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1 The standard SIR ODE model

1.1 Model formulation and elements of analysis

Denote by x is the number of susceptibles, y the number of infecteds, and z
is the number of removed. Consider the standard SIR system,

ẋ = −βxy
N

, (1)

ẏ =
βxy

N
− γy, (2)

ż = γy (3)
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with initial conditions

x(0) = x0N, y(0) = y0N, z(0) = z0N.

Here β is the rate of infection and γ the rate of removal. Let us denote

r0 =
β

γ
.

Let us define function u as follows:

γt =

∫ u

u0

dξ

ξ(−r0 − ln ξ + Cξ)
, (4)

where we used the following combination of constants:

C = r0x0e
r0z0 . (5)

This constant is important for defining the behavior of the solution. Note
that the values x0 and z0 belong to the simples, x0 + z0 ≤ 1, x0, z0 ≥ 0. The
maximum value of C corresponds to x0 = 1/r0 and z0 = 1 − x0, and igiven
by Cmax = er0−1.

The solution of the SIR model is given in terms of u, see [?]:

x(t) =
N

r0
Cu, (6)

y(t) =
N

r0
(lnu− Cu+ r0) , (7)

z(t) = −N
r0

lnu. (8)

Note that only values of u that satisfy u ≤ 1 give biologically relevant solu-
tions. The constant u0 can be found e.g. from the initial condition applied
to equation (8),

u(0) = u0 = e−r0z0 . (9)

In particular, if z0 = 0 we have u0 = 1, and if z0 > 0 we have u0 < 1.
Note that the number of infected individuals will increase initially if and

only if
x0r0 > 1, (10)

that is, an epidemic will develop only if this condition is satisfied.
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We are interested in three measures of the epidemic: the final epidemic
size (defined as z∞ = limt→∞ z(t)), the maximum value of y(t), ymax, and
the width of the peak of y(t) (the latter two quantities are only defined if
condition (10) holds)).

The peak of infection. To find ymax, we differentiate (7), to see that
y′ = 0 if u′ = 0 or if

u = C−1. (11)

Under the former choice, we can calculate dt/du from (4) and invert it to
find

u′

γ
= u(−r0 − lnu+ Cu) = 0,

which yields either u = 0 (which is not biologically relevant) or y = 0 from
(7). Under choice (11) we have from (7)

ymax = N

(
− lnC

r0
− 1

r0
+ 1

)
.

The time at which this maximum is reached is found from equation (4)
evaluated at (11).

The width of the peak. Using equation (7), we can find the 2nd deriva-
tive of y(t) and substitute equation (11), such that it corresponds to y′ = 0
(the peak). We obtain

y′′ =
−Nγ2

r0
(1− r0 + lnC)2.

To estimate the width of the peak, let us approximate it as a parabola with
a maximum value of ymax. Finding the x-intercepts, we get an estimate of
the width as

tw = 2

√
y′′

ymax

=
2

γ
√
r0 − 1− lnC

.

The final epidemic size. To find the final epidemic size, we consider
equation (7), set y(t) = 0 and solve for u. Then we have

z∞ = lim
t→∞

z(t) = −N
r0

lnu∞, lnu∞ − Cu∞ + r0 = 0. (12)

3



Note that the above equation for u∞ can be solved graphically by finding
intersections of lnu and −r0 + Cu with 0 < u < 1. Note that if C < r0,
there is a single intersection with u ≤ 1. When C = r0, a second point of
intersection appears with u = 1. If r0 ≤ C < er0−1 = Cmax, two intersections
exist, and finally there is a single intersection at u = 1/C when C = Cmax.
In the case when there are two intersection points, u∞ corresponds to the
smaller one (because this corresponds to the first time when y becomes zero).
Also, we can see that the lower intersection value, u∞, increases with C.

We can see that all three measures of the epidemic depend on the initial
conditions through quantity C, equation (5). In particular, ymax decreases
with C, tw increases with C, and the final epidemic size, z∞, decreases with
C (because u∞ increases). In other words, as C increases, the peak of infec-
tion becomes lower and flatter, and the final epidemic size decreases. The
maximum value of C is reached at x0 = 1/r0, z0 = 1− x0, and the minimum
value corresponds to x0 = 1/r0, z0 = 0.

