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S1 Modeling framework

S1 A Disease model with testing and contact tracing

In this section we pose the disease dynamics and testing structure, and derive the contact tracing contribution from first
principles.

Disease dynamics

We consider a compartmental model describing disease progression as illustrated in Figure 1a, where compartments describe
population densities and are thus on the interval [0, 1]. We assume that the total population size (and density [2]) are fixed
on the timescales of relevance.

Testing

Removal from I to R, including recovery, hospitalisation (perhaps requiring critical care), and death, occurs at a constant
base rate γI . This rate is increased by positive testing of symptomatic individuals, expressing the fact that individuals who
test positive will self-isolate or be placed in isolation earlier if tested earlier. We denote the positive testing rate τ , which is
the fraction of the actual testing rate that produces positive results. The testing rate τ , given in (11h), is a function of two
limiting parameters: the testing rate, τ0, and the testing volume capacity, τ∞ as introduced in [12].

To understand these two parameters, consider two extreme cases. First, where only a handful of people need tests in a
particular day, then the number of tests is not a limiting factor, but there will be some characteristic time that it takes to
perform and process the tests, this is 1/τ0. In the other extreme, if the entire population requires a test on a given day,
there is a finite quantity of testing equipment and trained personnel that can administer the tests, therefore some maximum
number density of people will be tested per day, τ∞. These two limitations are particularly relevant in global pandemics,
where testing capacity may be severely limited [9]. The parameters τ0 and τ∞ may be time-varying.

Contact tracing

For the sake of clarity, we assume throughout this section that no social intervention is imposed, thus us(t) = 0 for all t, and
reinstate this factor only in the final model.

We introduce the notion of exposure, which quantifies the contact between interacting individuals. Naturally, exposure
will depend on a multitude of factors, including the physical distance between the two individuals, the duration and nature
of their contact, as well as the ambient conditions. The starting point for our model is the presumption that the developers
of the digital tracing technology incorporate any combination of these factors into the application, and we are in possession
of the average distribution of exposure to others in the population.

With this prelude, we denote by c(e) the density of contacts at exposure level e ∈ [0,∞]. We define zero exposure e = 0
to be the minimum level of exposure that the technology will detect, neglecting lower levels of exposure. For the purposes
of parameterisation, we decompose c(e) into a probability density ρc(e) and a constant magnitude C, so c(e) = Cρc(e)
and

∫∞
0
ρc(e) de = 1. The parameter C is the number of contacts per unit time, encountered during a period of infectious

duration. The density ρc describes how these contacts are distributed over exposure levels.
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Figure 1: (a) Disease dynamics, testing and contact tracing framework, with rates and parameters defined in (11) and Tables 1
and 2. The dotted line illustrates testing, while the dashed lines illustrate contact tracing. (b) Examples of the contact exposure
distribution ρc(e) and the associated probability of infection pi(e). In our simulations we use the forms (12), where ρc is
parametrised by a single parameter, ρc(0) = 1/c0 (blue disk), and pi is parametrised by two parameters, pi(e1/2) = 1/2
(orange disk) and p′i(e1/2) = 1/(e0

√
π) (orange dashed line). For this illustration we set c0 = 1, e1/2 = 2, and e0 = 2/3.

We associate each exposure level e with a corresponding probability of infection pi(e), representing the proportion of
people who, at a given level of exposure throughout the infectious period (with respect to a nominal level of infectiousness,
as we will describe), contract the disease. Note that pi(e) is a probability mass, not a probability density.

We highlight that, in general, we need not assume any specific forms for these two densities. Moreover, these distributions
need not be arbitrary modeling choices, instead, they are to be collected (for example, the contact distribution C and ρc
may be obtained directly from the contact tracing application) or deduced from separate studies (for example, the infection
distribution pi may be learned from application data in combination with virological studies). However, it seems sensible
that ρc is monotonically decreasing, while pi is monotonically increasing, examples of which we illustrate in Figure 1b. We
henceforth make the latter assumption, which simplifies the presentation but may, in principle, be relaxed. Equipped with
these preliminary quantities, we proceed to construct the contact tracing model.

