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Supplementary Methods 
 
Hepatic proteomic analysis 
A subset of 70 liver tissue specimens were homogenized under denaturing conditions with a FastPrep in a buffer containing 3 M GdmCL, 5 mM TCEP, 20 
mM CAA, and 50 mM Tris pH 8.5, followed by sonication for 15 min and boiled at 95 °C for 15 min. The lysates were digested and purified using the preOmics 
in-stage tip kit (iST kit 96x, Martinsried, Germany). Samples were eluted sequentially in three fractions using the SDB-RPS-1 and -2 buffers1 and the elution 
buffer provided by preOmics for subsequent analysis on a nano LC-MS/MS. 
 
LC−MS/MS was carried out by nanoflow reverse-phase liquid chromatography (Dionex Ultimate 3000, Thermo Scientific, Waltham, MA) coupled online to a 
Q-Exactive HF Orbitrap mass spectrometer (Thermo Scientific, Waltham, MA). The LC separation was performed using a PicoFrit analytical column (75 μm 
ID × 55 cm long, 15 µm Tip ID (New Objectives, Woburn, MA) packed in-house with 3-µm C18 resin (Reprosil-AQ Pur, Dr. Maisch, Ammerbuch-Entringen, 
Germany), as reported previously (Gielisch and Meierhofer 2015). Peptides were eluted using a gradient from 3.8 to 50 % solvent B in solvent A over 121 min 
at 266 nL per minute flow rate. Solvent A was 0.1 % formic acid and solvent B was 79.9 % acetonitrile, 20 % H2O, 0.1 % formic acid. Nanoelectrospray was 
generated by applying 3.5 kV. A cycle of one full Fourier transformation scan mass spectrum (300−1750 m/z, resolution of 60,000 at m/z 200, AGC target 1e6) 
was followed by 12 data-dependent MS/MS scans scans (resolution of 30,000, AGC target 5e5) with a normalized collision energy of 25 eV. In order to avoid 
repeated sequencing of the same peptides, a dynamic exclusion window of 30 seconds was used. Additionally, only peptide charge states between two and 
eight were sequenced. 
 
Raw MS data were processed with MaxQuant software (v1.6.0.1)2 and searched against the human proteome database UniProtKB with 70,941 entries, 
released in 01/2017. Parameters of MaxQuant database searching were as follows: a false discovery rate (FDR) of 0.01 for proteins and peptides, a minimum 
peptide length of 7 amino acids, a mass tolerance of 4.5 ppm for precursor and 20 ppm for fragment ions. A maximum of two missed cleavages was allowed 
for the tryptic digest. Cysteine carbamidomethylation was set as fixed modification, while N-terminal acetylation and methionine oxidation were set as variable 
modifications.  
Proteomics data were logarithmically transformed and then standardised to mean = 0 and standard deviation = 1. Only proteins with detectable abundance 
of >70% in each group were included in analyses, imputation from normal distribution was used for missing (or zero) values. Association between individual 
proteins and genotype was assessed according to an additive genetic model using linear regression, with proteins as dependent variable and genotype (coded 
as 0, 1, or 2 effect alleles), age, and sex and independent variables. Beta regression coefficient therefore represents the change in log-standard deviations of 
protein abundance per effect allele, adjusted for age and sex. 
 
In addition, a two-sample t-test was performed comparing homozygous wild-type against homozygous mutants (e.g. rs72613567 T/T vs. TA/TA. Multiple test 
correction was done by Benjamini-Hochberg with an FDR of 0.05 by using Perseus (v1.6.0.2)3.  
 



For comprehensive proteome data analyses, gene set enrichment analysis (GSEA, v4.0.0)4 was applied in order to see if a priori defined sets of proteins show 
statistically significant, concordant differences according to genotype. GSEA was performed using the preranked gene list derived from linear regression 
analysis. GSEA default settings were used. As recommended for hypothesis discovery, cut off for significantly regulated pathways was set to a P-value < 0.05 
and an FDR Q-value < 0.25. GSEA results were then passed to Cytoscape5,6 for plotting of enrichment maps by clustering similar gene sets, using Enrichment 
Map7. Groups of gene sets were annotated using AutoAnnotate8 with WordCloud9. 
 
