An MRI-based, data-driven model of cortical laminar connectivity

Ittai Shamir¹ and Yaniv Assaf^{1,2}

¹ Department of Neurobiology, Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel

² Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel

* Correspondence: Ittai Shamir <u>ittaisha@mail.tau.ac.il</u> ORDCID: 0000-0003-4028-5154

Electronic Supplementary Material

1. Summary of reviewed articles

Following is a summary table of all 51 articles included in our systematic review (table 1):

	First	Vear	Iournal	Human/	Mathod	Model	Pagion/s
	Authorys	I Cal	Journal	Ammai	Method	1/1	Ktgion/s
1	Hubel & Wiesel	1962	Journal of Physiology	Cat	Recordings	N	Visual cortex
			, , , , , , , , , , , , , , , , , , , ,		Microphotographs (also mention		
					histology, electrophysiology,		primary
2	Herkenham	1980	Science	Rat	tracing)	N	somatosensory
							whole-cortex
2		1000	N IC IC		Intracellular recordings,	37	(canonical), based
3	Douglas et al.	1989	Neural Computation	Cat (generalized)	histological staining (horseradish)	Y	on visual cortex
	Fallemon &						multiple cortical
4	Van Essen	1991	Cerebral Cortex	Primate (macaque)	Histology	Y	temporal parietal)
-	tun Listen			Timute (mueuque)	lineterogy	-	(emportal, partetal)
	Douglas &		Journal of				
5	Martin	1991	Physiology	Cat	Recording of electrical stimulation	Y	Visual cortex
			Biological				V1 and primary
6	Mumford	1991	Cybernetics	Cat	Electrical recording	N	motor
				Primate (monkey,			
7	Mountaastla	1007	Droin	macaque) mainly,	Electrical recording	v	conoral
<u> </u>	Wountcastie	1997	Dialli	aiso cat	Electrical recording	1	general
				Cat. rodent (mouse).	Recording, photomicrograph		canonical circuit.
8	Nelson	2002	Neuron	primate, human	histogloy, photostimulation	Ν	visual cortex
				Cat, rodent (mouse,			
				rat, rabbit), primate	Histology (Nissl, Golgi staining),		
	Buxhoeveden			(rhesus monkey),	matlabolic labelling, electrical		
9	& Casanova	2002	Brain	human	recording	Y	intrinsic pathways
	DEL						
10	DeFelipe et	2002	Journal of	Multiple	Multiple	N	multiple
10	d1.	2002	reutocytology	winnpie	Multiple methods (review of	19	inutupie
					functional recorded connection into		
	Raizada &			Macaque mainly,	a single model- LAMINART		
11	Grossberg	2003	Cerebral Cortex	also cat	+simulation)	Y	Visual cortex
	Binzegger et		The Journal of				
12	al.	2004	Neuroscience	Cat	In-vivo staining, in vivo recordings	Y	Visual Cortex

13	Douglas & Martin	2004	Annual Review of Neuroscience	Human, cat, rat, monkey (multiple- review)	Multiple (review)- staining (Golgi), electrophysiology, degeneration, retrograde traces (horseradish, peroxidase, fast blue), ESEM	Y	Visual Cortex, generalized to entire cortex
14	Shipp	2005	Philosophical transacations of the royal society	Animal, some human (multiple- review)	Multiple- imaging, histology, recording. Etc.	Y	General (agranular, granular and dysgranular regions connectivity)
15	Hirsch & Martinez	2006	Current Opinion in Neurobiology	Cat, also monkey	Recordings of stimuli	Y	Visual cortex
16	Douglas & Martin	2007	Neuron	Cat, primate	Staining, electrophysiology, etc.	Y	Canonical circuit, visual Cortex
17	Lubke & Feldmeyer	2007	Brain Structure and Function	Rodent mainly, also human and primate	Electrical recording, infrared microscopy, optical probing, photostimulation, ESEM	Y	Simplified model
18	Helmstaedter et al.	2007	Brain Research Reviews	Rat	Electrical recordings, optical reconstruction	Y	Somatosensory, general
19	Thomson & Lamy	2007	Frontiers in Neuroscience	Cat, mice ('green mice')	Cellular recordings (intra/whole- cell), anatomy, imaging, (histology), stereological, analyiss, immunocytochemical, cellular markers, genomics, immunofluorescence	Y	General
20	Ch in a	2007	Comment Disland	Driverte		V	Nonprimary visual
20	Helmstaedter et al.	2007	The Journal of Neuroscience	Rat	Electrical recording, histology	Y	Somatosensory
22	Weiler et al.	2008	Nature Neuroscience	Mouse	Electrical recording	Y	Sensory cortex
23	Binzegger et al.	2009	Neural Networks	Cat	Horseradish labelling	Y	Visual cortex
24	Da Costa & Martin	2010	Frontiers in Neuroanatomy	Multiple (cat mainly, also primates and rodents)	Multiple	Y	Intra-regional
25	Thomson	2010	Frontiers in Neuroanatomy	Mice, rat, primate, cat, human	Electrophysiological, dye (histology), retrograde labelling	Y	Primary sensory
26	Meyer et al.	2010	Cerebral Cortex	Rat	Staining (immunofluorescence), single-cell recording	Y	Somatosensory
27	Meyer et al.	2010	Cerebral Cortex	Rat	Staining (immunofluorescence), single-cell recording	N	Somatosensory
28	Fishell & Rudy	2011	Annual Review of Neuroscience	Human, rodent, cat, primate (multiple)	Multiple methods (historical review focused on inhibition)	N	General
29	Shepherd	2011	Frontiers in Neuroanatomy	Turtle, human, also cat, primate, opossum (multiple- review)	Electrical recording, histology, genetics, etc. (multiple- review)	Y	General
30	Feldmeyer	2012	Frontiers in Neuroanatomy	Rodents (rat and mouse)	Electrophysiological, dye (histology), anterograde and retrograde tracing, cage glutamate release, light activation, etc.	Y	somatosensory (barrel) cortex

