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S1 Data

All data used in this paper were obtained from publicly available sources. The daily number of cases and

deaths in the five countries were obtained from the European Centre for Disease Prevention and Control

(ECDC) website [1]. We have used data up to 2nd June, 2020. In terms of identifying day zero for each

country, we have assumed that the numbers reported correspond to those reported in the country on the

previous day. In several cases, a negative number of cases was reported, so these were set to zero for the

purpose of learning the model. The UK hospital data used were the data made available as part of the

daily press conferences [2]. Data were used from 20th March to 2nd June. For the period from 20 - 26th

March there were no data available for Scotland and Wales, but the data for the rest of the UK was scaled

appropriately for this period to take this into account.

S2 Methodology

It is not immediately obvious how the initial number of exposed (E0) and infected (Ic0 and Iu0 ) cases should

be specified. Ic0 cannot be set to the number of confirmed new cases (nor the cumulative number of cases)

at the start of the period since it should correspond to the total number of confirmed cases at that time.

The approach adopted here is to treat E0 as a further parameter to be fitted to the data and then to set

Ic0 = ρE0 and Iu0 = (1 − ρ)E0, where rho is the proportion of confirmed cases out of the total number of

cases (confirmed and unconfirmed) for a given country as discussed in the main text. The initial value of S,

denoted S0, is set to N − E0 − Ic0 − Iu0 and R0 is set to zero.
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As noted in the main paper, the reproduction number R0 is given by ρβ/γ+(1−ρ)αβ/γ. This expression

is obtained from finding the dominant eigenvalue of the next generation matrix [3]. Recall that α allows

for a reduction in the transmission rate for the unconfirmed cases or alternatively for asymptomatic or sub-

clinical cases if the infectious group is divided up differently. Since our focus is on confirmed and unconfirmed

subgroups it does not seem reasonable to set α to the same value for each country since the number of tests

carried out varies from one country to another. However, as a result of keeping the ratio of confirmed to

unconfirmed cases fixed, α does not play a crucial role in our calculations. Different values of α will result

in different values of βpre and βpost. To see this, note that since ρ = Ic/(Ic + Iu), then in equation (1),

β(t)
SIc

N
+ αβ(t)

SIu

N
= β(t)

SIc

N

(
1 + α(

1− ρ
ρ

)

)
. (S1)

Hence, different values of α amount to rescalings of βPre and βPost such that for different α1 and α2, we

have

RPre
0 = β1 (ρ+ α1(1− ρ)) /γ = β2 (ρ+ α2(1− ρ)) /γ (S2)

and similarly for RPost
0 . So α is important if one is interested in the values of βPre and βPost, but the

constraints mean that it has no effect on the corresponding R0 values and hence on the dynamics. Since

we focus on the R0 values in the results, we set α = 1 and hence do not distinguish between confirmed and

unconfirmed cases in terms of transmission rates. Nevertheless, the model permits different transmission

rates to be explored.

In terms of fitting the two-stage SEIR model to data, we fit γIct to the number of newly confirmed cases

on a given day since the cumulative sum of both terms must be equal and the number of newly confirmed

cases on a given day can be assumed to be proportional to the number in group Ic on that day. When

considering the number of deaths rather than new cases, we scale γIct by the ratio of the total number of

deaths to the total number of confirmed cases in a given country and then fit this quantity to the number

of reported deaths. In the case of UK hospital numbers, we first of all apply the model to the number of

confirmed cases in the UK as discussed in the context of figure 1 in the main paper. Scaling the resulting

values for Ict by 0.9 (as well as translating it in time) gives a reasonable approximation to the hospital data.

Hence we use this scaling of Ict when fitting the model to the hospital data.

When fitting the model to the newly confirmed cases this means that tlockdown represents the number

of days after day zero that the lockdown is reflected in the number of confirmed cases. As noted in the

main document, we obtain this value by finding which day gives the best fit to the data. We achieve this

by setting tld to a particular value, say seven days, then integrate the differential equations to find the

best fitting parameters for the parameters E0, βPre and βPost. When carrying out the integration, βPre

is used before tld and βPost afterwards as specified in (2). We then repeat this process for a range of

values of tld to find tlockdown by determining the value which together with the corresponding values of the

other parameters gives the best overall fit to the data. The number of days between the actual lockdown

and tlockdown corresponds to delay between onset of infection (i.e. when a person becomes infectious) and
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subsequent confirmation. Similarly, when the two-stage model is fitted to the number of deaths in a given

country it is able to identify the time delay between the onset of infection and death.

The predictive accuracy of the models was evaluated using the root mean squared error (RMSE):

RMSE =

√∑nt

i=1(yi − ŷi)2
nt

(S3)

and mean absolute error (MAE):

MAE =

∑nt

i=1 |yi − ŷi|
nt

. (S4)

where y represents the data, ŷ the predicted values and nt the number of test cases.