First, we denote the proportion of the population that have adopted the contact tracing technology by ua(t). Upon a
positive diagnosis, we have (for full adoption ua = 1) the average distribution of Cρc(e) contacts available to alert (per unit
time per unit exposure). We define the notification threshold control un(t) ∈ [0,∞] such that only contacts with exposures
above this control are informed of their exposure to the positively diagnosed individual. The proportion of contacts we alert,
fc(un), is then given by

fc =

∫ ∞

un(t)

ρc(e) de, (1)

and the number of contacts we alert (per unit time) is Cfc. Next, again retaining ua = 1, the proportion of alerted contacts
who would have been infected by a single newly diagnosed individual if all contacts were susceptible is denoted ηfi(un),
where

fi =
1

fc(un(t))

∫ ∞

un(t)

ρc(e)pi(e) de, (2)

and η is a linear scale of infectiousness that will be determined from a self-consistency condition. It may be thought of by
considering pi as a probability with respect to a nominal level of infectiousness, and the scale η fixes this probability with
respect to the instantaneous infectiousness. We then model the proportion of alerted contacts that were actually infected via
Sηfi.

The number of contacts infected is more accurately described as an integral over the duration of the infectious period,
however, the integral term is well approximated [3, 8] by the instantaneous integrand value (multiplied by the duration of
infection), under the following assumption:
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Assumption 1 (Timescale separation). The characteristic timescale of the duration of infectiousness is significantly smaller
than the timescale of the population-wide disease dynamics.

Assumption 1 is valid for many diseases, in particular COVID-19, as the typical infectiousness period is on the order of one
week, while the timescale of population dynamics is several months or years (see Table 1). The multiple time-scales described
by Assumption 1 justify treating the individual disease progression independently of the population disease dynamics (see
for example [7, Ch. 7]).

We have introduced quantities describing contacts and their resulting infections that are already encapsulated in the
disease dynamics. Thus, we must enforce self-consistency by ensuring that these quantities coincide. To this end, we define
the instantaneous average transmission rate of symptomatic individuals assuming they were not removed via contact tracing
but after testing, β̄, by

β̄(τ) =
βP γ

−1
P + βI(γI + τ)−1

γ−1P + (γI + τ)−1
, (3)

where we highlight the dependence on the time-varying τ . While the average transmission rate for a single individual ought to
be the instantaneous transmission rate integrated over time, invoking Assumption 1, we approximate this by the instantaneous
average (3).

The average transmission rate β̄ represents the average number of infectious contacts per unit time (of an individual who
eventually tests positive). This is the case with frequency-dependent transmission, however, this interpretation is without
loss of generality, as we could adopt a density-dependent interpretation with the associated change in units [2]. This quantity
is also represented by Cηfi(0), thus self-consistency amounts to the constraint

Cηfi(0) = β̄, (4)

which determines the infectiousness scale η. In principle, C and ρc are to be obtained from the contact tracing application,
while we derive β̄ from clinical studies. Enforcing the constraint (4) then amounts to scaling the probability pi by the factor
η. For the probabilities to remain valid we require ηpi(e) ≤ 1 for all e. Since we expect pi(e) → 1 as e → ∞, and β̄ varies
monotonically with τ which we denote by β̄(τ), we require the static compatibility condition

Cfi(0) ≥ max
(
β̄(τ0), β̄(min (τ0, τ∞))

)
. (5)

Intuitively, the compatibility condition (5) requires that the infectious contact profile introduced is capable of matching the
infectious contact described by the disease dynamics.

The equality in (4) implicitly assumes that the contact tracing can detect all disease-transmitting contact. However, some
disease transmission might be beyond the reach of digital contact tracing (e.g. indirect transmission via the environment [5]).
This assumption can be relaxed, by replacing the right-hand side of (4) with the fraction of β̄ that is detectable, which relaxes
the right-hand side of the compatibility condition (5) by the same factor. For simplicity, we do not introduce this additional
variable, and assume that other modes of transmission are negligible. We conclude by mentioning that the self-consistency
condition (4) could, in fact, be used to help pin down the infection probability pi(e).