Volcano blot was performed using an FDR Q-value of 0.05 and an artificial within groups variance (s0) of 0.1. 
 
 

  



Supplementary Figures 
 
 

 
Supplementary Figure 1. 
Odds ratios for the presence of any, moderate or advanced fibrosis using an additive genetic model. Data from 394 children with biopsy-proven NAFLD and 
liver histology. ‘PNPLA3’ refers to 738409C>G, ‘MARC1’ refers to rs2642438G>A, and ‘HSD17B13’ refers to rs72613567T>TA. 
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Supplementary Figure 2. 
Characteristics of plasma lipid species associated with rs72613567T>TA in HSD17B13. There was no trend in the association between rs72613567T>TA and 
number of double bonds (A) or carbons (B) in phosphatidylcholines (PC). Whereas the variant was positively associated with polyunsaturated 
phosphatidylethanolamines (PE) and negatively associated with monounsaturated PE (C), but this was not significantly influenced by chain length (D). Similarly 
rs72613567T>TA was negatively associated with polyunsaturated fatty acids (FA, derived from plasma phospholipids, E), but there was no trend with carbon 
chain length (F). Beta-regression coefficient of association was calculated by linear regression between genotype (coding T/T=0, T/TA=1, TA/TA=2) and 
logarithmically-transformed lipid abundance, adjusted for age and sex. Simple linear regression with 95% confidence intervals are shown in red. Data from 
129 children with biopsy-confirmed NAFLD.  
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Supplementary Figure 3. 
Characteristics of plasma lipid species associated with rs2642438G>A in MARC1. rs2642438G>A was negatively associated with polyunsaturated 
phosphatidylinositols (PI) and positively associated with unsaturated PI (A), but there was no relationship with carbon chain length (B). There was also no 
relationship between the variant and number of double bonds or chain length of PC (C & D) or plasma fatty acids from phospholipids (E & F). Beta-regression 
coefficient of association was calculated by linear regression between genotype (coding GG=0, GA=1, AA=2) and logarithmically-transformed lipid abundance, 
adjusted for age and sex. Simple linear regression with 95% confidence intervals are shown in red.  Data from 129 children with biopsy-confirmed NAFLD. 
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Supplementary Figure 4. 
Plasma lipid species associated with rs738409C>G in PNPLA3. Volcano plot demonstrating the association (as beta-regression coefficient) between plasma 
lipid species and rs738409C>G, where beta-regression coefficient was calculated by linear regression between genotype (coding CC=0, CG=1, GG=2) and 
logarithmically-transformed lipid abundance, adjusted for age and sex. The variant was positively associated with very long chain triglycerides (TG) (C) but 
there was no relationship with the number of double bonds (B). rs738409C>G was also more positively associated with polyunsaturated (D) and long-chain 
(E) PC. Simple linear regression with 95% confidence intervals are shown in red. Data from 129 children with biopsy-confirmed NAFLD. 
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Supplementary Figure 5. 
Characteristics of plasma lipid species associated with histological severity of NAFLD in children. Fibrosis stage [0-3] was negatively associated with number 
of double bonds (A) and carbon chain length (B) in PC. NAFLD Activity Score was negatively associated with very long-chain TG that showed no relationship 
with number of double bonds © and positively associated with short chain TG (D), and . Beta-regression coefficient of association was calculated by linear 
regression between histological feature and logarithmically-transformed lipid abundance, adjusted for age and sex. Simple linear regression with 95% 
confidence intervals are shown in red.  
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Supplementary Tables 
Odds Ratios for the presence of NAFLD.  