1.2 Using the SIR ODEs to model intervention by so-
cial distancing

One can use this model to describe the effect of social distancing in the
following way. Let us use N = 1 and γ = 1, which is equivalent to rescaling
the population size byN and time by γ. Suppose the epidemic starts at t0 = 0
and is characterized by a certain initial condition (x(0) = x0, z(0) = z0) and
a certain β, which we denote by β1. Then, at time t1 > 0, social distancing is
implemented, which is manifested in a reduction of β below its original value,
β2 < β1. Finally, at time t2 > t1, social distancing is relaxed. For simplicity,
we will assume that it is relaxed completely, meaning that β returns to its
original value, β1.

This process can be described by using the characteristic lines,

r0xe
r0z = C.

In figure S1(a), such lines for β1 = 2 are shown by black contour plots in the
x−z simplex. Let us suppose that the epidemic starts with a particular initial
condition (x0 = 0.999, z0 = 0, see the lower blue line in figure S1(a)). Then,
in the absence of intervention, the trajectory of the epidemic in terms of x, z
coordinates will trace the corresponding characteristic upwards (increasing
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the z-coordinate), starting from its initial point (in our case corresponding to
its x-intercept), and ending at the point where the characteristic line crosses
the diagonal, x + z = 1. The resulting z value is the final epidemic size,
which can be found as the solution of r0(1 − z)er0z = C (this is he same as
solution (12)).

Figure S1: SIR ODE model used to study intervention strategies. (a) For particular
parameters values, epidemic trajectories (corresponding to different initial conditions) are
shown as black lines in the x − z simplex. Upon intervention, the value of infectivity
parameter decreases from β1 to β2, resulting in a new family of characteristic lines shows by
red and green lines. The lower blue trajectory corresponds to the example of the epidemc
illustrated in the main text and in panels (b,c). The upper blue trajectory corresponds to
the target final epidemic size of panel (b). The green trajectories are intervention strategies
that are capable of achieving the target epidemic size, while red ones are not. The blue
arrows indicate an example of intervention that results in the target final epidemic size.
(b) The length of the intervention as a function of the time t1 of intervention start. (c)
The final epidemic size as a function of intervention start and stop times, t1 and t2. Darker
colors correspond to lower values. Parameters are β1 = 2, β2 = 1.1, x0 = 0.999, z0 = 0.

Intervention by social distancing corresponds to lowering β to its value
β2. The corresponding trajectories are denoted by green and red lines. They
are steeper than the black lines. Intervention would correspond to hopping
from the blue line to one of the green (or red) lines, and will result in a
smaller finite epidemic size. In the scenario of interest here, after a finite
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period of intervention that starts at time t1, the intervention is stopped at
time t2, which corresponds to a return to one of the characteristic lines of
the original family. One example is shown by blue arrows in figure S1(a).

In panel (b) we solve a specific optimization problem. Given an epidemic
(the lower blue line of panel (a)), let us suppose that we have a target final
epidemic size that is smaller than that of the original trajectory. In the
example here we have z1∞ = 0.797, and we chose z2∞ = 0.71. The target
epidemic size corresponds to the second blue trajectory of panel (a). Suppose
further than β2 is fixed. Is there a way to achieve this result with a minimum
intervention time? In other words, the goal is to minimize the quantity
∆t = t2 − t1. The target epidemic size can be reached by hopping on one of
the green trajectories and then hopping onto the second blue line (relaxing
the intervention) some time later. There is an infinite number of ways of
doing this (one of them is shown). Note that there are some restrictions.
For example, if we start intervention too early (one of the red dashed lines
that start near the corner x0 = 1, z0 = 0), the target epidemic size cannot be
achieved. If we never relax intervention (which is not a practical solution),
then the final epidemic size will be relatively small (smaller than target), but
a relaxation of the intervention at any finite time will lead to a finite epidemic
size larger than target. Similarly, if we wait too long (the red trajectories
in the left half of the graph), again, the finite epidemic size will be larger
than target. Only one of the trajectories in the green region can result in the
desired finite epidemic size. Panel (b) shows that there is an optimal such
trajectory that minimizes the time of intervention. Again starting too early
or too late will lead to a very long intervention time.

