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Derivation of the serial interval distribution 

In order to derive the serial interval probability distribution, we decompose the instant of first 

symptoms in terms of simpler random variables and use this expression to derive the serial 

interval in terms of these random variables. Then, we use the serial intervals measured from 

our data to choose a distribution for these random variables and consequently obtain the 

serial interval distribution.  

 

The instant of first symptom onset 𝑡sym,1 and 𝑡sym,2 for the primary and secondary case 

respectively is given by the sum of the instant of infection 𝑡inf, the latent period Δ𝑡lat (that is, 

the time the infection takes to become transmissible) and the interval Δ𝑡int between the end 

of latent period and the instant of first symptoms: 

{
𝑡sym,1 = 𝑡inf,1 + Δ𝑡lat,1 + Δ𝑡int,1

𝑡sym,2 = 𝑡inf,2 + Δ𝑡lat,2 + Δ𝑡int,2
. 

Because only the day of symptom onset was available, the exact time of first symptoms is 

unknown. For this reason, denoting as ⌊𝑥⌋ the largest integer less than or equal to 𝑥 (the floor 

operator), the measured date of first symptoms for the primary and secondary patients is 

respectively ⌊𝑡sym,1⌋ and ⌊𝑡sym,2⌋. Hence, the measured serial interval Δ𝐷sym, defined as the 

difference of dates of symptoms, is given by 

Δ𝐷sym = ⌊𝑡sym,2⌋ − ⌊𝑡sym,1⌋ = ⌊𝑡inf,2 + Δ𝑡lat,2 + Δ𝑡int,2⌋ − ⌊𝑡inf,1 + Δ𝑡lat,1 + Δ𝑡int,1⌋. 

Defining Δ𝑡tra as the time the primary patient takes to infect the secondary patient counting 

from the instant where the disease can be transmitted, the instant of infection of the 

secondary patient can be written as 𝑡inf,2 = 𝑡inf,1 + Δ𝑡inc,1 + Δ𝑡tra, which can be substituted 

in the expression of Δ𝐷sym, yielding  

Δ𝐷sym = ⌊𝑡inf,1 + Δ𝑡lat,1 + Δ𝑡tra + Δ𝑡lat,2 + Δ𝑡int,2⌋ − ⌊𝑡inf,1 + Δ𝑡lat,1 + Δ𝑡int,1⌋. 



We modelled 𝑡inf,1 as a uniform random variable in the interval [0, 1] because Δ𝐷sym is only 

affected by the non-integer part of 𝑡inf,1. In order to assign distributions for Δ𝑡tra, Δ𝑡lat,𝑘 and 

Δ𝑡int,𝑘 (𝑘 = 1,2), we assumed that each of these variables may follow one of the following 

distributions: Log-normal, Gamma, Poisson, Exponential, Weibull, Chi-Squared and zero 

(that is, a deterministic variable that is equal to zero). Then, considering that Δ𝑡lat,1 and 

Δ𝑡int,1 have the same distribution as Δ𝑡lat,2 and Δ𝑡int,2 respectively, we estimated the 

distribution of Δ𝐷sym for all 73 = 343 possible distributions of Δ𝑡tra, Δ𝑡lat,𝑘 and Δ𝑡int,𝑘 (𝑘 =

1,2) through Monte Carlo simulation using 108 realizations and choosing the parameters of 

the distributions using the maximum likelihood estimator. Hence, we generated 343 different 

models for Δ𝐷sym and picked the model that yields the best Akaike Information Criterion 

(AIC) when fitted to our data. Note that even though our method returns a distribution for 

Δ𝐷sym, the models for Δ𝑡tra, Δ𝑡lat,𝑘 and Δ𝑡int,𝑘 obtained by our method  cannot be interpreted 

as estimates for the distributions of these variables, since different models for Δ𝑡tra, Δ𝑡lat,𝑘 

and Δ𝑡int,𝑘 may yield the same distribution for Δ𝐷sym. 

  

The best model we obtained uses Δ𝑡tra = 0 and assigns a chi-squared distribution to Δ𝑡lat,𝑘 

and Δ𝑡int,𝑘 (𝑘 = 1, 2) with means 𝑎 = 3.03 and 𝑏 = 0.95 days respectively. Hence, our 

model for Δ𝐷𝑠𝑦𝑚 is 

Δ𝐷sym = ⌊𝑡inf,1 + Δ𝑡lat,1 + Δ𝑡lat,2 + Δ𝑡int,2⌋ − ⌊𝑡inf,1 + Δ𝑡lat,1 + Δ𝑡int,1⌋, 

where 𝑡inf,1 is a uniform random variable in the interval [0,1], Δ𝑡lat,1 and Δ𝑡lat,2 are 

independent chi-squared random variables of mean 𝑎 = 3.03 and Δ𝑡int,1 and Δ𝑡int,2 are 

independent chi-squared random variables of mean 𝑏 = 0.95. This serial interval model has 

only two parameters (𝑎 and 𝑏), which is the same number of parameters used in many other 



serial interval models, as Gaussian distribution, log-normal distribution and Weibull 

distribution [1].  