SNP Genotype Controls Cases Genotypic Odds  P value Allelic Odds P value 

HSD17B13      0.70 (0.28-0.88) 0.002 
 T/T 206 394 1    
 T/TA 143 168 0.60 (0.45-0.81) 0.001   
 TA/TA 21 28 0.80 (0.59-1.09) 0.159   
 Trend   0.70 (0.56-0.87) 0.002   
 recessive   0.79 (0.44-1.44) 0.444   
 dominant   0.61 (0.47-0.81) 0.001   

MARC1      1.00 (0.81-1.24) >0.999 
 GG 199 324 1    
 GA 151 227 0.92 (0.70-1.22) 0.574   
 AA 20 39 1.13 (0.84-1.51) 0.419   
 Trend   1.02 (0.82-1.27) 0.889   
 recessive   1.31 (0.74-2.34) 0.352   
 dominant   0.96 (0.74-1.26) 0.781   

PNPLA3      1.84 (1.32-2.58) 4.0 x 10-4 

 CC 48 139 1    
 CG 42 172 1.41 (0.87.-2.3) 0.168   
 GG 7 82 2.02 (1.30-3.15)  0.002   
 Trend   1.79 (1.26-2.53) 0.001   
 recessive   3.54 (1.55-8.06) 0.003   
 dominant   1.78 (1.11-2.84) 0.017   

TM6SF2      1.14 (0.62 – 2.10) 0.761 
 CC 84 337 1    
 CT 11 52 1.28 (0.63 – 2.62)  0.494   
 TT 1 4 1.04 (0.34 – 3.17) 0.949   
 Trend   1.22 (0.65 – 2.26) 0.535   
 dominant   1.27 (0.64 – 2.52) 0.497   

Supplementary Table 1. 
P values were calculated by binary logistic regression with correction for age and sex (Wald-test)  for genotype and chi-square (two-sided Fisher´s exact test) for allelic odds 
ratios.   



 Clinical and Laboratory Characteristics of NAFLD patients stratified by HSD17B13 genotype. 

Variable T/T  (N = 394) T/TA and TA/TA (N = 196) P value Q value 

Age (years) 13.0 (11.3 – 15.4) 13.0 (11.0 – 15.2)  0.182 0.824 

Male sex, n (%) 241 (61.2) 126 (64.3)  0.462 0.924 

BMI z-score 2.4 (1.8 – 3.0) 2.3 (1.8 – 3.1) 0.982 0.982 

Obesity, n (%) 258 (67.0) 129 (65.8) 0.741 0.982 

ALT (U/l) 49 (32 – 81) 45 (28 – 71) 0.209 0.824 

AST (U/l) 39 (29 – 55) 37 (26 – 50) 0.264 0.824 

GGT (U/l) 25 (16 – 38) 21 (16 – 31) 0.190 0.824 

Cholesterol (mg/dl) 160 (140 – 184) 161 (139 – 186) 0.910 0.982 

LDL (mg/dl) 97 (81 – 112) 97 (78 – 113) 0.925 0.982 

HDL (mg/dl) 43 (38 – 50) 44 (39 – 51) 0.924 0.982 

Triglycerides (mg/dl) 98 (72 – 141) 99 (68 – 144) 0.759 0.982 

HOMA 3.7 (2.6 – 5.9) 3.5 (2.3 – 5.3) 0.308 0.824 

MARC1 genotype, n (%)     

GG / GA / AA 217 (55.1)/152 ( 38.6)/25 (6.3) 107 (54.6)/75 (38.3)/14 (7.1) 0.751 0.982 

PNPLA3 genotype, n (%)     

CC / CG / GG 91 (34.2)/114 (42.9)/61 (22.9) 48 (37.8.4)/58 (45.7)/21 (16.5) 0.353 0.824 

Supplementary Table 2. 
Data represent frequencies (%) or median (interquartile range) as appropriate. For clinical characteristics, P-values were calculated using Mann-Whitney U test for continuous 

traits and Chi-square test for categorical traits. For plasma markers, P-values were calculated using linear regression with correction for age, sex. For genotypes, P-values 

were calculated using binary logistic regression with correction for age and sex (Wald test). FDR correction (Q value) for multiple comparisons was calculated using the 

Benjamini and Hochberg method. 

  



 Clinical and Laboratory Characteristics of NAFLD patients stratified by MARC1 genotype. 

