94, 1.29]	

Table S3: Posteriors of fitted parameters. Notation, brief description, and [2.5th, 50th & 97.5th] percentile of posteriors for fitted parameters.

Figure S1: Impact of tiny targets on tsetse density. The figures show the how varying target efficacy (red line) impacts tsetse population density (blue line). Target efficacy is measured as the proportion of a host-seeking tsetse which will both hit the tiny target and die as a result. The graphs, reproduced from [\[S7\]](#page-27-3), show the necessary efficacy of targets needed to reduce density by 60% (top) and 90% (bottom) by the end of the first year.

Figure S2: Within health zone posterior distribution of $\eta^{\rm post}_H$, treatment rate from stage 1, 1998 onwards. fill colours are a randomly sampled from the posterior distribution for the health zone.

Figure S3: Within health zone posterior distribution of $\gamma_H^{\rm post}$, the exit rate from stage 2 (treatment or death), 1998 onwards. The fill colours are a randomly sampled from the posterior distribution for the health zone.

Figure S4: Within health zone posterior distribution of the specificity of the diagnostic algorithm, fill colours are a randomly sampled from the posterior distribution for the health zone.

Figure S5: Within health zone posterior distribution of u , the proportion of stage 2 passive cases reported. The fill colours are a randomly sampled from the posterior distribution for the health zone.

Figure S6: Within health zone posterior distribution of k_1 , the proportion of low-risk people. The fill colours are randomly sampled from the posterior distribution for the health zone.

Figure S7: Within health zone posterior distribution of $m_{\rm eff}$; the effective, relative density of tsetse to humans. Fill colours are determined by randomly sampled values from the posterior distribution of m_{eff} from the analysis of the health zone.

Figure S8: Within health zone posterior distribution of r , the relative bites taken on high-risk humans. Fill colours are determined by randomly sampled values from the posterior distribution of r from the analysis of the health zone.

Figure S9: Within health zone posterior distribution of $d_{\sf change}$, the midpoint year for passive improvement, for the former province of Bandundu. Fill colours are ra \mathbf{n} domly sampled from the posterior distribution for the health zone.

Figure S10: Within health zone posterior distribution of d_{steep} , the speed of improvement in passive detection rate, for the former province of Bandundu, fill colours₅are randomly sampled from the posterior distribution for the health zone.

Figure S11: Within health zone posterior distribution of d_{steep} , the speed of improvement in passive detection rate, for the former province of Bas Congo, fill colours are randomly sampled from the posterior distribution for the health zone.

Figure S12: Within health zone posterior distribution of $\eta_{\sf H_{amp}}$, the relative improvement in passive stage 1 detection rate, for the former province of Bandundu17fill colours are randomly sampled from the posterior distribution for the health zone.

Figure S13: Within health zone posterior distribution of $\eta_{\sf H_{amp}}$, the relative improvement in passive stage 1 detection rate, for the former province of Bas Congo, fill colours are randomly sampled from the posterior distribution for the health zone.

Figure S14: Within health zone posterior distribution of $\gamma_{\sf H_{amp}}$, the relative improvement in passive stage 2 d etection rate, for the former province of B andundu 1 gfill colours are randomly sampled from the posterior distribution for the health zone.

Figure S15: Within health zone posterior distribution of $\gamma_{\sf H_{amp}}$, the relative improvement in passive stage 2 detection rate, for the former province of Bas Congo, fill colours are randomly sampled from the posterior distribution for the health zone.

S2.3 Joint posteriors for example health zones 119

Figure S16: Joint posterior distributions for Kwamouth health zone in the former Bandundu province.

Figure S17: Joint posterior distributions for Tandala health zone in the former Equateur province.