 

It is worth noting that if the uncertainty on Δ𝐷sym caused by the specification of the date of 

first symptoms instead of the exact instant of first symptoms is ignored, the floor operator is 

not needed, thus Δ𝐷sym is simply modelled as the difference of two chi-squared random 

variables 𝑋 and 𝑌 as Δ𝐷sym = 𝑋 − 𝑌, where 𝑋 = Δ𝑡lat,2 + Δ𝑡int,2 and 𝑌 = Δ𝑡int,1. In this 

case, the mean measured serial interval is simply given by 𝑎, the expected value of Δ𝑡lat,𝑘. 

 

In order to assess the reliability of the estimated parameters, we resampled the measured 

serial intervals using bootstrapping with 1,000 bootstrap samples, and we fitted our model to 

each resampled dataset, obtaining 1,000 values for the parameters 𝑎 and 𝑏. The estimated 

mean (standard deviation) of 𝑎 and 𝑏 are respectively 2.99 (0.37) and 0.94 (0.47), and their 

95% confidence intervals are respectively [2.26, 3.73] and [0.19, 2.03].  

Supplemental Table 1 compares the mean, median, standard deviation probability of 

negative serial intervals between the observed data and the model. It also contains the mean, 

variance and 95% confidence interval of these statistics for our model, which were estimated 

using the data resampled with bootstrapping. A goodness-of-fit test using 1,000 bootstrap 

samples was also performed, following Szucs [2] and Stute et al. [3].  The Kolmogorov-

Smirnov distance between the empirical distribution and the distribution obtained with the 

estimated parameters was 0.267, while the threshold for a significance level of 0.05 was 

0.685.   

 

 

 



 

 Mean Median Standard 

deviation 

Probability of negative 

serial intervals 

Measured serial intervals 2.97 3 3.29 6.15% 
Model for serial intervals 3.03 3 3.16 7.89% 
Mean (bootstrapping) 2.99 2.53 3.13 7.78% 
Standard deviation 

(bootstrapping) 
0.37 0.51 0.31 3.47% 

95% confidence interval 

(bootstrapping) 
[2.26, 3.73] [2, 3] [2.55, 3.80] [1.72%, 15.29%] 

 

Supplemental Table 1. Comparison of mean, median, standard deviation and probability of negative 

serial intervals computed directly from the serial intervals measured from data and from our model for 

the serial intervals. This table also contains the mean, standard deviation and 95% confidence interval 

for each statistic, which were obtained from our serial interval model using bootstrapping.  

 

Alternative distributional approaches 

Du et al. [4] present a large data set of transmission pairs in China extracted from media and 

government reports. 12% of their infection pairs reported negative serial intervals. They find 

that their data are best fit by a normal distribution. For comparison we have fit the observed 

Brazilian serial intervals with a normal distribution using maximum likelihood estimation, as 

shown in Supplemental Figure 1, with the distribution from Du et al. [4] superimposed. The 

Gaussian distribution fitted to our data has mean 2.97 days and standard deviation 3.29 days. 



 

Supplemental Figure 1. Brazilian serial interval data with the best fit normal distribution, our 

proposed serial interval distribution and the distribution taken from Du et al. [1] superimposed for 

comparison. 

 

It is conceivable that very short, or negative serial intervals represent clusters in which a third 

(unreported) individual was the true source, making these values less reliable. Other authors 

[5] have dealt with this issue by censoring the observed observations to only positive values. 

Taking this approach, we removed four negative valued and seven zero-valued serial 

intervals leaving 54 observations. The mean of these truncated values was 3.83 with a 

standard deviation of 2.8 and median of 3 days.  We tested normal, lognormal, Gamma and 

Weibull distributions. The best fitting distribution by the Akaike information criterion was 

lognormal with meanlog of 1.09 and sdlog 0.72. See Supplemental Figure 2. 



 

Supplemental Figure 2. Serial interval data reported to the Brazilian Ministry of Health truncated to 

include only positive values. This is overlaid with the best fit lognormal distribution. 
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