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Model Configuration and Initialization  

 Following (1), the SEIR transmission model integrates the effect of human mobility on disease 
spread through a set of evolutionary equations. The model is given below: 

 

!"#
!$
= − (()*∗,!#)."#/#

0

1#
− (()*∗,!#)2."#/#

3

1#
+ ∑ 6

78 ∑ 9#:
8

: ∗":
1:)/:

0 −
78 ∑ 9:#

8 ∗: "#
1#)/#

0 ;<   (1) 

 

!=#
!$
= (()*∗,!#)."#/#

0

1#
+ (()*∗,!#)2."#/#

3

1#
− =#

>
+ ∑ 6

78 ∑ 9#:
8 ∗: =:

	1:)/:
0 −

78 ∑ 9:#
8

: ∗=#
1#)/#

0 ;<           (2) 

 

!/#
0

!$
= @#=#

>
− /#

0

A
           (3) 

 

!/#
3

!$
= (()@#)=#

>
− /#

3

A
+ ∑ 6

78 ∑ 9#:
8

: ∗/:
3

1:)/:
0 −

78 ∑ 9:#
8

: ∗/#
3

1#)/#
0 ;<                  (4) 

 

𝑁C = 𝑁C +	∑ D𝜃< ∑ 𝑀CG
<

G − 𝜃< ∑ 𝑀GC<G H<                       (5) 

 

where 𝑆C, 𝐸C, and 𝑁C represent the susceptible, exposed, and the total population of state 𝑖, 
respectively.  𝐼C! represents the documented infected individuals which is the subset of the infected 
population that have symptoms severe enough to be diagnosed with the illness. 𝐼CM is the rest of the 
infected population known as the undocumented infected individuals. We consider values for 
SEIR metapopulation state variables on day 𝑡. For the rest of this paper, we omit the time index 𝑡 
that represents the time dependency of variables.  𝛽 is the transmission rate of the disease from a 
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documented infected individual to a susceptible individual under normal population mobility. The 
transmission rate due to undocumented infected is captured by 𝜇𝛽 with 𝜇 being the reduction 
coefficient (𝜇 < 1). Additionally, the variable 𝑠𝑑C (𝑠𝑑C ∈ [−1, 1]) defines the daily change in 
social mobility (or degree of social distancing) in the state i, and the coefficient (1 − 𝛾 ∗ 𝑠𝑑C) is 
the decrease/increase in transmission rate due to changes in socializing and population mobility 
(𝛾 ≤ 1). The ratio of documented to total infected individuals in the state 𝑖 is 𝛼C, which varies 
among states with dissimilar population demographics based on age and gender (2). 𝑍 is the 
average incubation time, and 𝐷 is the infection period. More precisely, 𝐷 captures the effective 
period in which the infected individual moves out of the chain of disease transmission by perishing, 
recovering, or entering quarantine. The number of interstate travelers from state 𝑗 to state 𝑖 via 
transportation network 𝑣, is 𝑀CG

<  on a given day, with 𝜃< to fix the underreporting of transportation 
(𝜃< ≥ 1). Two transportation networks represented by 𝐺 and 𝐴 account for ground and air 
mobility. The ground transportation 𝑀CG,c  includes movement of individuals by four different sub-
networks: 𝑀CG

c = ∑ 𝑀CG
d

d . These sub-networks are: cars, trains, trucks and buses. Similarly, 𝑀CG
e  is 

the number of people traveling via flights. In this model, we assume documented infected patients 
do not travel between states, while the asymptomatic undocumented infected individuals have the 
ability to move from one state to another.  