S3 Using posteriors to infer time infected and reporting 120

S3.1 Time spent infected 121

In order to provide a straightforward metric to assess the improvements to passive detection over time we $_{122}$ compute the average time spent infected by people not picked up by active screening (for example by people 123 in the high-risk group) using the following equation: 124

$$
T_{\text{infected}}(Y) = \mathbb{P}(\text{Passively detected in S1})
$$

\n
$$
\times \text{Time spend infected in S1}
$$

\n
$$
+\mathbb{P}(\text{Passively detected in S2 or unreported})
$$

\n
$$
\times \text{Time spend infected in S1 and S2}
$$

$$
= \left[\frac{\eta_H(Y)}{\eta_H(Y) + \varphi_H} \times \frac{1}{\eta_H(Y) + \varphi_H}\right] + \left[\frac{\varphi_H}{\eta_H(Y) + \varphi_H} \times \left(\frac{1}{\gamma_H(Y)} + \frac{1}{\eta_H(Y) + \varphi_H}\right)\right]
$$
\n
$$
(S3.1)
$$

The inferred change in average time spent infected in Kwamouth and Tandala is shown in Figure [S18;](#page-22-0) in 125 Kwamouth health zone the time has decreased due to improvements in passive surveillance. In Kwamouth 126 the average time changes from 1153 (95% CI: 676–2387) days to 784 (95% CI: 546–1265) days. In Tandala $_{127}$ no improvement in passive detection over time was modelled, and hence the amount of time spent infected 128 remains at 716 days on average (95% CI: 548–974). Active screening will have further brought these durations 129 down for those in the population who participate in active screening (low-risk individuals). It is interesting to 130 note that our estimates for mean time spent infected are a little larger than those estimated by Checchi et al 131 [\[S3\]](#page-27-4), even though their estimate for stage 2 duration informed our prior on $\gamma_H^{\rm post}$; their combined estimate of 132 expected duration $(S1$ and $S2$ with no treatment) is 778 days $(95\%$ CI: 525–1232).

Figure S18: Change in the average time spend infected if not picked up by active screening. Kwamouth is shown on the left, and Tandala on the right.

S3.2 Proportion of successful treatments or deaths reported 134

In order to estimate the change in the proportion of infections reported over time we use sampled model 135 outputs of deaths and case reporting (active and passive for both stages): ¹³⁶

Proportion reported =
$$
1 - \frac{Deaths}{Active1 + Active2 + Positive2 + Passing + Passing + Positive2 + Does}
$$

\n(S3.2)

The estimated change in proportion reported over time in Kwamouth and Tandala is shown in Figure [S19;](#page-23-0) in 137 both locations the proportion of reporting is inferred to vary in time, although the overall decrease in infection 138 and case reporting results in larger credible intervals for 2016, especially in Tandala. In Kwamouth the model ₁₃₉ estimates the proportion of cases and deaths reported changed from 0.67 (95%: 0.53–0.82) in 2000 to 0.81 140

(95%: 0.62–0.93) in 2016; the consistent high level active screening in conjunction with improving passive ¹⁴¹ surveillance results in an improving trend through time. In Tandala the proportion reported fluctuated over ¹⁴² time from 0.65 (95%: 0.53–0.75) in 2000 and finishing back at 0.65 (95%: 0.0–1.0) in 2016 with the median 143 varying between 0.40 (in 2010) and 0.76 (in 2003); the amount of active screening was substantially lower in 144 2008–2015 than in the 2000–2007 period which is why the average proportion reported is lower in that time ¹⁴⁵ period. The contract of the co

Figure S19: Change in the estimated proportion of infections reported over time. Box plots show estimates for the median (center line), 50% percentiles (boxes) and 95% percentiles (whiskers). Kwamouth is shown on the left, and Tandala on the right.

S4 Online Results 147

Results for each health zone level fit can be viewed at <https://hatmepp.warwick.ac.uk/fitting/v1/>. $_{148}$ An example screenshot from this graphical user interface is available on page [25,](#page-24-0) Fig [S20.](#page-24-0) 149

S5 PRIME-NTD criteria 150

It has been recommended that good modelling practises should meet the five key principles relating to com- 151 munication, quality and relevance of analyses - known as Policy-Relevant Items for Reporting Models in 152 Epidemiology of Neglected Tropical Diseases (PRIME-NTD) [\[S1\]](#page-27-5). We demonstrate how these PRIME-NTD 153 $\frac{1}{154}$ criteria have each been addressed in Table [S4.](#page-25-0)

Figure S20: Screenshot of the online results website which accompanies this publication.

