Supplementary Information

Modelling the SARS-CoV-2 first epidemic wave in Greece: social contact patterns for impact assessment and an exit strategy from social distancing measures.

Vana Sypsa¹, Sotirios Roussos¹, Dimitrios Paraskevis¹, Theodore Lytras², Sotirios Tsiodras S^{3,a}, Angelos Hatzakis^{1,a}

¹ Department of Hygiene, Epidemiology and Medical Statistics, Medical School, National and Kapodistrian University of Athens, Athens, Greece

² National Public Health Organization, Athens, Greece

³ 4th Department of Internal Medicine, Medical School, National and Kapodistrian University of Athens, Athens, Greece

^aThese authors share senior authorship

Supplementary Text

A. SEIR model

According to the model, Susceptible individuals (S) become infected at a rate β and move to the Exposed state (E). At this point they are infected but not infectious. Exposed individuals become infectious at a rate γ and a proportion p will eventually develop symptoms. To account for asymptomatic transmission during the incubation period, we introduce a compartment for infectious cases who have not developed symptoms yet (I_{pre}). These individuals develop symptoms at a rate γ_s (I_{symp}). The remainder (1-p) will be true asymptomatic/subclinical cases (I_{asymp}). We assume that these subclinical cases are less infectious than symptomatic by a factor q. Symptomatic and asymptomatic cases recover (R) at a rate σ_s and σ_{asymp} , respectively. Only cases in compartments I_{pre}, I_{symp} and I_{asymp} are assumed to be infectious. The transition between the compartments of the model is described by the following set of equations:

Susceptible

$$\frac{dS}{dt} = -\delta \cdot \beta \cdot \left(q \cdot I_{asymp} + I_{pre} + I_{symp} \right) \cdot \frac{S}{N_0}$$

Exposed

$$\frac{dE}{dt} = \delta \cdot \beta \cdot \left(q \cdot I_{asymp} + I_{pre} + I_{symp} \right) \cdot \frac{S}{N_0} - \gamma \cdot E + import$$

Infectious before developing symptoms

$$\frac{d\mathbf{I}_{\text{pre}}}{dt} = \mathbf{p} \cdot \mathbf{E} \cdot \boldsymbol{\gamma} - \boldsymbol{\gamma}_{\text{s}} \cdot \mathbf{I}_{\text{pre}}$$

Infectious and symptomatic

$$\frac{\mathrm{d}\mathbf{I}_{\mathrm{symp}}}{\mathrm{d}t} = \gamma_{\mathrm{s}} \cdot \mathbf{I}_{\mathrm{pre}} - \boldsymbol{\sigma}_{\mathrm{s}} \cdot \mathbf{I}_{\mathrm{symp}}$$

Infectious and true asymptomatic (subclinical cases)

$$\frac{dI_{asymp}}{dt} \!=\! \left(1\!-\!p\right) \!\cdot\! E \!\cdot\! \gamma \!-\! \sigma_{asymp} \cdot I_{asymp}$$

Recovered

$$\frac{dR}{dt} = \sigma_{s} \cdot I_{symp} + \sigma_{asymp} \cdot I_{asymp}$$

To incorporate the impact of social distancing in the model, the infection rate β was multiplied by the parameter δ corresponding to the reduction of R_t in the two periods of social distancing measures. We considered two major periods of social distancing measures: the period of initial measures including closure of schools, restaurants, shopping centres, cinemas etc. until the day before lockdown (11 March-22 March) and the period of lockdown (23 March-27 April). Based on the social contacts data, it was possible to estimate the reduction not only in the total number of contacts but also in the number of contacts at work, home, school and leisure activities during lockdown. Thus, we modelled the reduction in Rt in the two periods of social distancing measures as follows: a) for the first, we used the Rt estimate obtained assuming 100% reduction in school contacts (corresponding to school closure). As we did not measure the reduction in contacts during that first period, we assumed that 80% and 30% of the reduction in leisure and work contacts, respectively, observed during lockdown, took place as a result of these first measures, b) for the second period (23 March and onwards), we used the reduction in the R_t estimate obtained during lockdown based on the observed reduction in all contacts. Compared to R₀, the decrease was 42.7% in the first period and 81.0% during lockdown. To account for the uncertainty in the reduction of R₀, δ was drawn from a normal distribution with mean (SD) of 42.7% (1.7%) and 81.0% (1.6%) for the period of initial measures and of lock-down, respectively, based on the social contacts data.