We estimate the parameters of this model using the procedure described in (1). The model 
parameters of the SEIR model are inferred via iterative filtering of stochastic ensemble Kalman 
filter (EnKF-IF). The EnKF is a Monte Carlo (MC) approximation of the Kalman filter. We 
specifically used the Ensemble Adjustment Kalman filter (EAKF) which is suitable for models 
with a high number of parameters. In this technique, in each iteration, a presumably Gaussian 
distributed ensemble of state vectors are adjusted to posterior distribution via Bayes rule. The state 
vector includes model parameters and metapopulation values. We use the maximum likelihood 
approach to determine the final values of the state vector in the algorithm. The daily documented 
cases act as observations in the model. We find that a few hundreds of ensembles are sufficient to 
accurately infer the model parameters.  

We introduce a randomly drawn number for detecting delay of each documented case. This 
additional delay captures the latency period from the onset of symptoms to diagnosis and the time 
it takes an individual to become contagious from an initial exposure (2). The model randomly adds 
delay with Gamma-distributed values of shape 𝑎 = 1.78 and average of 𝑇 = 6 days. This 
distribution fits with the information from confirmed cases in China and South Korea (1,5,6). We 
examined Gamma distributions with various averages and a constant shape to capture the most 
accurate average delay time for estimation purposes.  

Furthermore, we introduce another delay for the effect of social distancing on daily confirmed 
cases. There is an average of 6 days delay between the change in human mobility (𝑠𝑑C) and the 
corresponding change in the number of daily documented infected cases across all states. This 
constant shift accounts for the time that the change in mobility starts showing an effect on disease 
transmission rate. 

The configuration of model and initial ranges for parameters and values are represented in Table 
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1. The EAKF algorithm is not limited by parameter prior range and can move outside of prior 
range to find the optimum solution. We choose a suitable prior range for state vector initial values 
to facilitate the convergence while covering most of the possible values for parameters.  

The prior range of 𝜇 covers a wide range of possible values [0, 1]. The prior range for 𝛼 is set to 
include most of its possible values (0,1] with lower bound set to 0.5 to account for the high volume 
of Covid-19 testing in Germany. The prior range for 𝛽 is set to cover a wide range of values for 
𝑅m, i.e. [0, 12]. Prior range of 𝑍 and 𝐷 are chosen to cover the known average incubation and 
infection period for Covid-19 (3, 5). Prior range of 𝜃 is set to capture most of the possible range 
of underreporting of transportation. The range limits the number of each state’s travelers to its 
population (Figure 5,6,7 in the manuscript). The prior range for 𝛾 covers most of the possible range 
for the effect of human mobility and social distancing on transmission rate, i.e. (0, 1]. The lower 
bound allows for at least a 50% drop in transmission rate if social mobility is dropped 100%.  

We use Feb 18, 2020 – Apr 20, 2020 as the time period for model inference. Feb 18, 2020 is the 
early stages of COVID-19 epidemic in Germany with only two states with reported cases. The 
initial susceptible population	𝑆C of each state is set to its initial total population. The initial 
documented cases, 𝐼C!,  is set to reported cases on Feb 18, 2020. The exposed and undocumented 
infected initial values are set in the following way. Based on reported daily cases, there are three 
states that are early hubs of Covid-19 in Germany. Nordrhein-Westfalen (NW) is the pioneer state 
linked to large carnival events, followed by states Baden-Wurttemberg (BW) and Bayern (BY) via 
outbreak in Italy (2). The first large cluster of reported cases in Nordrhein-Westfalen was reported 
on Feb 28, 2020 with 25 cases. Accounting for the average doubling time of 6.4 days [95% CI: 
5.8-7.1 days] for cases (4) and an average of 86% [95%CI: 83%, 90%] undocumented cases in 
early stages (1), we estimate to have [95% CI: 390-825] cases on the initial day of the model in 
Nordrhein-Westfalen. We set the initial value range for 𝐸1n , 𝐼1nM  to be [0-400] and uniformly 
select random values from this range. Similarly, we set the initial range of 𝐸on, 𝐼onM , and 𝐸op , 
𝐼opM for Baden-Wurttemberg and Bayern to [0, 200]. Excluding the aforementioned states, the rest 
of the German states’ initial values for 𝐸and 𝐼Mwere drawn uniformly from [0, 𝐶rst] with 𝐶rst 
being the aggregated number of undocumented infected travelers from the three hub states 
Nordrhein-Westfalen, Baden-Wurttemberg, and Bayern on the day of Feb 18: 