Table S4: PRIME-NTD criteria fulfillment. How the NTD Modelling Consortium's "5 key principles of good modelling practice" have been met in the present study.

Table S4 – continued from previous page

$References$ 156

- [S1] Matthew R. Behrend, María-Gloria Basáñez, Jonathan I. D. Hamley, Travis C. Porco, Wilma A. Stolk, 157 Martin Walker, Sake J. de Vlas, and for the NTD Modelling Consortium. Modelling for policy: The five 158 principles of the neglected tropical diseases modelling consortium. PLOS Neglected Tropical Diseases, 159 14(4):1–17, 04 2020. 160
- [S2] M Soledad Castaño, Martial L Ndeffo-Mbah, Kat S Rock, Cody Palmer, Edward Knock, Erick Mwamba 161 Miaka, Joseph M Ndung'u, Steve Torr, Paul Verlé, Simon E F Spencer, and Others. Assessing the impact 162 of aggregating disease stage data in model predictions of human African trypanosomiasis transmission 163 and control activities in Bandundu province (DRC). PLoS Neglected Tropical Diseases, page e0007976, 164 **2020.** The set of the
- [S3] F Checchi, S Funk, D Chandramohan, D T Haydon, and F Chappuis. Updated estimate of the duration ¹⁶⁶ of the meningo-encephalitic stage in gambiense human African trypanosomiasis. BMC Research Notes, 167 8(1):292, July 2015. ¹⁶⁸
- [S4] Crispin Lumbala, Pere P Simarro, Giuliano Cecchi, Massimo Paone, José R Franco, Victor Kande Betu Ku 166 Mesu, Jacquies Makabuza, Abdoulaye Diarra, Shampa Chansy, Gerardo Priotto, et al. Human african ¹⁷⁰ trypanosomiasis in the democratic republic of the congo: disease distribution and risk. International $_{171}$ journal of health geographics, $14(1):20$, 2015 .
- [S5] Mahamat Hissene Mahamat, Mallaye Peka, Jean-baptiste Rayaisse, Kat S Rock, Mahamat Abdelrahim ¹⁷³ Toko, Justin Darnas, Guihini Mollo Brahim, Ali Bachar Alkatib, Wilfrid Yoni, Inaki Tirados, Fabrice 174 Courtin, Samuel P C Brand, Cyrus Nersy, Oumar Alfaroukh, Steve J Torr, Mike J Lehane, and Philippe ¹⁷⁵ Solano. Adding tsetse control to medical activities contributes to decreasing transmission of sleeping 176 sickness in the Mandoul focus (Chad). *PLoS Neglected Tropical Diseases*, $11(7)$:e0005792, 2017.
- [S6] Kat S Rock, Steve J Torr, Crispin Lumbala, and Matt J Keeling. Quantitative evaluation of the strategy 178 to eliminate human African trypanosomiasis in the DRC. Parasites & Vectors, 8(1):532, 2015.
- [S7] Kat S Rock, Steve J Torr, Crispin Lumbala, and Matt J Keeling. Predicting the impact of intervention 180 strategies for sleeping sickness in two high-endemicity health zones of the Democratic Republic of Congo. 181 PLoS Neglected Tropical Diseases, 11:e0005162, 2017.
- [S8] K.S. Rock, A. Pandey, M.L. Ndeffo-Mbah, K.E. Atkins, C. Lumbala, A. Galvani, and M.J. Keeling. 183 Data-driven models to predict the elimination of sleeping sickness in former Equateur province of DRC. 184 $Epidemics, 18:101-112, 2017.$
- [S9] United Nations Office for the Coordination of Humanitarian Affairs. The Humanitarian Data Exchange. 186