31	Du et al.	2012	PLoS Computational Biology	Multiple- review as the baswis for the model	Multiple- review +simulation	Y	Visual cortex, generalized
				Mammal rodents	Multiple: fMRI, recordings,		8
32	Bastos et al.	2012	Neuron	(mice,rats)	computational model	Y	Visual cortex
33	Kennedy & Dehay	2012	Progress in Brain Research	Mainly human, also primate, carnivores, rodents, insectivores, reptiles, amphibians	Multiple	Y	General
34	Estrada- Sanchez & Rebec	2013	Frontiers in Neural Circuits	Multiple	Multiple	N	Visual cortex
35	Harris & Mrsic-Flogel	2013	Nature	Optical methods, electricalRodentsmethods, optogenetics		Y	Sensory cortex
36	Beul & Hilgetag	2014	Frontiers in Neuroanatomy	Mainly rodent (also discuss human, cat)	Multiple, including histology (anatomical and electrophysiological approaches)	Y	Cortico-cortical
37	Kiernan & Rajakumar	2014	Lippincott Williams & Wilkins	Human	Histology (Nissl, Golgi), ESEM, immunohistochemical	Y	Intracortical
38	Markov et al.	2014	The Journal of Comparative Neurology, Research in Systems Neuroscience	Macaque	Retrograde tracing + model	Y	Visual cortex
39	Dhruy	2015	Nature Neuroscience	Mouse, human	Recording, optogenetics	Y	Canonical
40	Lodato & Arlotta	2015	Annual Review of Developmental Biology	Mouse rat	Histology (Golgi staining, etc.), electrical recodring, tracing, ontogenetics	Y	Barrel cortex
41	Bosman & Aboitiz	2015	Frontiers in Neuroscience	Animals- mammals (cats, rodents, primates) and sauropsids (birds and reptiles) (review of many studies)	Multiple methods- histology, tracing, electrical recording (review of many studies)	Y	Canonical circuit, Visual Cortex
42	liong at al	2015	Saianaa	Mice	Tissue slicing, whole-cell recording, morphological	v	General / cononical
43	Markram et al.	2015	Cell	Rat	Digital reconstruction from experimental data recordings, followed by simulations	Y	Somatosensory
44	Ramaswamy et al.	2015	Frontiers in Neural Circuits	Rat	Digital reconstruction from experimental data recordings, followed by simulations (data includes many methods, database of papers)	Y	Somatosensory
45	Wang & Kennedy	2016	, Current Opinion in Neurobiology	Monkey (macaque), rodent (mouse), (generalized model for mammals)	Multiple: recordings,	N	General
46	Guy & Staiger	2017	Frontiers in Neuroanatomy	Mouse	Optogenetics	N	Somatosensory
47	Mercer & Thomson	2017	Frontiers in Neuroanatomy	Primate, rat, human, cat (review)	Multiple (review)	N	General