Variable GG  (N = 324) GA and AA (N = 266) P value Q value 

Age (years) 13.0 (11.0 – 15.1) 13.0 (11.5 – 15.5)   0.518 0.806 

Male sex, n (%) 200 (61.7) 167 (62.8)   0.793 0.854 

BMI z-score 2.4 (1.8 – 3.2) 2.3 (1.8 – 2.9)  0.209 0.806 

Obesity, n (%) 215 (67.8) 171 (65.0)  0.476 0.806 

ALT (U/l) 46 (30 – 78) 49 (31 – 79)  0.422 0.806 

AST (U/l) 38 (28 – 55) 39 (27 – 53)  0.744 0.854 

GGT (U/l) 23 (16 – 34) 24 (16 – 38)  0.161 0.806 

Cholesterol (mg/dl) 162 (140 – 185) 158 (138 – 184)  0.331 0.806 

LDL (mg/dl) 97 (81 – 113) 97 (81 – 112)  0.456 0.806 

HDL (mg/dl) 44 (38 – 51) 43 (38 – 50)  0.251 0.806 

Triglycerides (mg/dl) 98 (68 – 144) 99 (75 – 141)  0.720 0.854 

HOMA 3.8 (2.5 – 5.5) 3.6 (2.5 – 5.9)  0.679 0.854 

HSD17B13 genotype, n (%)     

TT / TTA / TATA 217 (67.0)/92 (28.4)/15 (4.6) 177 (66.5)/76 (28.6)/13 (4.9)  0.883 0.883 

PNPLA3 genotype, n (%)     

CC / CG / GG 64 (30.5)/103 (49.0)/43 (20.5) 75 (41.0)/69 (37.7)/39 (21.3)  0.147 0.806 

Supplementary Table 3. 
Data represent frequencies (%) or median (interquartile range) as appropriate. For clinical characteristics, P-values were calculated using Mann-Whitney U test for continuous 

traits and Chi-square test for categorical traits. For plasma markers, P-values were calculated using linear regression with correction for age, sex. For genotypes, P-values 

were calculated using binary logistic regression with correction for age and sex (Wald test). FDR correction (Q value) for multiple comparisons was calculated using the 
Benjamini and Hochberg method. 

  



 Clinical and Laboratory Characteristics of patients with liver biopsies. 

Variable NAFLD  (N = 590) NAFLD with liver biopsy  (N = 394)  

Age (years) 13.0 (11.0 – 15.4)  13 (11.0 – 14.6)   

Male sex, n (%) 386 (66.6)  240 (60.9)  

BMI z-score 2.4 (1.8 – 3.0) 2.1 (1.6 – 2.6)  

Obesity, n (%) 387 (66.5) 209 (53.0)  

ALT (U/l) 47 (31 – 78) 49 (31 – 80)  

AST (U/l) 38 (28 – 54) 40 (28 – 56)  

GGT (U/l) 23 (16 – 36) 22 (14 – 39)  

Cholesterol (mg/dl) 160 (139 – 185) 159 (138 – 184)  

LDL (mg/dl) 97 (81 – 112) 98 (82 – 112)  

HDL (mg/dl) 43 (38 – 50) 43 (38 – 50)  

Triglycerides (mg/dl) 98 (71 – 141) 98 (72 – 144)  

HOMA 3.7 (2.5 – 5.6) 3.6 (2.5 – 5.4)  

HSD17B13 genotype, n (%)     

TT / TTA / TATA 394 (66.8)/168 (28.5)/28 (4.7) 263 (66.8)/116 (29.4)/15 (3.8)  

MARC1 genotype, n (%)     

GG / GA / AA 324 (54.9)/227 (38.5)/39 (6.6) 204 (51.8)/168 ( 42.6)/22 (5.6)  

PNPLA3 genotype, n (%)     

CC / CG / GG 139 (35.4)/172 (43.8)/82 (20.9) 134 (35.6)/162 (41.1)/80 (21.3)  

Supplementary Table 4. 
Data represent frequencies (%) or median (interquartile range) as appropriate. BMI, body mass index; ALT, alanine aminotransferase; AST, aspartate aminotransferase; 

GGT, gamma glutamyl transferase; LDL, low density lipoprotein ; HDL, high density lipoprotein; HOMA, homeostatic model assessment of insulin resistance.  