In panel (c) we study the final epidemic size as a function of the variables
t1 and t2. Again, starting with the lower of the blue trajectories, we vary t1
and t2, but this time we do not constrain what final trajectory we choose, but
simply relax intervention at time t2, which puts us on one of the trajectories
in the black family of panel (a). In panel (c), a contour plot of the final
epidemic size is presented, where darker shading corresponds to lower values
of z∞. We can see that increasing t2 will always result in a decrease of z∞ (the
longer the intervention, the lower the final epidemic size). The dependence on
t1 however is non-monotonic, and, as already hinted by the previous results,
there is an optimal time to start the intervention.
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1.3 Intervention in the absence of relaxation

To investigate the dynamics of a single stage intervention, we take t2 →∞,
and find the characteristics of the infection peak and the final epidemic size.
In figure S2, we vary t1 and look at the peak of infection (panel (a)) and
the number of removed individuals (panel (b)). We can see that delaying
intervention, while resulting in a faster overall infection decay, leads to a
higher infection peak and a higher finite epidemic size.

Figure S2: Intervention in the absence of relaxation. The number of infected
(a) and removed (b) individuals are shown as functions of time. The black
lines correspond to no intervention. The blue lines correspond to intervention
starting at different times, t1. The parameters are β1 = 2; β2 = 1.1;x0 =
0.999; z0 = 0.

1.4 Dependence on the transmission rate during the
intervention

Here we explore the effect of the reduction of β on the infection peak, ymax,
and the final epidemic size z∞. In figure S3 we perform intervention simula-
tions for two values of β2, with the higher value corresponding to the solid
lines and the lower value to dashed lines. For comparison, the trajectory in
the absence of intervention is shown in blue. The number of infecteds (y)
is plotted as a function of t, and the intervention time-period (t1 ≤ t < t2)
is shown in read, while the relaxation period (t ≥ t2) is shown in black.
Trajectories for six different values of t2 are shown. We can see that if the in-
tervention time is very short, the infection peak after the relaxation is nearly
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as high as that in the absence of intervention, and the two values of β2 lead
to nearly identical peak heights.

Figure S3: Dependence on the severity of intervention. The numbers of infected indi-
viduals are shown as function of time; different panels correspond to different times of
intervention relaxation (t2), while t1 is the same for all panels. Blue lines correspond to no
intervention (and also the curve before intervention). Red is the intervention period and
black is after the intervention stops. Solid curves correspond to higher and dashed curves
to lower values of β2. The parameters are β1 = 2, β2 = 1.1 (solid), β2 = 0.95 (dashed),
x0 = 0.999, z0 = 0.

As t2 increases, we can see that the peak becomes lower, especially the
peak corresponding to the higher value of β2. The peak corresponding to
the lower β2 does not decrease much with t2 and is always higher than that
for the higher β2. In other words, the higher the “intervention” β value, the
lower the peak.

Figure S4 varies the values of β1 while keeping t1 and t2 fixed. The nine
panels correspond to nine different values of β and present the time-series
of infecteds, in the absence (blue) and in the presence (red and black) of
intervention. We can see that as β2 increases, the peak of infection decreases.
Panel (b) shows the peak height (ymax) during the relaxation phase (the
“relaxation peak”) as well as the peak height during the intervention phase
(the “intervention peak”), as functions of β2. The height of the relaxation
peak becomes negligible for high values of β2, because as β2 → β1, the
intervention becomes nonexistent, but instead, the infection peaks during the
intervention phase. The regime where the intervention peak is higher than
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the relaxation peak corresponds to intervention that is not effective. The final
epidemic size (z∞) as a function of β2 is shown in panel (c). The final epidemic
size, after first dropping for intermediate values of β2, eventually increases
back to the value that characterizes the epidemic without intervention. So,
to conclude, there is an optimal, intermediate, value of β2 that corresponds
to the lowest infection peak and the lowest finite epidemic size.

Figure S4: Varying the severity of intervention. (a) The number of infecteds as a function
of time, for different values of intervention infectivity parameter. Blue lines correspond to
before intervention (and in the absence of intervention), red curves during the intervention,
and black after the intervention. (b) The hight of the peaks of the infecteds as functions
of β2 for the relaxation (black) and intervention (red) peaks. (c) The final epidemic size
as a function of β2. The parameters are β1 = 2;x0 = 0.999; z0 = 0; t1 = 3; t2 = 15.