We now combine these elements to form the contact tracing component of the model. The contact tracing removal rate
α is given by: the fraction of positive diagnoses per unit time using the digital application uaτ(I)I, the fraction of contacts
encountered per unit time using the digital application ua(1− us)C, the average infection time [γ−1P + (γI + τ)−1], and the
proportion of those contacts who are alerted fc(un).

The contact tracing removal rate is partitioned among true positives, those contacts alerted who were infected by the
tested individual, and false positives who were instructed to isolate despite not being infected, in proportion with the tracing
precision Θ := Sηfi and (1−Θ), respectively. We assume a well-mixed population (in accordance with the infection kinetics),
such that the false positives are distributed uniformly within the population. The true positives are distributed among the
infected and removed compartments, described by the proportions µK for K ∈ {E,A, P, I,R}. These proportions are derived
in Section S1 B using the disease progression dynamics.

S1 B Deriving the µK probabilities

Our goal in this section is to derive the probabilities µK that a (true positive) traced contact is in compartment K ∈
{E,A, P, I,R} at the time of tracing. To this end, we introduce the transition probability

PB,s2|A,s1 = P(individual in B at t = s2 | individual in A at t = s1), (6)
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assuming the individual progresses along a continuous-time Markov chain described by the disease progression. Since the
transition probabilities describe transitions of an individual throughout their disease progression, we leverage the time-scale
separation assumption Assumption 1, from which we deduce time-homogeneity, namely

PB,s2|A,s1 = PB,s2−s1|A,0 =: PB|A(s2 − s1). (7)

Defining the time t = 0 as the time of the positive diagnosis of the tested case, our aim is to calculate the probability that
a contact infected by this individual is in a compartment K ∈ {E,A, P, I, R} at t = t0 ≥ 0, which we denote µK . The case
of t0 = 0 models immediate tracing, while t0 > 0 captures delayed contact tracing. Denoting by Q the probability density
of an individual infecting a contact (given that the individual tests positive at time t = 0), we find, using Bayes’ law, and
time-homogeneity, that

µK = P(infected contact in K at t = 0) (8a)

=

∫ ∞

0

PK,t0|E,−sQ(infected contact at t = −s) ds (8b)

∝
∫ ∞

0

PK|E(t0 + s)
∑

J∈{P,I}
βJPJ,−s|I,0 ds (8c)

=

∫ ∞

0

PK|E(t0 + s)
∑

J∈{P,I}
βJPI,0|J,−s

P(individual in J at t = −s)
P(individual in I at t = 0)

ds (8d)

≈
∫ ∞

0

PK|E(t0 + s)
∑

J∈{P,I}
βJPI|J(s)

J

I
ds (8e)

=: νK . (8f)

where we have again used the time-scale separation from Assumption 1 to approximate the absolute probabilities. One might
be concerned that, in calculating the integral over an infinite time horizon, the time-scale separation assumption breaks down.
However, the long-time contributions are exponentially small due to this time-scale separation, and hence the accuracy of
the approximation is retained.

Given the functions PB|A, we may calculate the νK in (8f), from which the probabilities µK may be determined by
normalising. The calculation of functions PB|A is straightforward, but, for the sake of completeness, is included in Appendix A.

The proportion νK defined in (8e) may be written as

νK =
∑

J∈{P,I}
βJ
J

I
pK,J , pK,J =

∫ ∞

0

PK|E(t0 + s)PI|J(s) ds, (9)

where explicit expressions are available for pK,J but are too unwieldy to reproduce here. The quantities pK,J depend on the
instantaneous transition rates, and therefore on the state I through false positives α(1−Θ)I and the testing τ(I) for the I
compartment. The probabilities µK , obtained by normalising νK , take the form

µK =
νK∑

K∈{E,A,P,I,R} νK
=

βIpK,I + βP pK,PP/I

βI (
∑
K pK,I) + βP (

∑
K pK,P )P/I

. (10)

The probabilities µK depend on the state via the ratio P/I, as well as through the dependence of pK,J on I, and we denote
this via µK(I, P/I).