B. Infection fatality ratio (IFR) – Comparison of observed deaths to model predictions

We adjusted the IFR estimate by Verity et al [1] to account for hon-homogeneous attack rates across age-groups, as proposed elsewhere [2], and for the age distribution of the Greek population. To account for the lower attack rates among younger individuals [3-5], we multiplied the age-specific IFR for individuals 0-9 and 10-19 years by (1/0.34), where 0.34 is the relative susceptibility to infection of these age groups compared to adults. [3] The corrected age-specific IFRs were then combined to produce an overall IFR adjusting for the age distribution of the population in Greece (Table S2).

To validate the model, we applied this IFR to the total number of infections predicted by the model (assuming a lag of 18 days between infection and death) to compare the predicted number of deaths to the cumulative number of deaths reported by April 26th [6]. We also assessed the daily number of deaths predicted by the model versus the observed (Figure S1)

C. Estimates assuming a shorter serial interval

Assuming a shorter serial interval with mean of 4.7 days and standard deviation of 2.9 days [7], R₀ is estimated 1.85 (95% CI: 1.56, 2.17) [vs. 2.38 (95% CI: 2.01, 2.80) estimated in the main analysis under a longer serial interval].

In the SEIR model, we assumed a duration of infectiousness of 3 days (instead of 4.5 days under a longer serial interval). Model estimates concerning R_t, the number of infections, the number of infectious cases and the cumulative number of cases over time are as shown in Figure S2.

Assuming a shorter serial interval, Rt was close to 1 before the implementation of lockdown. The estimated Rt after the implementation of all the measures is 0.35 (95% CrI: 0.27, 0.44) [vs. 0.46 (95% CrI: 0.35, 0.57)]. At the end of the simulations period (April 26th), the median number of new infections per day is predicted to reach 2.5 cases (95% CrI: 0.5, 14.4) [vs. 25 new infections per day (95% CrI: 6, 97)]. On that date, the median number of infectious cases is 22 (95% CrI: 5, 101) [vs. 329 infectious cases (95% CrI: 97, 1027)]. The infection attack rate is 0.11% (95% CrI: 0.05%, 0.27%) [vs. 0.12% (95% CrI: 0.06%, 0.26%)]. This corresponds to a median estimate of 12,423 infections in total (95% CrI: 5,562, 28,713) [vs. 13,189 infections (95% CrI: 6,206, 27,700)].

Based on the number of deaths reported by April 26th, the infection fatality ratio (IFR) using as denominator the number of infections with a time lag of 18 days is estimated 1.11% (95% CrI: 0.49%, 2.47%) [vs. 1.12% (95% CrI: 0.55\%, 2.31%)].

D. Social contacts survey

The survey took place between March 31-April 7, 2020. Proportional quota sampling based on age and sex was used; children/adolescents 0-17 years old were oversampled. Random digital dialling was used to reach the population and only one person in each household was asked to participate to the study. Questionnaires were administered by phone by trained staff. Calls were placed between 10.00 am - 3.00 pm and 5.30 pm - 9.30 pm. Figure S3 shows the flow chart of recruitment of the participants.

Eligibility criteria were as follows:

- 1. Local resident of Athens, and
- 2. Lived at least 6 months in Athens in the past year (the latter was applicable only for respondents>2 years old).

Time and budget restrictions did not allow to expand the survey outside Athens. The population of Athens Metropolitan Area and Greece is 3.83 and 10.8 million people, respectively.

The questionnaire consisted of three sections:

- A. General information (e.g., sex, age, educational level, household size and age of household members),
- B. Contact diary for a 24-hour period from 5:00 am of the day before the interview to 5:00 am the day of the interview (or last Friday if the interview took place on Monday), and
- C. Contact diary for the same day of the week in mid-January i.e. before the first cases were diagnosed in Europe.

Interviews of individuals younger than 18 years old were performed as follows: i) For children 0-11 years old: the parent or guardian filled the questionnaire on their behalf, ii) For children/adolescents 12-17 years old: either the children/adolescents provided information on their own (subject to parental informed consent) or parents provided information on their behalf. For parental-proxy completion, parents were asked to collaborate with their child if the child was old enough to provide information.