48	Hawkins & Ahmad	2017	Frontiers in Neural Circuits	Mouse	Multiple (electrical recording, etc.)- focus on simulation	Y	General
49	Rockland	2017	NeuroImage	Multiple (review)- mainly primates (NHP), also rodents, cats	Multiple methods (review)- anterograde/retrograde tracing, MRI	Y	General
50	Roelfsema & Holtmaat	2018	Nature Reviews Neuroscience	Primate, Rodent (human)	Stimulation, simulation (deep learning)	Y	Intracortical (local)
51	Larkum et al.	2018	Frontiers in Neuroanatomy	Human, rodents	fMRI (high resolution)	Y	General

 Table 1 A summary of all 51 records included in the systematic review

2. Summary of region-specific reported connections

Following is a summary of reported region-specific cortical laminar connections, organized by origin and termination in the three-layer grouping of infragranular, granular and supragranular layers:

2.1 Visual cortex

For a summary of reported cortical laminar connections in the visual cortex see figure 1 (below).

Fig. 1 Summary of all reported cortical laminar connections in the 'visual cortex':

a- In connectivity matrix format, where: [row, column]=[connection origin, connection termination] and connections are averaged per origin (per row)

b- Presented as distributions of connection terminations that originate in each of the following: subcortex (left), infragranular (mid left), granular (mid right), supragranular (right)

2.2 Sensory cortex

For a summary of reported cortical laminar connections in the sensory cortex see figure 2 (below).

Fig. 2 Summary of all reported cortical laminar connections in the 'sensory cortex':

a- In connectivity matrix format, where: [row, column]=[connection origin, connection termination] and connections are averaged per origin (per row)

b- Presented as distributions of connection terminations that originate in each of the following: subcortex (left), infragranular (mid left), granular (mid right), supragranular (right)

2.3 General

For a summary of reported cortical laminar connections in the 'general' cortical regions see figure 3 (below).

Fig. 3 Summary of all reported cortical laminar connections in 'general' regions:

- a- In connectivity matrix format, where: [row, column]=[connection origin, connection termination] and connections are averaged per origin (per row)
- b- Presented as distributions of connection terminations that originate in each of the following: subcortex (left), infragranular (mid left), granular (mid right), supragranular (right)

2.4 Somatosensory cortex

For a summary of reported cortical laminar connections in the somatosensory cortex see figure 4 (below).

b- Presented as distributions of connection terminations that originate in each of the following: subcortex (left), infragranular (mid left), granular (mid right), supragranular (right)

2.5 Other

For a summary of reported cortical laminar connections in 'other' cortical regions see figure 5 (below).

Fig. 5 Summary of all reported cortical laminar connections in 'other' regions:

- a- In connectivity matrix format, where: [row, column]=[connection origin, connection termination] and connections are averaged per origin (per row)
- b- Presented as distributions of connection terminations that originate in each of the following: subcortex (left), infragranular (mid left), granular (mid right), supragranular (right)

*Too little region-specific reported data regarding local cortical laminar connectivity in motor and auditory cortices.

3. Explanation of origin of rules for horizontal laminar connections

Horizontally oriented laminar connections are extrinsic nonlocal connections between laminar components of different cortical regions. Our model's rules for horizontal connections were extracted from a general schematic model of directed connections (see figure 6).

Fig. 6 Schematic model for horizontal laminar connections, based on the granularity of the connecting regions. The model is adapted from a similar model, which has been widely reported and studied since the 1980s (Beul and Hilgetatg 2015, adapted from von Economo 2009 and from Barbas and Rempel-Clower 1997; a similar model also appears in Shipp 2005, adapted from Barbas and Rempel-Clower 1997 and Barabs 1986)

An initial set of rules of directed laminar horizontal connectivity was extracted from the abovementioned schematic model, based on the granularity indices and laminar compositions of the regions of origin and termination (see table 2). The rules of directed connectivity were then expanded from multiple laminar regions of origin/termination to single laminar groups, using the corresponding laminar composition (see table 3, rules: C.1.1, C.1.2, C.4.1, C.4.2, D.3.1, D.3.2, D.4.1, D.4.2).

After the rules of directed connectivity were expanded, they were organized into undirected categories according to the connecting regions (see table 4, organized by color). Subsequently, the probabilities within each category were summed, resulting in the final undirected model of horizontally oriented connections (see table 5).