𝐶Crst
$um = ∑ ∑ 𝑀GC<𝐸C/𝑁CC∈{on,op,1n}<                                                                                            (6)        

All ensembles’ initial state vector values are drawn randomly via Latin hypercube sampling with 
uniform distribution from the initial ranges. 

The histograms of inferred model parameters are shown in Figure S1. The model parameter values 
selected from the set of inferred parameters are depicted by red lines in Figure S1. Please note that 
parameters sets are complex and while one parameter might have a high inferred frequency in a 
set, another parameter in that set might not have the highest inferred count.  
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Observations of confirmed COVID-19 Cases 

The daily number of confirmed COVID-19 cases in Germany have been collated from data 
released by the Robert Koch Institute (RKI) in Berlin, Germany. Figure S2 shows how COVID-
19 spread across Germany over time. When individuals contract COVID-19, they may remain 
asymptomatic. During this period, they are active carriers of the virus. Symptomatic and 
asymptomatic individuals are identified through clinical testing. In Germany, a primary care 
physician’s referral is required for COVID-19. More than 100 laboratories were contracted to 
conduct testing for the COVID-19 virus. The daily cases in RKI includes the number of confirmed 
positive cases. 

The RKI published the daily case reports at 10:00 prior to March 1, 2020. Between March 1, 2020 
and March 9, 2020, the RKI reported cases at 10:00 and at 15:00. Starting March 10, 2020, due to 
continuously rising case numbers, RKI switched to adopting the numbers that were electronically 
transmitted from testing centers across Germany. The new case numbers were published once at 
15:00. Starting March 17, 2020, the daily cases are published at midnight for the previous day. To 
account for the discrepancy in reporting time, we used a constrained cubic spline interpolation 
method to obtain the number of cases prior to March 17, adjusted for midnight reporting. Daily 
cases using cubic spline interpolation is shown in Figure S3. 

 

Community Mobility Data Trends 

Google aggregates data from users’ anonymized location history (for users who switched on the 
location history settings in their android mobile phones) to estimate foot traffic across six different 
location categories -- retail and recreation, groceries and pharmacies, parks, transit stations, 
workplaces, and residential (Figure S4). With the outbreak of COVID-19, Google released data 
for changes in foot traffic (in percent points) for the six location categories from February 15, 
2020.  These percentage changes in foot traffic are reported as community mobility trends in the 
reports. We use trends in retail and recreation to measure social distancing.  

 

Mobility Data 

COVID-19 started in Wuhan, China, and spread to Germany and other parts of the world through 
cross-border human movement. We use air and different types of ground transportation to 
accurately collect the movement data across different states in Germany.  For international travel 
into Germany from other countries we consider traffic from 142 countries (including nine countries 
that share international borders with Germany) through ground and air transportation. Next, we 
discuss the movement data for different models. 

 

Car Mobility Data and Truck Mobility Data 
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We collected detailed five-year highway traffic data from Jan 1, 2013 to Dec 31, 2018, provided 
by the German Bundesanstalt für Straßenwesen (Federal Institute for Roadways). The dataset 
contains the hourly count of vehicles passing through one of about 2,800 automatic counting 
stations along highways and state streets. The dataset contains geographical coordinates of the 
locations for these checkpoints. Sensors were used to identify the vehicles as cars, buses and trucks. 
To extrapolate the data to 2020, we construct a linear regression model to predict hourly traffic for 
Jan 1, 2020 to May 7, 2020. The model uses year, public holidays, day of the week, and state 
population as control variables.  The linear regression model is shown in Equation 7, where 𝑇CCy	(𝑦) 
is the number of cars moving from state 𝑖 to 𝑖′ during year 𝑦 ∈ {2013, 2014,… ,2020}. ℎ_𝑖 = 1 if 
it was a state holiday in state 𝑖, and 𝑤 = 1 if a given day was a weekend. 𝑝𝑜𝑝C�  is the population 
of state i in year 𝑦 and 𝑦m = 2013 is the origin year of model. We build a similar model for trucks 
to predict the number of trucks moving from Jan 1, 2020 to May 7, 2020. 