E. Assessing the impact of social distancing measures

Disentangling the impact of measures implemented during lockdown

To assess the impact of each measure separately, we used the information from the contacts reported on a regular weekday (January 2020) and "mimicked" the impact of each measure separately by excluding or reducing subsets of the corresponding social contacts data. [8, 9] Before that, contacts reported at multiple locations (e.g. contact with a person at school and leisure) were assigned to a single location using the following hierarchical order: home, work, school, leisure activities, transportation and other locations. [9] The impact was then assessed by comparing the ratio:

$$\frac{R_{0,intervention}}{R_{0,pre}} = \frac{\max Eigen \, Value \, (SC_{intervention})}{\max Eigen \, Value \, (SC_{pre})}$$

where *i*=1,..,6 denotes the age group of the participants (0-4, 5-11, 12-17, 18-30, 30-64, 65+) and S a diagonal matrix that introduces an age-dependent proportionality factor accounting for the age-specific susceptibility to infection.

To estimate the impact of school closure, we compared the original matrix with social contacts reported on a regular weekday (C_{pre}) to the matrix resulting from the sum of home, work, leisure, transportation and "other" contacts i.e. excluding contacts in the school setting. The resulting synthetic contact matrix for school closure becomes:

$C_{school \ closure} = C_{home} + C_{work} + C_{school} * 0 + C_{leisure} + C_{transportation} + C_{other}$

Similarly, the impact of closing restaurants, coffee shops, cinemas etc. was estimated by reducing the subset of leisure contacts data by a proportion *f*. The synthetic contact matrix becomes:

 $C_{reduction \ leisure} = C_{home} + C_{work} + C_{school} + C_{leisure} * (1-f) + C_{transportation} + C_{other}$

We used the same approach to assess the impact of combination of measures (e.g. school closure and reduction in contacts at work, as they were measured during lockdown).

Assessing the impact of milder measures in reducing transmission during the first wave

We assessed the impact of a theoretical scenario with less disruptive social distancing measures. A reduction of 50% in school contacts (e.g. classes are split in half) combined with 20% teleworking and 20% reduction in leisure activities results in the following contact matrix:

 $C_{mild\ measures} = C_{home} + C_{work} * (1 - 0 \cdot 20) + C_{school} * (1 - 0 \cdot 50) + C_{leisure} * (1 - 0 \cdot 20) + C_{transportation} + C_{other}$

The impact of these measures was assessed using the same approach, i.e. through the ratio:

$$\frac{R_{0,mild\ measures}}{R_{0,pre}} = \frac{\max Eigen\ Value\ (SC_{mild\ measures})}{\max Eigen\ Value\ (SC_{pre})}$$

Assessing the impact of lifting measures post lockdown

We assessed scenarios where lockdown measures are partially lifted. As a result, the number of contacts increase but they do not return to the pre-epidemic levels. We hypothesised a scenario where contacts at work, school and leisure activities will return to levels that are 50%, 50% and 60% lower compared to pre-epidemic levels, respectively. The corresponding social contacts matrix is denoted as C_{post} . We denote as C_{during} the contact matrix during lockdown and *S* the matrix accounting for the age-specific susceptibility to infection. The resulting increase in R_t can be assessed through the ratio:

 $\frac{R_{t,post}}{R_{t,during}} = \frac{\max Eigen Value (hSC_{post})}{\max Eigen Value (SC_{during})}$

We assumed that, post lockdown, susceptibility to infection is reduced by a fraction (1-*h*) as a result of intensive infection control measures (hand hygiene, masks, keeping distances). This reduction is assumed to be the same for all age groups.

We did not account for infection control measures during lockdown as contacts during that period occurred mostly within households. In addition, some measures, such as the use of fabric masks by the general public, were not recommended at that time in Greece. During the period of lifting lockdown measures, there was a strong recommendation for the use of fabric masks directed to the general public and use of masks in public transport and crowded public spaces became

mandatory. To account for the efficacy of measures, such as keeping distances, and the possible impact of others, such as use of masks, [10, 11] we assumed 5%-30% reduction in susceptibility (i.e. h ranging between 0.70-0.95). This reduction corresponds to the efficacy as well as the adherence to these measures.

Figure S1. Observed number of deaths per day in Greece (bars) vs. model estimates (median and 95% Crl). We used a published estimate of the infection fatality ratio [1] adjusted for non-homogenous attack rates by age and for the age distribution of the Greek population (1·14% from Table S3). The estimated number of deaths was obtained by applying this IFR to the total number of infections predicted by the model (assuming a delay of 18 days from infection to death). Locally weighted smoothing was applied to the model estimates in the graph. The observed number of deaths was obtained from COVID-19 epidemiological surveillance data [6].