		Numbe	r:	C	ortex granularity	<i>r</i> :		Terminatio	n:	1		2	3		4	5	6
	a <u>1</u>				Agranular		h	Origin:									
	a	2			Slightly granular		U	1		E, local				С			A
		3	In	creasi	ing granule cell p	resence		2		D		E, local	E lasa			с 	
		4	In	creasi	ing granule cell p	resence		3	_		U	, D	E, 10Ca		E local		r
		5	In	creasi	ing granule cell p	resence		5)	_	L, IOCAI	E. local	C C
		6			Granular			6		В				D		,	E, local
<u> </u>											_						
								Origin				Termi	nation		4	Strengt	h
Rule:	Subcat	egory:	Origi	in:	Termination:	Laye	r comp	osition:	F	Prob.:	La	ayer compo	sition:	Prob.	:	probabili	ty:
					_											P(IG, low)
A	A	<u>۱</u>	1		6		P(IG , lo	ow)		1		P(SG ,high	ו)	1	P(I0	$G_{\rm r}(100) + P(S_{\rm r})$	G, high)
			~												P(SG, high)		
В	E	,	6		1		P(SG , n	ign)		1		P(IG ,IOW)			P(10	P(IG, IOW) + P(SG, high)	
	с.	1					P(SG ,low)			(1/3)	Ρ	(IG,high)+P(C	5 ,high)	(1/3)		$(\frac{1}{3})^2 \cdot P_{low2high}$	
	C.	2					P(SG ,lo	ow)		(1/3)		P(SG ,high)		(2/3)	($(\frac{1}{3}) \cdot (\frac{2}{3}) \cdot P_{\text{low}}$	v2high
	C.	3					P(IG ,lo	ow)		(2/3)		P(SG ,higl	ı)	(2/3)		$(\frac{2}{3})^2 \cdot P_{low2}$	high
с	C.	4	х		>X		P(IG ,lo	ow)		(2/3)	Ρ	(IG ,high)+P(C	IG,high)+P(G,high)		($(\frac{1}{3}) \cdot (\frac{2}{3}) \cdot P_{\text{low2high}}$	
	D.	1					P(SG ,hi	igh)		(2/3)		P(IG ,low)		(2/3)		$(\frac{2}{3})^2 \cdot P_{\text{high}2}$	low
	D.	2					P(SG ,hi	igh)		(2/3)		P(SG , ,lov	v)	(1/3)	($(\frac{1}{3}) \cdot (\frac{2}{3}) \cdot P_{hig}$	gh2low
	D.	3				P(IG ,	high)+F	?(G ,high)		(1/3)		P(SG ,low	()	(1/3)		$(\frac{1}{3})^2 \cdot P_{\text{high}2}$	low
D	D.	4	>X		x	P(IG ,	high)+F	P(G ,high)		(1/3)		P(IG ,low)	(2/3)	($\left(\frac{1}{3}\right) \cdot \left(\frac{2}{3}\right) \cdot P_{\text{hig}}$	gh2low
	E.	1					P(SG,2)			1		P(SG ,2)		1	P	$\frac{P(SG, 1)}{(SG, 1) + P(3)}$	SG, 2)
E	E.	2	х		x					1		P(SG ,1)		1	P	$\frac{P(SG, 2)}{(SG, 1) + P(3)}$	SG, 2)

Table 2 Initial set of rules of directed horizontal connectivity, expanded from figure 6:

 a- Cortical granularity indices, ranging from agranular (1) to granular (6);

b- Rules of directed laminar connectivity (A-E), applied according to granularity of connecting regions;

c- Full description of all rules of directed connectivity, estimated according to their laminar content. Final laminar connection strengths are calculated by multiplying tractography connection strengths by laminar strength probabilities (last column);

Where: P(L,R)- composition of laminar group L (SG- supragranular, G- granular, IG- infragranular) in region R

(high/low represents relative granularity index, or 1/2 when they are equal)