2 Growth laws in the context of edge removal

for different types of networks

2.1 Edge removal and the plateauing of the infections

Depending on the type of random network, infection spread can happen dif-
ferently. Moreover, as edges are removed, the kinetics of spread will change,
and this change also depends on the underlying type of network. To this end,
we have investigated the spread of infection in 4 types of random graphs,
listed below. They were constructed by using the built-in procedure Ran-
domGraph in Mathematica, using the appropriate distributions:
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Figure S5: The mean final epidemic size (measured as the fraction of all nodes that
became infected) as a function of the proportion of edges removed, for 4 different network
types. The epidemic size is obtained by averaging among the runs that resulted in 200 or
more infected individuals, from the total of 100 runs per condition. Pinf = 10−4, Premove =
1.5× 10−4.

• Small world (Watts-Strogarz) networks, constructed from a circular
graph with 6 nearest neighbors on each side, and the probability of
rewiring p = 0.1.

• Scale-free (Barabasi-Albert) networks with the minimum of 6 connec-
tions per node.

• Spatial networks built according to the spatial distribution for graphs
with N vertices uniformly distributed over the unit square and edges
between vertices that are at distance at most r = 0.02.

• Spatial scale free (“hybrid”) networks which were constructed as a cross
between spatial and scale-free networks. To build such a network we
created an adjacency matrix W1 for the spatial network exactly as
above, and an adjacency matrix for a scale-free network (but unlike
the network above, we assumed the minimum of one edge per node).
Then the hybrid graph used the adjacency matrix W1 +W2.

In all the numerical examples, we used networks with N = 105 nodes. For
each network, we performed 100 simulations, where we start with one ran-
domly infected agent and stop when there are no more infected individuals.
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Figure S6: Same as figure S5, with more detail. The mean total number
of cases is plotted as a function of time, for the 4 networks. In each panel,
different lines correspond to the different proportion of edges removed; the
lower the curve the lower the fraction of retained edges.

Next, we removed a certain fraction of randomly chosen edges and performed
similar simulations with such “reduced” networks, to study the effect of edge
removal (or social distancing) on the epidemic spread. Figure S5 shows the
mean epidemic size (as the fraction of the N = 10000 nodes) developing on
the four networks, when we remove different fractions of edges. We observe
that there is a monotonic dependence of the final epidemic size on the density
of the remaining network: the more edges are removed, the smaller the result-
ing size. Also, different networks demonstrate different degrees of robustness
against edge removal. In particular, for the chosen network parameters, the
spatial network is most “vulnerable” among the four and results in extinc-
tion for the smallest proportion of edges removed. More details can be seen
in the time-series presented in figure S6, where for each network, we plot
the mean total number of cases as a function of time, for different fractions
of removed connections. The more corrections are removed, the slower the
epidemic growth, the lower the final epidemic size, and the fewer runs result
in an epidemic (the latter trend is not shown here, as the averaging was
performed conditioned on the epidemic rising above 200 cases).

Figure S7 displays typical stochastic runs for both original (uncut) net-
works and their counterparts with a fraction of edges randomly removed.
We can see that all four original networks are characterized by the same pat-
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Figure S7: The effect of edge removal in 4 types of network. For each of the networks,
Watts-Strogatz (a), Scale-free (b), Spatial (c) and Spatial scale free (d), typical individual
stochastic runs are presented. For each panel (a-d), the first row of subpanels corresponds
to the original (uncut) network, and the second row to the network that was obtained from
the original one by randomly removing the fraction of edges that is indicated in red. Both
the number of infected individuals and the total number of cases are plotted as functions
of time. Pinf = 10−4, Premove = 1.5× 10−4.

tern of infection time-series (y(t)): the number of infecteds rises and then
falls relatively sharply. A different pattern is observed in three out of four
cut networks: the number of infecteds does not experience a sharp hump but
instead remains relatively flat (nearly constant), entering a period of plateau-
like behavior, before eventually decreasing. This can be seen in panels (a),
(c), and (d), but not in panel (b) which corresponds to scale-free networks.