     Associations of genetic variants with histologic features of disease severity. 

Histologic Trait HSD17B13 MARC1 PNPLA3 TM6SF2 
n (% of genotype)         TT             TTA           TATA          GG           GA             AA      CC              CG             GG        CC               CT               TT   

Steatosis 

1 

2 

3 

 

  56 (21.3)     29 (25.0)      5 (33.3) 

141 (53.6)     44 (37.9)      2 (13.3) 

  66 (25.1)     43 (37.1)      8 (53.3) 

 

  39 (19.1)     41 (24.4)     10 (45.5) 

100 (49.0)     78 (46.4)       9 (40.9) 

  65 (31.9)     49 (29.2)       3 (13.6) 

 

39 (29.1)     34 (21.0)     13 (16.3) 

68 (50.7)     79 (48.8)     30 (37.5) 

27 (20.1)     49 (30.2)     37 (46.3) 

 

  78 (24.2)       7 (14.0)       1 (25.0)    

148 (46.0)     26 (52.0)       3 (75.0) 

  96 (29.8)     17 (34.0)       0 (0.0)    

P value, univariate 0.151 0.018 9.783 x 10-5 0.524 

multivariate 0.386 0.022 3.195 x 10-5 0.322 

Fibrosis 

0 

1 

2 

3 

4 

 

  56 (21.3)     30 (26.1)       4 (26.7) 

  96 (36.5)     50 (43.5)       6 (40.0) 

  75 (28.5)     19 (16.5)       5 (33.3) 

  35 (13.3)     15 (13.0)       0 (0.0) 

    1  (0.4)        1  (0.9)        0 (0.0) 

 

  46 (22.5)     38 (22.8)       6 (27.3)  

  77 (37.7)     67 (40.1)       8 (36.4) 

  48 (23.5)     44 (26.3)       7 (31.8) 

  32 (15.7)     17 (10.2)       1 (4.5) 

    1 (0.5)         1 (0.6)         0 (0.0) 

 

36 (26.9)     34 (21.0)     15 (19.0) 

56 (41.8)     62 (38.3)     29 (36.7) 

32 (23.9)     44 (27.2)     18 (22.8) 

10 (7.5)       21 (13.0)     16 (20.3) 

  0 (0.0)         1 (0.6)         1 (1.3) 

 

  70 (21.7)     13 (26.5)       2 (50.0) 

128 (39.8)     19 (38.8)       0 (0.0) 

  85 (26.4)       8 (16.3)       1 (25.0) 

  37 (11.5)       9 (18.4)       1 (25.0) 

    2 (0.6)         0 (0.0)         0 (0.0) 

P value, univariate 0.075 0.362 0.012 0.661 

multivariate 0.134 0.394 0.018 0.955 

Lobular I. 

0 

1 

2 

                                                                 

  50 (19.0)     22 (19.0)       5 (33.3) 

132 (50.2)     64 (55.2)       6 (40.0) 

  81 (30.8)     30 (25.9)       4 (26.7) 

 

  39 (19.1)     33 (19.6)       5 (22.7) 

104 (51.0)     85 (50.6)     13 (59.1) 

  61 (29.9)     50 (29.8)       4 (18.2) 

 

30 (22.4)     30 (18.5)     11 (13.8) 

70 (52.2)     80 (49.4)     41 (51.2) 

34 (25.4)     52 (32.1)     28 (35.0) 

 

  58 (18.0)     11 (22.0)       2 (50.0) 

166 (51.6)     25 (50.0)       0 (0.0) 

  98 (30.4)     14 (28.0)       2 (50.0) 

P value, univariate 0.284 0.503 0.056 0.513 

multivariate 0.104 0.470 0.020 0.690 



Portal I. 