				Origin		Termination		Strength
Rule:	Subcategory:	Origin:	Termination:	Layer composition:	Prob.:	Layer composition:	Prob.:	probability:
								P(IG, low)
Α	A	1	6	P(IG ,low)	1	P(SG,high)	1	P(IG, low) + P(SG, high)
								P(SG, high)
В	В	6	1	P(SG ,high)	1	P(IG ,low)	1	P(IG, low) + P(SG, high)
	C.1			P(SG,low)	(1/3)	P(IG ,high)+P(G ,high)	(1/3)	$S1 = (\frac{1}{3})^2 \cdot P_{low2high}$
	C.1.1					P(IG ,high)		P(IG,high) P(IG,high)+P(G,high) · S1
	C.1.2					P(G ,high)		P(G,high) P(IG,high)+P(G,high) · S1
	C.2			P(SG ,low)	(1/3)	P(SG ,high)	(2/3)	$(\frac{1}{3}) \cdot (\frac{2}{3}) \cdot P_{low2high}$
	C.3			P(IG ,low)	(2/3)	P(SG ,high)	(2/3)	$(\frac{2}{3})^2 \cdot P_{low2high}$
	C.4			P(IG ,low)	(2/3)	P(IG ,high)+P(G ,high)	(1/3)	$S2=(\frac{1}{3})\cdot(\frac{2}{3})\cdot P_{low2high}$
	C.4.1					P(IG ,high)		P(IG,high) P(IG,high)+P(G,high) [.] S2
с	C.4.2	x	>X			P(G ,high)		P(G,high) P(IG,high)+P(G,high) ·S2
	D.1			P(SG ,high)	(2/3)	P(IG ,low)	(2/3)	$(\frac{2}{3})^2 \cdot P_{\text{high2low}}$
	D.2			P(SG ,high)	(2/3)	P(SG , ,low)	(1/3)	$(\frac{1}{3}) \cdot (\frac{2}{3}) \cdot P_{\text{high2low}}$
	D.3			P(IG ,high)+P(G ,high)	(1/3)	P(SG ,low)	(1/3)	$S3=(\frac{1}{3})^2 \cdot P_{high2low}$
	D.3.1			P(IG ,high)				P(IG,high) P(IG,high)+P(G,high) 'S3
	D.3.2			P(G ,high)				P(G,high) P(IG,high)+P(G,high) · S3
	D.4			P(IG ,high)+P(G ,high)	(1/3)	P(IG,low)	(2/3)	$\mathbf{S4=}(\frac{1}{3})\cdot(\frac{2}{3})\cdot P_{\text{high2low}}$
	D.4.1			P(IG ,high)				P(IG,high) P(IG,high)+P(G,high) ⁻ S4
D	D.4.2	>X	x	P(G ,high)				P(G,high) P(IG,high)+P(G,high) · S4
	E.1			P(SG ,1)	1	P(SG ,2)	1	$\frac{P(SG, 1)}{P(SG, 1) + P(SG, 2)}$
E	E.2	х	x	P(SG ,2)	1	P(SG ,1)	1	$\frac{P(SG, 2)}{P(SG, 1) + P(SG, 2)}$

Table 3 Expanded set of rules of directed horizontal connectivity, expanded to single laminar groups from table 2c:

 Full description of all rules of directed connectivity, estimated according to their laminar content.

Final laminar connection strengths are calculated by multiplying tractography connection strengths by laminar strength probabilities (last column);

Where: P(L,R)- composition of laminar group L (SG- supragranular, G- granular, IG- infragranular) in region R (high/low represents relative granularity index, or 1/2 when they are equal); Additional values:

$$P_{\text{low}} = \frac{2}{3} \cdot P(\text{IG}, \text{low}) + \frac{1}{3} \cdot P(\text{SG}, \text{low}) ; P_{\text{high}} = \frac{2}{3} \cdot P(\text{SG}, \text{high}) + \frac{1}{3} \cdot (P(\text{IG}, \text{high}) + P(\text{G}, \text{high})) ;$$
$$P_{\text{low2high}} = \frac{P_{\text{low}}}{P_{\text{low}} + P_{\text{high}}}; P_{\text{high2low}} = \frac{P_{\text{high}}}{P_{\text{low}} + P_{\text{high}}}$$
$$\mathbf{S1} = (\frac{1}{3})^2 \cdot P_{\text{low2high}} ; \mathbf{S2} = (\frac{1}{3}) \cdot (\frac{2}{3}) \cdot P_{\text{low2high}} ; \mathbf{S3} = (\frac{1}{3})^2 \cdot P_{\text{high2low}} ; \mathbf{S4} = (\frac{1}{3}) \cdot (\frac{2}{3}) \cdot P_{\text{high2low}}$$