𝑇CC�(𝑦) = 𝛽< + 𝛽<�ℎC + 𝛽<�𝑤 + 𝛽<�𝑝𝑜𝑝C� + 𝛽<�(𝑦 − 𝑦m)                                                  (7) 

 To adjust for changes in car movement due to COVID-19, we use the daily google mobility trends 
for workplaces. We multiply the projected car movement for 2020 with google mobility to obtain 
adjusted car movement for 2020. Projected car movement and truck movement for 16 states are 
shown in Figure 5(a) and Figure 5(b). As part of the essential services to keep the supply chain 
from breaking, there were no restrictions on the truck movement.  Therefore, we do not adjust for 
changes in truck movement for the period of our study. 

 

Train mobility data 

We use Deutsche Bahn’s public timetable to determine all major train routes in Germany. We first 
identify the 110 biggest cities in Germany and their respective states. We use these major cities to 
identify movement across states and neighboring countries. Each train station has two timetables 
(See Figure 6(a) and (b)) for that station – one table shows the arrival time of all the trains to that 
station (including the departure time from its previous stations) and the other table shows the 
departure time of all the trains from that station (including the arrival time of its previous stations). 
For each train, using both the schedules, we find a complete route. The number of passengers 
boarding a train for the next station is kept proportional to the sequence of the cities in the train 
route. We identified 14,712 trains. There are 33 types of trains (based on speed, distance travel 
and capacity). We assume the total number of passengers in a train to be 400. For ICE, THA, and 
TGV trains, we assume the number of passengers in a train to be 600. 

Due to COVID-19 and state policies, several trains were canceled, and train movement declined. 
To account for these changes, we adjust the number of passengers using Google mobility data. 
Similar to the adjustments made to the car movement data, we adjust the number of passengers 
traveling by train after the outbreak of COVID-19 using Google mobility trends at transit stations.  

 

Bus mobility data 
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We use travel search history provided by a large third-party European bus and train price 
comparison and booking company to estimate the number of passengers moving across cities 
(states) in Germany and passengers traveling to Germany from neighboring countries. The bus 
data contains the number of searches for a route (departure city to arrival city) aggregated by the 
day. For example, 33 people searched for buses from Frankfurt to Heidelberg on January 25, 2020.  
The data does not show the actual number of travelers in the bus, but we use this data as an indicator 
for bus movement across Germany and its neighboring countries. We only include connections 
that arrive at or depart from Germany. We define a bus route as the tuple [departure city, arrival 
city, date]. The dataset contains the history for 857,159 unique connections (aggregated by day) 
from December 1, 2019 to May 7, 2020. Of these, 191,356 routes had either their origin or 
destination in Germany. A subset of 116,706 routes originated and ended in Germany. We assume 
a capacity of 20 passengers in each bus to estimate the number of travelers. On March 16, 2020, 
all bus trips were halted in Germany.  

 

Flight mobility data 

We use flight transportation information from https://opensky-network.org. It is an open source 
platform containing historical information of all airborne flights.  The database uses Automatic 
Dependent Surveillance – Broadcast (ADS-B) trajectories and maps it with airport International 
Civil Aviation Organization (ICAO) codes to identify the departure and arrival airport of a flight. 
The database also maintains the UNIX timestamp for each contact signal (trajectory recorded). 
We use the last UNIX timestamp of a flight to identify its date of arrival and departure. We only 
consider flights with arrival or departure airports in Germany. We use ICAO airport codes to 
identify the state for each airport. We ignore flights for which neither the departure nor the 
arrival airport can be established. The dataset has 187526 flights (with arrival or departure in 
Germany) for the period of December 1, 2019 to May 7, 2020. The variation in the number of 
flights over time is shown in Figure S5. We assume a capacity of 200 passengers for a domestic 
flight and 500 passengers for an international flight to determine the number of individuals on a 
flight.  