0 

1 

2 

 

  65 (24.7)     44 (38.9)       8 (53.3) 

160 (60.8)     59 (52.2)       7 (46.7) 

  33 (12.5)     10 (8.8)         0 (0.0) 

 

  65 (32.5)     46 (28.0)       6 (27.3) 

107 (53.5)   106 (64.6)     13 (59.1) 

  28 (14.0)     12 (7.3)         3 (13.6) 

 

41 (30.6)     52 (33.3)     18 (23.1) 

79 (59.0)     88 (56.4)     47 (60.3) 

14 (10.4)     16 (10.3)     13 (16.7) 

 

  91 (28.9)     18 (36.7)       2 (50.9) 

186 (59.0)     26 (53.1)       2 (50.0) 

  38 (12.1)       5 (10.2)       0 (0.0) 

P value,univariate 7.282 x 10-4 0.884 0.202 0.156 

multivariate 1.542 x 10-4 0.851 0.234 0.182 

Ballooning 

0 

1 

2 

   

  76 (29.3)     39 (34.2)       6 (40.0) 

110 (42.5)     48 (42.1)       3 (20.0) 

  73 (28.2)     27 (23.7)       6 (40.0) 

   

  63 (31.2)     51 (31.1)       7 (31.8) 

  83 (41.1)     69 (42.1)       9 (40.9) 

  56 (27.7)     44 (26.8)       6 (27.3) 

 

41 (30.6)     50 (31.8)     21 (26.6) 

59 (44.0)     55 (35.0)     38 (48.1) 

34 (25.4)     52 (33.1)     20 (25.3) 

 

  94 (29.7)     16 (32.7)       2 (50.0) 

131 (40.7)     19 (38.8)       2 (50.0) 

  92 (29.0)     14 (28.6)       0 (0.0) 

P value, univariate 0.422 0.917 0.646 0.380 

multivariate 0.241 0.971 0.710 0.236 

 
Supplementary Table 5. 
Data represent frequencies P-values were calculated using univariate or multivariate logistic regression with correction for age, sex, BMI z-score and HOMA. 

  



 

 

Supplementary Table 6. 
P values were calculated by binary logistic regression with correction for age and sex.  

 

 
 
  

Odds Ratios for the presence of fibrosis.  

SNP Fibrosis Odds ratio, 

additive model  

P value Odds ratio, 

dominant model 

P value 

HSD17B13      
 Any  0.82 (0.54 - 1.23) 0.332 0.77 (0.47 - 1.27) 0.309 
 Moderate 0.66 (0.45 - 0.99) 0.043 0.61 (0.39 - 0.97) 0.037 
 Advanced 0.74 (0.41 - 1.34) 0.322 0.82 (0.43 - 1.59) 0.562 

MARC1      
 Any  0.93 (0.63 - 1.38) 0.731 0.96 (0.60 - 1.53) 0.857 

 Moderate 0.93 (0.66 - 1.31) 0.673 0.90 (0.60 - 1.37) 0.632 

 Advanced 0.53 (0.30 - 0.94) 0.028 0.50 (0.27 - 0.95)  0.033 

PNPLA3      

 Any 1.25 (0.89 - 1.76) 0.194 1.40 (0.85 - 2.32) 0.185 

 Moderate 1.33 (1.00 - 1.78) 0.049 1.58 (1.00 - 2.48) 0.048 
 Advanced 1.96 (1.29 - 3.00)  0.002 2.59 (1.23 - 5.44) 0.012 

TM6SF2      

 Any 0.68 (0.38 - 1.21) 0.190 0.70 (0.36 - 1.34) 0.276 

 Moderate 0.95 (0.55 - 1.63)  0.845 0.89 (0.49 - 1.64) 0.714 

 Advanced 1.60 (0.82 - 3.13) 0.171 1.69 (0.78 - 3.63) 0.183 



 Supplementary Table 7. 

 Clinical and Laboratory Characteristics of patients with liver tissue proteomic profiles. 