S1 C Model equations and default parameter values

The contact tracing component of our compartmental model (and the associated analysis) underpins the key contribution in
this work. We briefly summarise our construction before presenting the full model equations.

We presume that we are in possession of the real-world distribution of contacts at different exposure levels, and assume
an associated probability of infection at each exposure level. We introduce the control un ∈ [0,∞], which is the notification
threshold for instructing an individual to isolate: only contacts who were exposed to the positively tested individual at
or above the level un are directed to isolate. Moreover, we introduce the control ua, representing the proportion of the
population that has adopted the digital contact tracing application. Both controls un and ua are allowed to vary with time.
Based on these quantities, we calculate the tracing rate α, and the tracing precision Θ.
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Upon reintroducing the social intervention measures via us, the model outlined above may be written as an initial-value
problem, comprising the system of ODEs and initial conditions given by

Ṡ = −FS + qQ − α(1−Θ)IS, S(0) = S0, (11a)

Q̇ = −qQ + α(1−Θ)IS, Q(0) = Q0, (11b)

Ė = FS − γEE − α(1−Θ)IE − αΘIµE , E(0) = E0, (11c)

Ȧ = paγEE − γAA − α(1−Θ)IA− αΘIµA, A(0) = A0, (11d)

Ṗ = (1− pa)γEE − γPP − α(1−Θ)IP − αΘIµP , P (0) = P0, (11e)

İ = γPP − (γI + τ)I − α(1−Θ)I2 − αΘIµI , I(0) = I0, (11f)

where

F (us, A, P, I) = [1− us] (βAA+ βPP + βII) , (11g)

τ(I) = min(τ0, τ∞/I), (11h)

α(us, ua, un, I) = u2aτ [1− us]Cfc(un)[γ−1P + (γI + τ)−1], (11i)

Θ(un, S, I) =
Sfi(un)

Cfi(0)

βP γ
−1
P + βI(γI + τ)−1

γ−1P + (γI + τ)−1
, (11j)

where we have not written down the R dynamics, as these are recoverable via conservation. Should one wish to account for
the number of hospitalised, dead, etc. additional compartments to accumulate these quantities may be added to the topology.
For the sake of simplicity, in this work we focus on the central dynamics of the model, and leave the study of other quantities
to future work.

We consider only the scenario in which traced contacts are isolated but not tested for the disease, and we exclude tracing
or isolation of secondary contacts (contacts of contacts). Extensions to include such strategies are possible within the current
framework, but omitted in this work for the sake of simplicity.

As mentioned, the distributions ρc(e) and pi(e) may be learned from application data. For the sake of concreteness, in
this study we specify the parameterised forms

ρc(e) =
1

c0
exp

(
− e

c0

)
, pi(e) =

1

2

[
erf

(
e− e1/2
e0

)
+ 1

]
, (12)

where erf is the error function erf(x) =
∫ x
0

(2/
√
π) exp(−y2) dy, and we have introduced three parameters: the contact

variability c0, the typical infectious exposure level e1/2, and infectious uncertainty e0. These forms are illustrated in Figure 1b,
and give explicit forms for the integrals (1) and (2), namely

fc = exp(−un(t)/c0), (13)

fi =
1

2fc

{
e[e0/(2c0)]

2−e1/2/c0
[
1− erf

(
e0
2c0

+
un(t)− e1/2

e0

)]
+ e−un(t)/c0

[
1− erf

(
e1/2 − un(t)

e0

)]}
. (14)

Unless stated otherwise, numerical simulations in this work employ the default parameter values listed in Table 1 and
the control parameters listed in Table 2. Numerical simulations serve primarily to demonstrate the presented contact
tracing framework. Therefore, specific parameter values are not of core importance for the results presented in this paper.
Nevertheless, it is important to choose parameter values that capture key characteristics of the modeled disease for the
numerical simulations to be meaningful. In the following, we detail how the default parametrisation has been chosen.