 

Effect of Non-Pharmaceutical Interventions (NPI) on Social Distancing 

To understand the effect of policy interventions on social distancing, we build a penalized linear 
regression model (Lasso regression). Regression coefficients for different policies in Lasso 
regression model are shown in Table S2. The penalty term makes the coefficients of insignificant 
(or non-contributing) variables zero. We adjust the parameter 𝜆� such that we could keep reducing 
the number of insignificant variables until model performance drops significantly. We use 𝜆�	= 
0.25 for our Lasso regression model. We observe that the coefficients for Border Closure is zero.  
Henceforth in our analysis of the SEIR model, we do not consider Border Closures. 

We use different controls to isolate the effects of these NPIs. We model Google community 
mobility for retail and recreation to create a measure for social distancing. We also use Google 
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Trends, weather data and dissatisfaction as additional controls in the model to account for latent 
awareness levels in the population, the proclivity to leave one’s shelter due to higher temperatures 
and Spring in Germany, and the distress felt due to confining oneself at home.  We consider Google 
Trends data for the search term “COVID-19 in Deutschland”. Google Trends is an indicator of 
search interest of a topic over time. It calculates the proportion of all other searches at the same 
time and normalizes it to the range of 0 - 100. High Google Trend numbers indicate high interest 
for the topic during that time. As more cases were observed around the world and Germany, public 
interest in COVID-19 increased. Increased search is also an indicator for public awareness towards 
increasing social distancing. Google Trends data for all the sixteen states is shown in Figure S6. 
We use maximum temperature recorded in a day to account for increased public interest in going 
out as summer approaches. Finally, we model PTV (Propensity To Violate) on a day 𝑡 using 
Equation 8 as an arctan function applied to the number of days since the Feb 18 (first day of our 
study period, represented by 𝑡�). We scale the PTV such that we get the model with best r-square 
value. Numerator inside arctan function is used to shift the curve while the denominator is used to 
change the slope of the curve. 

Lasso regression places a penalty on the sum of absolute value of coefficients as shown in Equation 
9. We estimate daily community mobility 𝐶C. We use a binary variable 𝑥C� = 1 if policy 𝑝 is active 
in state 𝑖. 𝑙C is the Google Trends number for search term in state 𝑖, 𝑃𝑇𝑉 is the dissatisfaction 
metric and 𝑡rst,C is the daily maximum temperature in degree Celsius.  

𝑃𝑇𝑉 = 30	𝑎𝑟𝑐𝑡𝑎𝑛D(𝑡 − 𝑡� − 50)/8H                                                                                          (8) 

𝐶C = ∑ 𝛽�
�𝑥C� + 𝛽��𝑙C + 𝛽�$𝑡rst,C + 𝛽�!𝑑𝑖𝑠𝑠 + 𝜆	� �D∑ |𝛽�

�|�
� H + |𝛽��|+|𝛽�$| + |𝛽�!|��

�u(     (9) 

Predicted and Google Community mobility numbers 𝐶C for different states in Germany is shown 
in Figure S7. 

 

Generating Different What-If Scenarios 

To understand the contribution of different policies in containing the spread of COVID-19, we 
consider different sets of scenarios for which policies were implemented and relaxed. State 
governments started introducing different policies around Mid-March. They started relaxing some 
of these policies on April 20, 2020 (Figure 3). We use data from Feb 18, 2020 to May 7, 2020.  
We also observe that the coefficients for the Border closure Policy is zero in Lasso regression). 
Therefore, we do not consider it when creating scenarios. We create test scenarios with– contact 
restriction order lifted, initial businesses opened, stay at home orders lifted, non-essential services 
opened, retail outlets opened, and all policies in place.  