To study the formation of plateaus systematically, we performed large
numbers of computer simulations with different types of networks and differ-
ent degrees of edge removal. Figure 3 of the main text shows results for spatial
networks. In figure S8 we also provide results for scale free (Barabasi-Albert)
and hybrid networks. In these simulations, the networks with a fraction of
connections randomly removed were used after the epidemic rose to size 100
individuals. While the spatial network exhibits a well defined plateau dy-
namics, the scale-free network shows a steep rise and drop in the number
of infections, resembling more the ODE dynamics. As expected, the hybrid
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network shows intermediate behavior.

Figure S8: The mean number of infected individuals as a function of time for an epidemic
on a spatial, Barabasi-Albert, and hybrid network (N = 105, constructed as described in
this section), with edges randomly removed. For the spatial network, 1/2 connections are
kept; for Barabasi-Albert, 1/9 of the connections are kept; for the hybrid network, 1/5 of
the connections are kept. The other parameters are Pinf = 10−4, Premove = 1.5 × 10−4.
Averages over 200 runs are plotted together with standard errors (dashed lines). Pinf =
10−4, Premove = 1.5× 10−4.

2.2 Parameter dependence of plateau dynamics

The length of the plateau phase following intervention depends on several
parameters, including the degree to which the network’s connections are
removed, the timing of the intervention and the relative removal/infection
rates. In figure S9 we explore the plateau region in spatial networks under
varying parameters. Panel (a) shows the existence of plateau under milder
distancing measures compared to figure 3F of the main text. The colored
lines correspond to different epidemic sizes when the distancing measures are
first implemented; these take values 50, 100, 200, . . . , 700. As in figure 3F of
the main text we observe that an earlier intervention start leads to a flatter
plateau, but weaker distancing measures lead to a shorter plateau compared
to the stronger measures of figure 3F.

Panel (b) on figure S9 shows that the length of the plateau depends on the
removal rate of the epidemic (relative to the infection rate). Higher removal
rates correspond to smaller epidemic sizes and shorter plateaus
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Figure S9: Examples of plateau dynamics on spatial networks with different parameters.
(a) Similar as figure 3F of the main text, except the network upon social distancing retains
2/3 of its edges. Social distancing is initiated when the number of infected individuals
reached size 50, 100, 200, 300, 400, 500, 600, 700. Parameters are as in figure 3F of the
main text. Averages over 900 runs are plotted. (b) The number of infecteds as a function
time for social distancing where 1/2 (blue) and 2/3 (red) of edges are retained, and the
removal rate is higher Premoval = 3 × 10−4. Social distancing was initiated when the
number of infected individuals reached 200. The rest of the parameters are as in figure
3F. Averages over 200 runs are plotted together with standard errors (dashed lines).

2.3 Social distancing and relaxation dynamics on net-
works

Next we turn our attention to implementing social distancing measures fol-
lowed by subsequent relaxation. In the models presented here, social distanc-
ing is modeled as removing random edges in the social network. Relaxation
of social distancing amounts to restoring the original network completely.
Figure 4 of the main text shows results for spatial networks. In these sim-
ulations, the starting conditions for social distancing are always the same:
for each simulation, a given fraction of the edges is removed when the pop-
ulation of infecteds reaches a fixed number (100 individuals). What varies
among simulations in panels of main figure 4(c) is the time of relaxation. We
observed two interesting trends for spatial networks: (1) if the length of the
social distancing stage is extended, the second wave of the epidemic becomes
less pronounced, but this effect is only significant if relaxation occurs after
the plateau starts lowering down; (2) stronger social distancing measures
(more edges removed) lead to a lower second peak and a lower final epidemic
size after relaxation. The latter can be observed in figure S10, where we plot
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the number of removed individuals for two degrees of social distancing, with
red curves correspond to a large fraction of edges randomly removed.

Figure S10: Additional panel for main figure 4: varying the intensity of distancing and
the timing of relaxation for a simulated epidemic on a spatial network. The cumulative
number of infections is plotted against time, for relaxation times (a) 21, (b) 38, (c) 49,
and (d) 69 units. The degree of distancing: 1/2 edges retained (blue) and 17/48 edges
retained (red). Other parameters are as in figure 4 of main text.