The calculations have been carried out using MATLAB and a non-linear curve-fitting function has been

used to find the best fitting parameters E0, βPre and βPost simultaneously.

S3 Results on identifying the lockdowns and time delays

As discussed above, the two-stage model enables the time delay between the onset of infection and subsequent

confirmation to be identified. This time delay, denoted tc, is given by the difference between tlockdown and

the actual date of the lockdown. When the two-stage model is fitted to the number of deaths, this difference

represents the time delay between the onset of infection and death, denoted td. Results are presented for

both quantities in table S1. Since these results depend on identifying the actual date of the lockdown (see

table 2 in the main paper) there could be some variation due to ambiguity in identifying this date and time

taken to implement the lockdown.

Table S1: The time delay between onset of infection and subsequent confirmation tc as well as that between

onset of infection and death td.

tc td

France 10 15

Germany 2 21

Italy 9 14

Spain 8 11

UK 14 13

Results for tc are similar for France, Italy and Spain, but noticeably shorter for Germany and longer for

the UK. This finding is consistent with the intensive testing strategy adopted by Germany during the early

stages of the outbreak. The longer delay for the UK may also be related to testing. Note from figure 1 in

the main paper that the peak for the UK is less pronounced than it is for other countries. This could be

explained by the substantial increase in testing carried in the UK in April after the lockdown, so that the
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real impact of the lockdown is masked to some extent by increased testing. This possibility and a related

question about the RPost
0 value motivate the application of the model to UK hospital data in section S9.

Results for td are similar for all the countries apart from Germany, which has a time delay from onset of

infection to death of 21 days. While this could reflect a real difference, it should be noted that in terms of

fitting the model to the number of deaths, the goodness of fit is worse for Germany than the other countries

(R2 = 0.66, see table S2) and there is a local minimum six days earlier in the German results, which would

give it a value of td = 15 in line with the other countries.

S4 Parameter estimates based on the number of deaths

As discussed in the main paper, the results obtained from the number of cases were compared with results

obtained by fitting the two-stage model to the number of deaths in a given country for validation purposes.

Results are presented in figure S1 corresponding to figure 1 from the main paper. It is noticeable that the

two-stage model also fits the data on the number of deaths reasonably well and the impact of the lockdown

is evident with the peak clearly visible for each country.

The pre- and post-lockdown reproductive numbers corresponding to figure S1 are presented in table S2.

As noted in the main paper, the reproductive numbers obtained from the number of deaths are similar to

those from the number of cases, particularly post-lockdown. The largest differences are found for the pre-

lockdown values for France and Germany which have larger and smaller RPre
0 values respectively based on

the number of deaths. This can be partly explained by the difference at the earliest stage of the pandemic

in each country. Note that the model fits the French data very well during this period in figure S1, which

gives rise to the higher RPre
0 value, but overestimates it for the German data, which gives rise to the lower

RPre
0 value. We should also note that the fit for Germany is worse than for the other countries (R2 = 0.66).

Table S2: Estimates for the pre- and post-lockdown reproduction numbers with 95% confidence intervals.

These estimates are based on the recorded number of deaths due to COVID-19.

RPre
0 RPost

0 R2

France 3.45 (2.36-4.55) 0.66 (0.58-0.73) 0.73

Germany 1.64 (1.44-1.84) 0.66 (0.59-0.73) 0.66

Italy 2.28 (2.09-2.48) 0.83 (0.81-0.85) 0.92

Spain 3.27 (2.46-4.07) 0.77 (0.73-0.82) 0.79

UK 2.44 (2.01-2.88) 0.84 (0.80-0.88) 0.77
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a) France, R2 = 0.73 b) Germany, R2 = 0.66
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Figure S1: Two-stage SEIR models fitted to the number of deaths for each of the five countries. Dates

correspond to the first day in each of the countries when there were ten or more deaths.
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S5 Sensitivity of parameter estimates

The results in the main paper are based on a mean latent period, dl, of 3.8 days, a mean infectious period,

di, of 3.4 days and a mortality rate, m, of 0.66%. As discussed, these are reasonable values in light of the

literature, but given that there is also disagreement about these values, several other variations have also

been considered. In particular, we consider dl = 4.8, di = 5.0, m = 0.33% and m = 1.32%, in each case

keeping the other parameters as they were. Results are presented in table S3. The changes in dl and di

result in higher values of RPre
0 and lower values of RPost

0 , while m = 0.33% has little effect on RPre
0 and

increases RPost
0 , and m = 1.32% has little effect on either quantity. Overall, the results are similar to those

adopted in the main paper, particularly in the case of RPost
0 .