Figure 3 shows the timeline for policy introduction across different states in Germany. Some states 
did not introduce all the seven policies and in some cases introduced certain policies on varying 
dates, allowing for a quasi-experimental set-up to test the effect of policies on social distancing 
and spread of disease subsequently.  Next, we create five counterfactual scenarios (one for each 
policy) to study what will happen if the states lift the focal policy.   
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Different states across Germany started relaxing some policies on Apr 20, 2020.  To determine the 
effect of lifting a policy we examine policy relaxation in two scenarios: What would have 
happened if the policies were relaxed on April 21 or April 28, by easing one policy at a time to 
estimate the marginal effect of a policy. The week-long delay helps determine the increase in cases 
by relaxing a policy one week earlier.  

The differential effects allow for rank-ordering the policies by order of their impacts on disease 
spread. If a policy was relaxed on April 21 (without changing other policies), the social distancing 
would decrease after April 21. Similarly, if a policy was relaxed on April 28 (without changing 
other policies), social distancing will start decreasing after April 28 (without changing policies 
from April 21 to April 27 and keeping it as it is). The social distancing under different scenarios 
for different states are shown in Figure S8 and Figure S9. 

 
Effective Reproduction Number 

The effective reproduction number R� is the average number of new infected cases caused by a 
single infected case on a given day. The effective reproduction number R� for the SEIR 
compartmental model can be calculated with the method introduced in (7) and later expanded in 
(8). The value of R� changes by an increase or decrease in social mobility of both the infected and 
susceptible population. Other factors impacting the value of R� include environmental conditions 
and the drop in susceptible population over time. 

In the SEIR model, 𝑋 = [E, 𝐼!, 𝐼M] are considered the infected compartments of the model. R� can 
be calculated as the leading Eigen value of the next generation matrix (NGM), K = FV)(.  F =
¡ℱ£(t)
¡¤¥

 is the Jacobian matrix of the rate of new infections in infected compartments and V = ¡𝒱£(t)
¡¤¥

 

is the Jacobian matrix of the rate of transitions between infected compartments. Using equations 
(1-4), we have: 
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And calculating 𝑅¯: 

𝑅¯ = ((1 − 𝛾 ∗ 𝑠𝑑)𝛼𝛽𝐷 + (1 − 𝛾 ∗ 𝑠𝑑)(1 − 𝛼)𝜇𝛽𝐷) "
1

   (12) 
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Figure S10 shows the effective reproduction number over time in different states of Germany using 
inferred parameters values. These values are in-line with the reported values for Germany 0.79 
[95%CI: 0.66 – 0.90] using nowcasting approach as a moving 4-day average by Robert Koch 
Institute (2). As depicted in this figure, the reproduction number at the beginning of the epidemic 
in Germany is above 1 in all states. Once the social distancing policies are in effect, this rate drops 
to below 1 in all states. When 𝑅¯ > 1, the disease starts to spread throughout the population. 
Equation (9) shows that 𝑅¯ also decreases with a drop in the susceptible fraction of population. A 
large proportion of population must transition from susceptible to infected, immune, or dead for 
this factor to be considerable.  

To understand the effects of social distancing on 𝑅¯, we simulate the effect of lifting different 
policies on the value of 𝑅¯ in Figures S11 and S12. Different social distancing polices are 
simulated to be removed on April 21, 2020 and April 28, 2020. As illustrated in this figure, 
removing some policies would increase 𝑅¯ to above 1 in some states. For example, in large states 
such as Baden-Wurttemberg (BW) and Bayern (BY), 𝑅¯ will rise above 1 if the contact restriction 
order is lifted or initial businesses are opened. Certain policies must be kept in effect until the 
susceptible proportion of population drops significantly for 𝑅¯ to remain below 1. 