Figure S11: Varying the intensity of distancing and the timing of relaxation for a sim-
ulated epidemic on a Barabasi-Albert network (N = 10000, minimum 6 connections per
node), with edges randomly removed: only 1/6 of all edges are left (blue) and only 1/9 of
all edges are left (red). The mean number of infected individuals (top row) and cumulative
number of infected individuals (bottom row) are plotted against time, for relaxation times
(a) 28, (b) 35, and (c) 42 units. Averages over 400 runs are plotted together with standard
errors (dashed lines). Other parameters are as in figure S8.
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Figure S12: Same as in figure S11, but for a hybrid network. Blue: 1/6 edges
retained; red: 1/5 edges retained, yellow: 1/4 edges retained. The relaxation
times are (a) 17.4, (b) 38, (c) 45, and (d) 52 units. Averages over 400 runs
are plotted together with standard errors (dashed lines). Other parameters
are as in figure S11.

We next compare these results with those obtained for scale free (Barabasi-
Albert, figure S11) and hybrid (figure S11) networks. In the case of Barabasi-
Alber networks ( figure S11), we observe that (1) as the length of social dis-
tancing is extended, the second infection wave becomes somewhat lower (and
the final epidemic size smaller), but without the threshold-like effect of the
spatial networks, because there is no plateau during the distancing phase.
Observation (2) above however reverses compared to the spatial networks:
stronger social distancing measures (more edges removed) lead to a higher
second peak and a larger final epidemic size after relaxation. This behavior
is similar to that obtained for the ODE model of infection.

Finally, hybrid networks exhibit an interesting cross between the two
types of behavior characteristic of spatial and scale-free networks, see figure
S12. We have run simulations for the mild (yellow), intermediate (red), and
strict (blue) social distancing measures. The resulting second wave size de-
pends on the time of relaxation, and the changes are non-monotonic in terms
of the fraction of edges removed. Namely, for relatively short durations of the
social distancing stage (panels (a) and (b)), we observe that the behavior is
similar to that of scale-free networks (and the ODE models): stricter social
distancing measures (a smaller fraction of edges retained) lead to a larger
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second wave of infection. This pattern, however, changes as the duration of
social distancing increases. In the last two panels of figure S12 we can see
that the strongest social distancing measure result in second highest second
wave (out of the 3 scenarios plotted), so the system starts molding its behav-
ior to acquire more properties of the spatial system. The final epidemic size
generally exhibits more complex behavior, because it is a phenomenon with
“memory”: it reflects both the social distancing stage of the epidemic where
the smallest number of infected individuals corresponds to the most severe
distancing, and the relaxation dynamics, where depending on the timing,
different networks may correspond to the highest spike. For the parame-
ters chosen for this figure, the strictest distancing corresponds to the lowest
final epidemic size, and intermediate distancing leads to the highest final epi-
demic size. In general, depending on the relative size of spatial and scale-free
network contributions used when constricting the network, one may expect
different outcomes as the balance shifts and spatial and no-spatial effects
trade-off differently.

2.4 The SIS dynamics

In order to study the role of immunity in plateau dynamics, we have simulated
an epidemic in the absence of immunity, see figure S13. In this case, no
plateau is observed, see discussion in the main text.

3 Growth patterns in the different states of

the US

The goal of this part of the study is to find patterns in the epidemic develop-
ment in different locations. For this purpose, we chose to work with different
states of the US. Data were available from https://covidtracking.com/,
where the total number of confirmed cases is available every day starting on
01/22/20 in Washington, and on 03/01/20 for the other states. The latest
date included here is 5/22/20. We obtained the number of new confirmed
cases (per million of the population) every day by taking the difference be-
tween consecutive days, and use the moving average for the time-series of
this quantity (averaged over 7 day windows). In our calculations and figures
below, day zero corresponds to 01/22/20. Then we separated the growth
curves into 4 groups in the following way.
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Figure S13: SIS dynamics on a spatial network. Compared are the number of infected
individuals in the absence of intervention, with intervention in the presence of immunity
and with intervention in the absence of immunity. Parameters are Pinf = 10−4, Precover =
10−4, Pdeath = 5 × 10−5. In the absence of immunity, recovered individuals become sus-
ceptible. Intervention is modeled by removing 1/2 of connections. The average over 100
runs together with standard errors (dashed lines) is plotted for the simulations without
immunity. The graph with immunity is the same as in Figure 3A.