The proportion of asymptomatic cases has been chosen as 20% in line with [10]. The rates γK , K ∈ {E,A, P, I} determine
typical times spend at different stages of infectiousness. γE = 1/3.5 day−1 describes an average of 3.5 days from infection
to the beginning of the infectious period. Taking an average incubation time (the time between infection and the onset of
symptoms) of 5.5 days [5, 10], implies that individuals are infectious on average 2 days before becoming symptomatic, as
characterised by γP = 1/2 day−1. γA and γI determine how long individuals remain infectious. These rates are difficult
to determine since infectiousness durations are difficult to measure. The parameter γI has the added complexity that it
combines the end of the infectious period with typical self-isolation or hospitalisation. To overcome this difficulty, we note
that when the typical durations of infectious periods are changed by varying γK , K ∈ {A,P, I} but the transmission rates
βK , K ∈ {A,P, I} are kept constant, the basic reproduction number R0 (number of secondary infections) is modified.
This is undesirable since the R0 is easier to quantify than the γK parameters. Motivated by reference [5], we determine the

5



Parameter Description Default value Unit
βA transmission rate with asymptomatic 0.2γA/pa day−1

βP transmission rate with presymptomatic 1.3γP /(1− pa) day−1

βI transmission rate with symptomatic 1.2γI/(1− pa) day−1

γE incubation rate 1/3.5 day−1

γA asymptomatic recovery rate 1/5 day−1

γP symptom development rate 1/2 day−1

γI testable removal rate 1/4 day−1

τ0 testing rate (for a single individual) 2 day−1

τ∞ maximum testing capacity per unit time ∞ day−1

q quarantine removal rate 1/14 day−1

pa proportion of asymptomatic infections 0.2 —
C average number of contacts per unit time 20 day−1

c0 contact variability 1 exposure
e1/2 typical infectious exposure level 3 exposure
e0 infectious exposure variation 2/3 exposure
t0 contact tracing delay 0 day
Σ0 initial infectious proportion 10−6 —
E0 initial latent exposed proportion Σ0cE/(cE + cA + cP + cI) —
A0 initial asymptomatic proportion Σ0cA/(cE + cA + cP + cI) —
P0 initial presymptomatic proportion Σ0cP /(cE + cA + cP + cI) —
I0 initial symptomatic proportion Σ0cI/(cE + cA + cP + cI) —
Q0 initial quarantined proportion Σ0cQ/(cE + cA + cP + cI) —
S0 initial susceptible proportion S∗ − Σ0(1 + cQ) —
S∗ disease-free susceptible proportion 1 —

Table 1: Default parameter values for simulations. Values cK for K ∈ {E,A, P, I,Q} are defined in Section S2 A.

Control Description Range Value Unit
us social intervention measures [0, 1] 0 —
ua contact tracing adoption fraction [0, 1] 1 —
un notification threshold [0,∞] 0 exposure

Table 2: Control parameters.

transmission rates βK , K ∈ {A,P, I} as functions of γK , K ∈ {A,P, I} together with given contributions of each compartment
to R0. In particular, we assumed that asymptomatic cases contribute 0.2, presymptomatic cases 1.3, and symptomatic cases
1.2 secondary infections to the total R0 = 2.7 (see [1]). This approach ensures that varying rates γK does not change the
reproduction number.

The testing rate τ0 = 2 day−1 corresponds to it taking on average half a day from the onset of symptoms until the
individual is tested, isolated, and contact traced. The choice of this value has been motivated by plans to incorporate the
possibility for individuals to automatically request a test through the digital contact tracing application. For the early phase
of the COVID-19 pandemic when the testing infrastructure still had to be established in most countries, this short duration
is likely to be overly optimistic. We note, however, that it is more pessimistic than the analysis in [5] where it was assumed
that case isolation happens immediately after symptom onset. An implicit feature of our formulation of testing in the model
is that, even for non-saturated testing capacities, a fraction (γI/(τ + γI)) of symptomatic cases, progresses to the removed
compartment without being tested and contact traced. These cases correspond to symptomatic individuals that are never
identified (for instance, those that recover quickly and do not request a test), and cause an implicit case isolation and contact
tracing inefficiency.