The dependency of 𝑅¯ to different combinations of parameters 𝛼, 𝛾, and 𝑠𝑑 is depicted in Figure 
S13. These figures represent the basic reproduction number where all population is assumed to be 
susceptible. Figure S13 (a) represents the changes in 𝑅¯ with respect to possible values of 
parameters 𝛼 and 𝛾. High 𝛼 and low 𝛾 combinations result in the highest 𝑅¯ value. Figure S13 (b) 
shows that 𝑅¯ monotonically increases with decrease in 𝑠𝑑 and increase in 𝛼. Figure S13 (c) shows 
that 𝑅¯ will increase in combinations of high 𝛾 and low 𝑠𝑑, while its value drops with high 𝛾 and 
high 𝑠𝑑 combinations. As 𝛾 decreases, the dependency of 𝑅¯ to 𝑠𝑑 also declines.  
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Figures and Tables 

 

 

Figure S1. Model parameter inference. Initial day for the model is set to Feb 18, 2020. Histograms show 
distribution of model parameters inference over 2000 runs, each with 500 ensembles. Each run provides a set of 

parameters as a group that is optimized together and should be used as one. Red lines show the set of inferred 
parameters of a randomly selected run used for estimation.  
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(a) February 22 
Total Cases: 14 

(b) February 29 
Total Cases: 66 

(c) March 7 
Total Cases: 684 

(d) March 14 
Total Cases: 14 

(e) March 21 
Total Cases: 3795 

 

 

(f) March 28 
Total Cases: 16662 

(g) April 4 
Total Cases: 85778 

(h) April 11 
Total Cases: 117658 

(i) April 18 
Total Cases: 137439 

(j) April 25 
Total Cases: 152438 

 
Figure S2. Spread of COVID-19 across Germany over time 
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Figure S3. Daily New Cases from RKI (Adjusted for Midnight Reporting) 
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Figure S4. Google Community Mobility  
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Figure S5. Daily Flights Arriving to Different Airports in Germany 
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Figure S6. Google Trends Data for Different States in Germany 
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(a) BW (b) BY (c) BE (d) BB 

(e) HB (f) HH (g) HE (h) MV 

(i) NI (j) NW (k) RP (l) SL 

(m) SN (n) ST (o) SH (p) TH 
 

Figure S7. Predicting Social Distancing for Different States in Germany 
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Figure S8. Scenario 2: Social distancing 𝑠𝑑C	when policies are relaxed on April 21, 2020 
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Figure S9. Scenario 2: Social distancing 𝑠𝑑C	when policies are relaxed on April 28, 2020 
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Figure S10. Effective reproduction number. The values of 𝑅¯ drops from above the red line 1 to below 1 after 
policies are in effect. 
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Figure S11. Scenario 1: The effective reproduction number 𝑅¯	when policies are relaxed on April 21, 2020. Under 
some policies, the 𝑅¯  rises to above 1. 
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Figure S12. Scenario 2: The effective reproduction number 𝑅¯	when policies are relaxed on April 28, 2020. Under 
some policies, the 𝑅¯  rises to above 1. 
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Figure S13. The dependency of 𝑅¯on model parameters 𝛼 and 𝛾 and social mobility 𝑠𝑑. All other variables are held 
constant with values represented in Table S1 for state BW. 𝛼 − 𝛾: The impact of 𝛼 and 𝛾 on 𝑅¯. The value of sd is 

set to 𝑠𝑑 = 	0.35. Black curve represents the constant 𝑅¯ = 1.21. The box represents the interval of inferred 
parameters that have the maximum likelihood and the yellow ‘X’  mark shows the parameter combination used for 

estimation (𝛼 = 0.71 ,	𝛾 = 0.89). 𝛼 − 𝑠𝑑: The impact of 𝛼 and social mobility 𝑠𝑑on 𝑅¯. Note that 𝑠𝑑 is not a model 
parameter. 𝛾 − 𝑠𝑑: The impact of 𝛾 and social mobility 𝑠𝑑 on 𝑅¯. 
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Figure S14. The ratio of documented infected cases to total daily infected cases for Germany. 
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 Figure S15. The population count of exposed, documented infected and undocumented infected cases for 
Germany. 
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Parameters Initial Range Inferred Value [95% Confidence Intervals] 