Table S3: Estimates for the pre- and post-lockdown reproduction numbers for different values of the latent

period, dl, the infectious period, di, and the percentage mortality rate, m, based on the recorded daily

number of confirmed cases.

dl = 3.8 dl = 4.8 dl = 3.8 dl = 3.8 dl = 3.8

di = 3.4 di = 3.4 di = 5.0 di = 3.4 di = 3.4

m = 0.66 m = 0.66 m = 0.66 m = 0.33 m = 1.32

France
RPre

0 2.21 2.56 2.65 2.24 2.19

RPost
0 0.69 0.67 0.64 0.73 0.68

Germany
RPre

0 2.50 2.68 2.78 2.50 2.49

RPost
0 0.68 0.63 0.61 0.68 0.67

Italy
RPre

0 2.39 2.56 2.65 2.40 2.39

RPost
0 0.81 0.78 0.76 0.86 0.78

Spain
RPre

0 2.70 2.90 3.45 2.75 2.68

RPost
0 0.67 0.62 0.61 0.72 0.65

UK
RPre

0 1.90 2.01 2.08 2.20 1.89

RPost
0 0.92 0.90 0.89 1.00 0.89

S6 Results on predictive accuracy

In the main paper, results were presented for k-step ahead prediction for k = 5 and 10. Here we extend

those results to include k = 1 and k = 20. We also compare the results with a two-stage SIR model. This

has been implemented with two infectious groups and pre- and post-lockdown reproductive numbers just

as for the SEIR model, but it excludes the exposed group. For comparative purposes, we can combine the

latent and infection periods used earlier to give an average duration of infection of 7.2 days and so set the
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parameter γ to 1− e−1/7.2 in the SIR model.

Table S4: Results for k-step ahead prediction for the number of confirmed cases on the last 10 days. †These

results exclude two outliers.

k-step SEIR SIR

prediction RMSE MAE RMSE MAE

France†

1 130 97 139 103

5 145 109 146 109

10 145 108 146 109

20 142 115 137 108

Germany

1 179 131 180 150

5 178 129 179 150

10 179 131 182 153

20 176 131 181 157

Italy

1 312 287 337 315

5 324 301 350 330

10 347 325 376 356

20 452 435 489 473

Spain

1 345 246 322 224

5 347 249 324 225

10 350 249 325 226

20 355 256 328 230

UK

1 860 788 794 708

5 957 931 908 868

10 1254 1188 1202 1127

20 1971 1863 1994 1888

It is interesting to note that there is very little difference at all between the two-stage SEIR and SIR

models in terms of predictive accuracy. This would certainly merit further investigation, but there are

merits to using the SEIR model since it provides a more realistic model and enables us to distinguish

between parameters relating to the latent period and infectious period, which is relevant for the sensitivity

analysis presented in this document. Also, the SIR model gives different R0 values and so may not be the

best tool to use for investigating the effect of relaxing the lockdowns.

Note that for the range of k values considered here the values for RMSE and MAE remain lower than those

for the whole dataset for France, Germany, Italy and Spain. In the case of the UK, day zero occurred later

than in other countries (see table 2 in the main paper) and the peak in the UK data is not as pronounced as it
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is for the other countries. For both of these reasons, more post-lockdown data is needed for good predictions,

but going to higher values of k restricts the number of data points for training and so affects the predictions

(note that the results get worse as k increases). Hence, when all the post-lockdown data available so far are

used, as they are when it comes to investigating the relaxation of the lockdowns, the predictions should be

more reliable. However, we also explore the application of the model to UK hospital data in section S9 to

provide further validation.

S7 Sensitivity of predictive accuracy

Results for predictive accuracy are also considered for the different parameter settings used in section S5.

Although not shown here, these alternatives give similar goodness of fit results when applied to the whole

dataset. Furthermore, as table S5 indicates the results are similar in terms of predictive accuracy, so changing

the parameters does not change the results dramatically in most cases. In several cases, a lower mortality

rate results in better accuracy, while a higher mortality rate gives worse results. It would be interesting to

see whether data from other countries would show the same trend. We also see how these parameters affect

relaxation in the next section.