For each dataset obtained as above, we considered the number of new
infections starting on day 60 and until the end of the dataset (day 120).
For each state i, these daily numbers of new cases were split into 3 bins:
[0,Mi/3], (Mi/3, 2Mi/3], (2Mi/3,Mi], where Mi is the maximal daily number
of new cases for state i. These bins are shown as histograms in figure S14.
We postulate that the number of cases experiences a plateau if the number of
cases on day 120 falls within the largest bin. There are three cases of plateau
in figure S14:

• Group 1 (6 states) corresponds to a relatively high peak following a fall
in the number of daily cases that enters a plateau. For this group, the
first bar is the highest in the histogram.

• Group 2 (7 states) is characterized by a relatively shorter peak followed
by a plateau. For this group, the second bar is the highest in the
histogram. Compared with group 1, the relative difference between the
peak and the plateau is smaller.

• Group 3 (15 cases) shows a rise in the daily number of cases followed
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by a plateau, without experiencing a prominent peak. For this group,
the third bar is the highest in the histogram, and this is the largest of
the three plateauing groups.

In addition to these three groups, two more non-plateauing groups were iden-
tified. For these groups, the number of cases on the last day did not belong
to the largest bin.

• Group 0 (6 states) has the number of infections on day 120 that is
smaller than a half of the maximum, Mi/2. This group is characterized
by a rise and fall of the infection, but no subsequent plateau.

• Group 4 (10 states) has the number of infections on day 120 that is
larger than 2Mi/3, that is, it belongs to the third bin. This group is
characterized by a rise of the infection, which has not experienced a
significant decrease or a plateau.

Note that states in group 0 could be reclassified and enter group 1 later, as
more data become available. Similarly, states in group 4 could enter any of
groups 1,2,3, if they enter a plateau in the future. Further, we note that
the above classification only operates with relative numbers and time-series
shapes, and does not attempt to compare case numbers per million across
states. For example, group 0 contains NY where daily cases reach to almost
500 (per million), and WA where the maximum number of cases was smaller
than 60 (per million).

Analysis of the different infection patterns was performed and is shown in
the main text. In particular, we determined the timing of infection rise. To
do so, we determined the first day when the daily new infections (per million)
reached 30. In figure S15(a), the colorful dots show the timing of the epidemic
rise (as defined above) for each of the 5 groups. Solid blue lines connect the
mean values for each of the groups, and dashed lines are linear fits. We can
see that the relative timing of the epidemic rise is correlated positively with
the group number (p = 0.00008). There is however no statistically significant
difference among the 3 groups that experience a plateau. Therefore, in the
main text we combine the 3 plateauing groups into one, and show that, with
high significance, the epidemic started the earliest for group 0, later for the
plateauing groups, and group 4 had the latest rise time.
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Figure S14: The groups of states classified by their infection patterns. For each state
(marked on the left by the state abbreviation), the histogram for the daily numbers of
cases is presented (yellow bar graphs, the horizontal axes is daily cases, the vertical axes
is the number of days), followed by the time-series of the new cases (blue, he horizontal
axes is time in days, and the vertical axes is the number of new cases, averaged over 7
days).
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Figure S15: Correlations of groups of states with (a) relative time of epidemic
rise (the day when the number of new infections first reached 30) and (b)
the total number of deaths by day 120. Colored symbols represent the data
for groups 0-4, the solid blue lines connect the means, and dashed lines
correspond to the best linear fits.

Similar analysis was performed for the the total number of COVID-related
deaths recorded in each state by day 120., see figure S15(b). Linear fit (the
dashed line, please note the log scale) shows a strong negative correlation
between groups and the level of deaths (p = 0.002). Again, since no statis-
tically significant difference is observed among the 3 groups that experience
a plateau, in the main text we combine the 3 plateauing groups and show
that, with high significance, the total number of deaths (per million) is the
highest for group 0, intermediate for the plateauing groups, and lowest for
group 4.
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