𝜷 0.8-1.2 0.95 [0.92 – 1.01] 

𝝁 0.2-1.0 0.22 [0.22 – 0.27] 

𝜽𝑮 1.0-1.8 1.08 [1.08 – 1.16] 

𝜽𝑨 1.0-1.8 1.63 [1.61 – 1.63] 

𝒁 2.0-5.0 2.41 [2.41 – 2.67] 

𝜸 0.6-1.0 0.89 [0.89 – 0.91] 

𝑫 2.0-5.0 2.52 [2.52 – 2.91] 

𝜶𝒊 0.5-1.0 (Per State Estimate Follows) 

𝜶𝑩𝑾 0.71 [0.69 – 0.72] 

𝜶𝑩𝒀 0.76 [0.75 – 0.77] 

𝜶𝑩𝑬 0.85 [0.84 – 0.87] 

𝜶𝑩𝑩 0.64 [0.61 – 0.64] 

𝜶𝑯𝑩 0.67 [0.65 – 0.67] 

𝜶𝑯𝑯 0.85 [0.84 – 0.86] 

𝜶𝑯𝑬 0.65 [0.63 – 0.65] 

𝜶𝑴𝑽 0.65 [0.62 – 0.65] 

𝜶𝑵𝑰 0.66 [0.64 – 0.67] 

𝜶𝑵𝑾 0.64 [0.61 – 0.64] 

𝜶𝑹𝑷 0.66 [0.64 – 0.66] 

𝜶𝑺𝑳 0.75 [0.73 – 0.75] 

𝜶𝑺𝑵 0.67 [0.66 – 0.69] 

𝜶𝑺𝑻 0.63 [0.6 – 0.63] 

𝜶𝑺𝑯 0.65 [0.63 – 0.66] 

𝜶𝑻𝑯 0.64 [0.61 – 0.64] 

 

Table S1. Model parameters inference and prior range. The initial range is the prior range for parameters in 
EAKF algorithm. The selected set of inferred values along with 95% confidence interval is reported. 
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Policy Description Coefficients 
Border Closure Closure of International Borders. Border 

between Germany and Netherlands were never 
closed. 

𝛽(
� 

Initial Business Closure Closure of dance events, trade fairs, exhibitions, 
special markets, arcades, casinos, betting shops 
and similar companies; amusement places; 
prostitution institutions, concert halls, fairs, 
leisure and animal parks, providers of leisure 
activities and similar facilities 

𝛽Ê
� 

Educational Facilities Closed Closure of All Educational Facilities, K-12 and 
University 

𝛽Ë
� 

Non-Essential Services Closed Closure of bars, clubs, cinemas, theatres, 
museums, florists, garages, fashion stores and 
churches. 

𝛽Ì
� 

Stay at Home Order Residents asked to shelter-in-place 𝛽Í
� 

Contact Restriction Gatherings limited to no more than 5 people, 
unless family 

𝛽Î
� 

Retail Outlets Closed Does not apply to retail for food, weekly 
markets, pick-up and delivery services, beverage 
markets, pharmacies, medical supply stores, 
drug stores, petrol stations, banks and savings 
banks, post offices, hairdressers, dry cleaners, 
Laundromats, newspaper sales, DIY and garden 
centers, pet supplies and wholesale, craftsmen 
and craft like trades. 

𝛽�
� 

 

Table S2. Description of different NPIs 
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