				Region 1		Region 2	_	Strength
Rule:	Subcategory:	Connecti	ng regions:	Layer composition:	Prob.:	Layer composition:	Prob.:	probability:
А	А	1	6	P(IG ,low)	1	P(SG ,high)	1	1
	B.1			P(SG ,low)		P(IG ,high)		P(IG,high) P(IG,high)+P(G,high) · S1
				P(IG ,high)		P(SG ,low)		P(IG,high) P(IG,high)+P(G,high) ⁻ S3
	B.2			P(SG ,low)		P(G ,high)		P(G,high) P(IG,high)+P(G,high) · S1
				P(G ,high)		P(SG ,low)		P(G,high) P(IG,high)+P(G,high) · S3
	B.3			P(SG ,low)	(1/3)	P(SG ,high)	(2/3)	$(\frac{1}{3}) \cdot (\frac{2}{3}) \cdot P_{\text{low2high}}$
				P(SG ,high)	(2/3)	P(SG , ,low)	(1/3)	$(\frac{1}{3}) \cdot (\frac{2}{3}) \cdot P_{\text{high2low}}$
	B.4			P(IG ,low)	(2/3)	P(SG ,high)	(2/3)	$(\frac{2}{3})^2 \cdot P_{low2high}$
				P(SG ,high)	(2/3)	P(IG ,low)	(2/3)	$(\frac{2}{3})^2 \cdot P_{high2low}$
	B.5			P(IG ,low)		P(IG ,high)		P(IG,high) P(IG,high)+P(G,high) ⁻ S2
				P(IG ,high)		P(IG ,low)		P(IG,high) P(IG,high)+P(G,high) ⁻ S4
	B.6			P(IG ,low)		P(G ,high)		P(G,high) P(IG,high)+P(G,high) ·S2
В		x	>X	P(G ,high)		P(IG ,low)		P(G,high) P(IG,high)+P(G,high) · S4
с	с	x	x	P(SG ,1)	1	P(SG ,2)	1	1

 Table 4 Categorized rules of undirected horizontal connectivity (derived from table 3):

 Full description of all rules of undirected connectivity, estimated according to their laminar content.

 Final laminar connection strengths are calculated by multiplying tractography connection strengths by laminar strength

probabilities (last column);

Where: P(L,R)- composition of laminar group L (SG- supragranular, G- granular, IG- infragranular) in region R (high/low represents relative granularity index, or 1/2 when they are equal); Additional values as described for table 3

	Number:	Cortex granularity:		Termination:	1	2		3	4	5	6	
a	1	Agranular	D	Origin:								
	2	Slightly granular		1	C, local				В		A	
	2	Increasing grapula call processo	ł	2	В	C, loo	cal		В			
	3	increasing granule cell presence		3	В			C, local B				
	4	Increasing granule cell presence		4		В	В		C,local	C,local B		
	5	Increasing granule cell presence		5			E	В	C, local	В		
	6	6 Granular		6	A				В	•	C, local	
C			•									
				Region 1		Reg	Region 2 Strength					

				Region 1	Negion Z	Julengui
Rule:	Subcategory:	Connecting	g regions:	Layer composition:	Layer composition:	probability:
А	А	1	6	P(IG ,low)	P(SG ,high)	1
	B.1			P(IG ,low)	P(IG ,high)	$\frac{P(IG,high)}{P(IG,high)+P(G,high)} \cdot (\frac{1}{3}) \cdot (\frac{2}{3})$
	B.2			P(IG ,low)	P(G ,high)	$\frac{P(G,high)}{P(IG,high) + P(G,high)} \cdot (\frac{1}{3}) \cdot (\frac{2}{3})$
	B.3			P(IG ,low)	P(SG ,high)	$(\frac{2}{3})^2$
	B.4			P(SG ,low)	P(IG ,high)	$\frac{P(IG,high)}{P(IG,high) + P(G,high)} \cdot (\frac{1}{3})^2$
	B.5			P(SG ,low)	P(G ,high)	$\frac{P(\mathbf{G},high)}{P(\mathbf{IG},high)+P(\mathbf{G},high)} \cdot (\frac{1}{3})^2$
в	B.6	x	>X	P(SG ,low)	P(SG ,high)	$(\frac{1}{3}) \cdot (\frac{2}{3})$
с	с	x	x	P(XG ,1)	P(XG ,2)	1

Table 5 Final undirected model of horizontally oriented connections (derived from table 4):a- Cortical granularity indices, ranging from agranular (1) to granular (6);

b- Rules of directed laminar connectivity (A-E), applied according to granularity of connecting regions;

c- Full description of all rules of undirected connectivity, estimated according to their laminar content.

Final laminar connection strengths are calculated by multiplying tractography connection strengths by laminar strength probabilities (last column);

Where: P(L,R)- composition of laminar group L (SG- supragranular, G- granular , IG- infragranular) in region R (high/low represents relative granularity index, or 1/2 when they are equal)