Table S5: Results for k-step ahead prediction for the number of confirmed cases on the last 10 days. †These

results exclude two outliers.

dl = 3.8 dl = 4.8 dl = 3.8 dl = 3.8 dl = 3.8

di = 3.4 di = 3.4 di = 5.0 di = 3.4 di = 3.4

m = 0.66 m = 0.66 m = 0.66 m = 0.33 m = 1.32

France†
RMSE 145 148 154 145 145

MAE 108 110 119 108 108

Germany
RMSE 179 181 183 180 179

MAE 131 123 119 129 133

Italy
RMSE 347 365 373 304 376

MAE 325 342 353 277 356

Spain
RMSE 350 357 338 367 342

MAE 249 256 238 266 242

UK
RMSE 1254 1259 1264 1062 1321

MAE 1188 1193 1196 1014 1237
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Figure S2: The effect on the daily number of confirmed cases of relaxing the lockdown by 50% with parameters

as described in the main paper ( ), or as in the main paper but with dl = 4.8 ( ), di = 5.0 ( ),

m = 0.33% ( ) and m = 1.32% ( ), or no relaxation ( ).
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S8 Sensitivity of results for relaxation

In figure S2, we consider how the results are affected by changing the parameters as in earlier sections. To

keep the plots less cluttered, we only consider the scenarios where there is no relaxation and where there is

50% relaxation. All of the models fit the data well and give results that are almost indistinguishable when

there is no relaxation. For 50% relaxation, the different parameter settings have different effects in different

countries, but all are fairly similar to the results presented in the main paper. In all cases, a higher mortality

rate results in a greater number of cases compared to the original results while a lower mortality rate gives

lower numbers, though for some countries the difference is very small. Overall, increasing the mortality rate

to 1.32% yields the greatest increase in the number of cases.

S9 Results for UK hospital data

This section explores the application of the two-stage model to the number of patients in hospital in the

UK due to COVID-19 on a given day. This provides further validation of the model and also enables us to

address some questions about the UK. Recall from the main paper, that the peak in the number of cases

was not as pronounced in the UK as in the other countries and that the post-lockdown reproductive number

was R0 = 0.92, which was higher than the other countries. Does this reflect the actual number of cases in

the UK or could this be explained by the substantial increase in testing carried in the UK in April after

the lockdown, so that the real impact of the lockdown is masked by increased testing to some extent? The

results from applying the two-stage model to the number of deaths gave a higher pre-lockdown value of

RPre
0 = 2.44 compared to 1.90 and lower post-lockdown value of RPost

0 = 0.84. However, the goodness of fit

was R2 = 0.77 for fitting the model to the number of cases and the number of deaths. By contrast, when

the two-stage model is fitted to the number of hospital patients in the UK (see figure S3a), the goodness of

fit is much better with R2 = 0.987. Using the standard parameters (latent period of 3.8 days and infectious

period of 3.4 days) gives RPre
0 = 2.24 (95% CI: 2.17 - 2.31) and RPre

0 = 0.905 (95% CI: 0.90 - 0.91), thus

confirming that the reproductive number is indeed closer to one than would have been hoped.

The rest of figure S3 presents results for the effect of relaxation on hospital numbers. Figure S3b) presents

results corresponding to figure 2 in the main paper. There is a greater increase in the hospital numbers for

a 25% relaxation compared to estimates based on the number of cases and the increase at 50% relaxation is

particularly concerning. It gives the number of patients by the end of August to be close to 40,000, almost

twice what they were at the earlier peak.

Figure S3c) presents results for different parameter settings corresponding to figure S2. Note that for 50%

relaxation all the parameter settings considered give a higher number of patients by the end of August than

there were at the earlier peak. Figure S3d) presents results over a longer period of time corresponding to the

parameters used in figure 3 of the main paper. Here we see that for 50% relaxation the second peak is much

higher than the earlier peak and lasts for a longer period of time. Of course, a lot of caution is appropriate
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Figure S3: Results for UK hospital data. a) Two-stage model fitted to the data; b) Results corresponding

to figure 2 the in main paper with no relaxation ( ), 25% relaxation ( ) and 50% relaxation ( );

c) Results corresponding to figure S2; d) Results corresponding to figure 3 in the main paper based on a

mortality rate of m = 0.66% for 25% ( ) and 50% ( ) relaxations, or m = 1.32% for 25% ( ) and

50% ( ) relaxations; e) As for c) but now with a relaxation of 15%. Note that the results are on different

scales.
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for results over such a long period of time, but even in the short term the results are very concerning. Also,

it should be borne in mind that the goodness of fit is very high and that hospital data should be more robust

than the number of confirmed cases since the latter depends on the level of testing. So arguably these results

are more reliable than the earlier results.

To explore what level of relaxation would be required to ensure the numbers do not increase, we also

consider the effect of a 15% relaxation. Results are presented in figure S3e for the same variations in

parameter settings considered in figure S3c and figure S2. For the parameter settings used in the main

paper, the numbers of patients remains more or less constant, though when the model is run for longer the

numbers start to decrease again. Similarly, even for the parameter settings that give a slight increase in

numbers, the numbers decline again. Although not shown here, for a 10% relaxation, there is no increase for

any of the parameter settings. Hence, a relaxation of around 10-15% is needed if COVID-19 is to be kept

under control. Similar calculations suggest that such a relaxation would also be adequate for the number of

cases in all five countries.
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