Variable NAFLD  (N = 590) NAFLD with liver proteomics  (N = 70) 

Age (years) 13.0 (11.0 – 15.4)  14.0 (13.0 – 16.0)  

Male sex, n (%) 386 (66.6)  54 (77.1) 

BMI z-score 2.4 (1.8 – 3.0) 2.9 (2.5 – 3.2) 

Obesity, n (%) 387 (66.5) 60 (85.7) 

ALT (U/l) 47 (31 – 78) 88 (62 – 125) 

AST (U/l) 38 (28 – 54) 52 (39 – 69) 

GGT (U/l) 23 (16 – 36) 40 (30 – 56) 

Cholesterol (mg/dl) 160 (139 – 185) 163 (146 – 181) 

LDL (mg/dl) 97 (81 – 112) 104 (90 – 119) 

HDL (mg/dl) 43 (38 – 50) 42 (36 – 51) 

Triglycerides (mg/dl) 98 (71 – 141) 118 (93 – 168) 

HOMA 3.7 (2.5 – 5.6) 5.9 (4.4 – 9.0) 

HSD17B13 genotype, n (%)    

TT / TTA / TATA 394 (66.8)/168 (28.5)/28 (4.7) 50 (71.4)/15 (21.4)/5 (7.1) 

MARC1 genotype, n (%)    

GG / GA / AA 324 (54.9)/227 (38.5)/39 (6.6) 41 (58.6)/23 ( 32.9)/6 (8.6) 

PNPLA3 genotype, n (%)    

CC / CG / GG 139 (35.4)/172 (43.8)/82 (20.9) 20 (29.0)/31 (44.9)/18 (26.1) 

 
Supplementary Table 7. 
Data represent frequencies (%) or median (interquartile range) as appropriate. BMI, body mass index; ALT, alanine aminotransferase; AST, aspartate aminotransferase; 

GGT, gamma glutamyl transferase; LDL, low density lipoprotein ; HDL, high density lipoprotein; HOMA, homeostatic model assessment of insulin resistance . 

 
 
 



Supplementary Table 8 [Excel spreadsheet]. 
Hepatic proteomics results for rs72613567T>TA in HSD17B13 and rs2642438G>A in MARC1. Association between proteins and variants was calculated 
using linear regression (for an additive model coding number of effect alleles as 0, 1, or 2) adjusted for age and sex. Beta regression coefficient therefore 
represents the change in log-standard deviations of protein abundance per effect allele. 
 
Supplementary Table 9 [Excel spreadsheet]. 
Gene set enrichment analysis (GSEA) results for rs72613567T>TA in HSD17B13 and rs2642438G>A in MARC1 for gene sets with nominal P-value < 0.05 
and FDR Q-value <0.25.  
 
  



Predicted consequence of p.Ala165Thr in MARC1 (from rs2642438G>A) using three in silico analysis tools. 

Tool Result for MARC1 p.Ala165Thr Explanatory notes 

Prediction of impact of missense variants on protein function 

SNPs&GO10,11 PhD-SNP: Neutral (Prob=0.483, RI=0) 
PANTHER: Disease (Prob=0.804, RI=6) 
SNPs&GO: Neutral (Prob=0.455, RI=1) 

Several models are integrated to give the overall SNPs&GO output. A probability 
of >0.5 is predicted as ‘Disease’. https://snps.biofold.org/snps-and-go/ 

Align-
GVGD12–14 

GV=0.0 
GD=58.02 
Prediction=Class C55 

GV is a measure of biochemical variation of the mutation. 
GD is a measure of the difference in properties of mutation. 
There are seven classifiers, where C65 is the most likely to interfere with protein 
function, C55 is the second most likely, and C0 is the least likely. 
http://agvgd.hci.utah.edu/ 

MutPred215 Score = 0.745 
Affected motifs: 
Loss of Helix (Prob=0.27, p=0.05); Altered Metal binding (Prob=0.26, 
p=9.6e-03); Gain of Relative solvent accessibility (Prob=0.25, p=0.03); 
Gain of Allosteric site at W168 (Prob=0.21,p=0.03); Gain of Catalytic 
site at W168    (Prob=0.18, p=0.01); Gain of Disulfide linkage at C161 
(Prob=0.15, p=0.03); Loss of Pyrrolidone carboxylic acid at Q167 
(Prob=0.10, p=0.01) 