Figure S2. Estimates of the first wave of the SARS-CoV-2 epidemic in Greece (15 February-26 April 2020) assuming a shorter serial interval (mean: 4·7 days). The grey zone indicates the period of restrictions of all non-essential movement in the country (lockdown)

Figure S3. Flow chart of the recruitment process in the social contacts survey

Start date	Description
Feb 26	Testing and isolation of confirmed or suspected cases and their contacts
Feb 27	Ban of carnival festivities
Mar 5	Testing and isolation of confirmed or suspected cases and their contacts in outbreaks and superspreading events
Mar 9	Ban of flights to northern Italy
Mar 9	Suspension of open care centres and cancellation of indoor conference and sporting events
Mar 10	Ban of outdoor mass gathering and sporting events
Mar 11	School and university closures
Mar 13	Closure of all theatres, cinemas, gyms, playgrounds, clubs and courthouses
Mar 14	Ban of flights to Italy
Mar 14	Closure of shopping centers, archeological sites, bars and restaurants
Mar 15	Border closure to Albania and North Macedonia
Mar 16	Ban of religious services
Mar 18	Border closure to non-EU nationals
Mar 18	Nationwide closure of all private enterprises
Mar 19	Closure of sea borders
Mar 20	14-day quarantine for inbound travelers
Mar 23	Border closure to United Kingdom and Turkey
Mar 23	Ban of all intra and inter city movements across country (Lock down)
Mar 23	Hotels closure
Mar 26	Testing of inbound travelers from countries with high rate of transmission
Mar 29	Border closure to Netherlands and Germany

Table S1. Main control measures implemented in Greece during the COVID-19 pandemic

Table S2. Number of COVID-19 deaths per million populations in Europe (by May 18th, 2020)[12]

Country/Territory	Population	Total	Total deaths/Million
San Marino	33 785	/11	1 213 56
Belgium	11 / 22 068	9.052	792 5
Andorra	77 006	5,052	662.29
Italy	60 421 292	21 009	E 29
Linited Kingdom	66 499 001	24 626	520 520 02
Franco	66 097 244	20 100	320.95 410.6
France	10,182,175	28,108	419.0
Sweden	10,183,175	3,679	361.28
Netherlands	17,231,017	5,680	329.64
Ireland	4,853,506	1,543	317.91
Isle of Man	84,077	24	285.45
Jersey	106,800	27	252.81
Guernsey	63,026	13	206.26
Switzerland	8,516,543	1,602	188.1
Luxembourg	607,728	107	176.07
Monaco	38,682	5	129.26
Portugal	10,281,762	1,218	118.46
Germany	82,927,922	7,935	95.69
Denmark	5,797,446	547	94.35
Austria	8,847,037	629	71.1
Moldova	3,545,883	211	59.51
Romania	19,473,936	1,097	56.33
Finland	5,518,050	298	54
Slovenia	2,067,372	104	50.31
North Macedonia	2,082,958	101	48.49
Estonia	1,320,884	63	47.7
Hungary	9,768,785	462	47.29
Norway	5,314,336	232	43.66
Bosnia and	2 222 020	122	20.71
Herzegovina	3,323,929	132	39.71
Serbia	6,982,084	230	32.94
Iceland	353,574	10	28.28
Czechia	10,625,695	298	28.05
Liechtenstein	37,910	1	26.38
Poland	37,978,548	925	24.36
Croatia	4,089,400	95	23.23
Armenia	2,951,776	60	20.33

Lithuania	2,789,533	56	20.08
Russia	144,478,050	2,631	18.21
Belarus	9,485,386	165	17.4
Kosovo	1,845,300	29	15.72
Bulgaria	7,024,216	110	15.66
Greece	10,727,668	163	15.19
Montenegro	622,345	9	14.46
Cyprus	1,189,265	17	14.29
Malta	483,530	6	12.41
Ukraine	44,622,516	514	11.52
Albania	2,866,376	31	10.82
Latvia	1,926,542	19	9.86
Slovakia	5,447,011	28	5.14
Azerbaijan	9,942,334	39	3.92
Georgia	3,731,000	12	3.22
Faroe Islands	48,497	0	0
Gibraltar	33,718	0	0
Holy See	1,000	0	0

Table S3. Infection fatality ratio - based on published estimates - adjusted for the age distribution of the population in Greece and taking into account the relative susceptibility to infection by age