Score of >0.5 indicates pathogenicity. 
MutPred2 also predicts the probability of structural & functional properties and 
generates a p-value for each to occur compared to the probability of those motifs 
being altered by benign mutations. 
A probability of >0.25 is suggested as a threshold for implicating a particular 
mechanism of pathogenicity, interpreted in combination with the p-value. 
http://mutpred.mutdb.org/index.html  

Prediction of impact on protein stability 

I-Mutant3.016–
18 

ΔΔG Value Prediction: -0.63 kcal/mol 
SVM2 Prediction Effect: Decrease, RI=7 
SVM3 Prediction Effect: Large Decrease, RI=3 

A negative ΔΔG indicates a decrease in the stability of protein tertiary structure. 
The tool can either give a binary classification (SMV2) of increase/decrease; or a 
ternary classification (SMV3) or increase/neutral/decrease. 
http://gpcr2.biocomp.unibo.it/cgi/predictors/I-Mutant3.0/I-Mutant3.0.cgi 

DUET19 mCSM Predicted Stability Change (ΔΔG):-1.901 kcal/mol 
(Destabilizing) 
SDM Predicted Stability Change (ΔΔG): 
-2.54 Kcal/mol (Destabilizing) 
DUET Predicted Stability Change (ΔΔG): 
-2.083 Kcal/mol (Destabilizing) 

A tool that combines two previously published approaches (SDM and mCSM) into 
a single estimate of protein stability, expressed as ΔΔG. This is calculated using 
the known crystalline structure of MARC1 (6fw2 on PDBe). 
http://biosig.unimelb.edu.au/duet/stability 

CUPSAT20–22 Overall stability (ΔΔG):-3.74 kcal/mol (Destabilizing), with 
unfavourable torsion 

A tool that combines the physical properties of amino acids with the known 
crystalline structure of MARC1 (6fw2 on PDBe) to predict the impact on protein 
stability. http://cupsat.tu-bs.de/ 



Supplementary Table 10. 
GD, Grantham Difference; GV, Grantham Variation; mCSM, mutation Cutoff Scanning Matrix; PDBe, Protein Data Bank in Europe; Prob, probability; RI, 
reliability index; SDM, Site Directed Mutator;  
 
  



 
 

 Clinical and Laboratory Characteristics of patients with plasma lipidomics. 

Variable NAFLD  (N = 590) NAFLD with plasma lipidomics  (N = 129) 

Age (years) 13.0 (11.0 – 15.4)  12.4 (10.4 – 13.4)  

Male sex, n (%) 386 (66.6)  67 (52.0) 

BMI z-score 2.4 (1.8 – 3.0) 2.08 (1.8 – 2.6) 

Obesity, n (%) 387 (66.5) 74 (57.3) 

ALT (U/l) 47 (31 – 78) 60 (41 – 80) 

AST (U/l) 38 (28 – 54) 44 (33 – 56) 

Cholesterol (mg/dl) 160 (139 – 185) 157 (140 – 190) 

LDL (mg/dl) 97 (81 – 112) 99 (90 – 105) 

HDL (mg/dl) 43 (38 – 50) 43 (38 – 47) 

Triglycerides (mg/dl) 98 (71 – 141) 112 (82 – 155) 

HOMA 3.7 (2.5 – 5.6) 3.0 (2.1 – 4.1) 

HSD17B13 genotype, n (%)    

TT / TTA / TATA 394 (66.8)/168 (28.5)/28 (4.7) 87 (67.4)/39 (30.2)/3 (2.3) 

MARC1 genotype, n (%)    

GG / GA / AA 324 (54.9)/227 (38.5)/39 (6.6) 62 (48.1)/60 (46.5)/7 (5.4) 

PNPLA3 genotype, n (%)    

CC / CG / GG 139 (35.4)/172 (43.8)/82 (20.9) 47 (36.4)/63 (48.8)/19 (14.7) 

Supplementary Table 11. 
Data represent frequencies (%) or median (interquartile range) as appropriate. BMI, body mass index; ALT, alanine aminotransferase; AST, aspartate aminotransferase; LDL, 

low density lipoprotein ; HDL, high density lipoprotein; HOMA, homeostatic model assessment of insulin resistance  
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