			Relative	Adjusted IFR	IFR standardized for the
Age	Ν	IFR	susceptibility	(for age	age distribution of the
group	(Greece)	(Verity et al [1])	to infection[3]	susceptibility)	population in Greece
0-9	1,049,839	0.00161%	0.34	0.00474%	
10-19	1,072,705	0.00695%	0.34	0.02044%	
20-29	1,350,868	0.0309%	1	0.0309%	
30-39	1,635,304	0.0844%	1	0.0844%	1.1.10/
40-49	1,581,095	0.161%	1	0.161%	1.14% (0.62% 2.10%)*
50-59	1,391,854	0.595%	1	0.595%	(0.0270, 2.1370)
60-69	1,134,045	1.93%	1	1.93%	
70-79	1,017,242	4·28%	1	4·28%	
80+	583,334	7.80%	1	7.80%	

* The lower and upper limits were calculated using the upper and lower bounds of the agespecific IFR provided by Verity et al [1] Table S4. Literature estimates concerning the relative susceptibility to SARS-CoV-2 infection according to age

	Relative susceptibility to infection
	Odds ratio of infection (95% CI)
Zhang et al [3]	
(7,375 contacts from 114 clusters)	
0-14 years	0.34 (0.24-0.49)
15-64 years	Reference category
65+ years	1.47 (1.12-1.92)
Jing et al [4]	
(2,075 contacts of 212 primary	
cases in 195 unrelated clusters)	
0-19 years	0.27 (0.13, 0.55)
20-59 years	0.80 (0.53, 1.19)
60+ years	Reference category
Li et al [5]	
(392 household contacts of 105	
index patients)	
0-17 years	0.18 (0.06, 0.54)
18 + years	Reference category

SI References

- 1. Verity R, Okell LC, Dorigatti I, Winskill P, Whittaker C, Imai N, et al. Estimates of the severity of coronavirus disease 2019: a model-based analysis. *Lancet Infect Dis* 2020.
- 2. Ferguson NM, Laydon D, Nedjati-Gilani G, Imai N, Ainslie K, Baguelin M, *et al.* Ferguson, N. et al. Impact of non-pharmaceutical interventions (NPIs) to reduce COVID-19 mortality and healthcare demand. Imperial College London (16-03-2020),doi:https://doi.org/10.25561/77482.
- 3. Zhang J, Litvinova M, Liang Y, Wang Y, Wang W, Zhao S, *et al.* Changes in contact patterns shape the dynamics of the COVID-19 outbreak in China. *Science* 2020.
- 4. Jing Q-L, Liu M-J, Yuan J, Zhang Z-B, Zhang A-R, Dean NE, *et al.* Household Secondary Attack Rate of COVID-19 and Associated Determinants. *medRxiv* 2020:2020.2004.2011.20056010.
- 5. Li W, Zhang B, Lu J, Liu S, Chang Z, Cao P, *et al.* The characteristics of household transmission of COVID-19. *Clin Infect Dis* 2020.
- 6. National Public Health Organisation. Epidemiological surveillance of COVID-19 Daily report. 26 April 2020 (in Greek).
- 7. Nishiura H, Linton NM, Akhmetzhanov AR. Serial interval of novel coronavirus (COVID-19) infections. *Int J Infect Dis* 2020,**93**:284-286.
- 8. Hens N, Ayele GM, Goeyvaerts N, Aerts M, Mossong J, Edmunds JW, *et al.* Estimating the impact of school closure on social mixing behaviour and the transmission of close contact infections in eight European countries. *BMC Infect Dis* 2009,**9**:187.
- 9. Willem L, Hoang TV, Funk S, Coletti P, Beutels P, Hens N. SOCRATES: An online tool leveraging a social contact data sharing initiative to assess mitigation strategies for COVID-19. *medRxiv* 2020:2020.2003.2003.20030627.
- 10. Leung NHL, Chu DKW, Shiu EYC, Chan KH, McDevitt JJ, Hau BJP, *et al.* Respiratory virus shedding in exhaled breath and efficacy of face masks. *Nat Med* 2020.
- 11. National Academies of Sciences, Engineering, and Medicine. 2020. Rapid Expert Consultation on the Effectiveness of Fabric Masks for the COVID-19 Pandemic (April 8, 2020). Washington, DC: The National Academies Press. https://doi.org/10.17226/25776.
- 12. ECDC. <u>https://www.ecdc.europa.eu/en/publications-data/download-todays-data-geographic-distribution-covid-19-cases-worldwide</u>. In.