In our simulations, the epidemic commences with a small proportion of infected individuals Σ0 = 10−6. The precise value
is of little consequence for the presented results. The contact tracing delay t0 is kept at zero throughout the main paper
while non-zero delays are explored in Section S3 D. Other parameters are explored throughout the paper (τ∞, us, ua, un) or
do not matter much for the presented results. The parameters q and C primarily scale the number of individuals in the Q
compartment. We note that the number of contacts per day, C, affects the contact tracing precision Θ. This must necessarily
be the case because the number of secondary infections is determined by the disease dynamics. Therefore, when the number

6



of contacts per day is varied by changing C, the infection probabilities per contact are scaled appropriately to preserve the
same number of secondary infections (see self-consistency constraint (5)). As a result, changing C in the model preserves the
number of infectious contacts and only changes the number of contacts that do not lead to an infection. This manifests itself
in the model through the fact that C cancels out in the true positive contact tracing removal rate (αΘ) but is retained in the
false positive removal rate, since the number of false positive notified contacts increases with the number of not infectious
contacts.

S2 Mathematical analysis

S2 A Evaluation at the disease-free equilibrium

In this section, we study the system of ODEs (11). As we will describe, the system is singular at the disease-free equilibrium
(DFE), and the aim of this section is to “regularise” this singularity by providing a meaningful way to evaluate the system
(and its Jacobian) at the DFE.

We consider solutions of (11) for initial conditions in Ω ⊂ R6
+ defined by

Ω = {(S,Q,E,A, P, I) ∈ R6
+ | S +Q+ E +A+ P + I ≤ 1}, (15)

where R+ denotes the non-negative reals. For convenience, we denote the system (11) by ẋ = f(x, t) where f is the right-hand
side of (11). The function f has a removable singularity for all x ∈ D given by

D = {E = A = P = I = 0} ∩ Ω, (16)

stemming from the probabilities µK(I, P/I). The singularity may be removed by defining f(x, t) = (qQ,−qQ, 0, . . . , 0) for
all x ∈ D and all t, as the singular terms appear only in the form IµK which vanishes as x→ D since 0 ≤ µK ≤ 1.

Not all trajectories with initial conditions in Ω remain within Ω. For example, if E0 = A0 = 0 while I0 > 0, then it follows
from (11d) that Ȧ(0) < 0 and hence A < 0 at least for some small initial transient. These unrealistic negative densities
could be avoided, by, for example, replacing µK with µKg(K) for a sigmoidal g such that g(0) = 0 and g(ε) ≈ 1 for ε � 1.
However, as we will demonstrate, this modification is not necessary for the class of initial conditions we are interested in:
when the infectious densities respect the disease dynamics in some sense, the trajectories remain in Ω. It therefore suffices,
for our purposes, to analyse f in Ω.

The right-hand side f has a uniformly bounded gradient (with respect to the state) on Ω\D, however, on D the singularity
persists in the gradient and is not removable, as we will discuss. Nonetheless, f is Lipschitz in Ω with respect to the state, and
inherits its time regularity from the controls us, ua and un, which we assume are time-continuous for the sake of simplicity,
however, this assumption may be relaxed. Similarly, f is continuously differentiable with respect to the parameters. Classical
results [6, ch. 1] then guarantee that a unique solution of the system of ODEs exists and exhibits continuous dependence on
initial conditions and parameters.

These conditions are not sufficient for our purposes, since we want to analyse the local behaviour at the disease-free
equilibrium (DFE), which is in D, requiring the existence of the Jacobian of f . It is instructive to demonstrate the nature of
this indefiniteness as this informs our approach to overcome the singularity. The troublesome contributions to the Jacobian
are the terms IµK(I, P/I) whose derivatives depend on state exclusively through the ratio P/I. We may approach D along
sets `(E) = {P = cPE, I = cIE} as E → 0, such that P/I = cP /cI takes any arbitrary value, thus this term is irremovably
singular on D. That f is Lipschitz can be seen by noting that, despite not having a unique value, the Jacobian of f is
uniformly bounded since all the coefficients of P and I in the expression (10) for µK are strictly positive.

Our approach is to evaluate this ratio P/I by demonstrating that, in the vicinity of D, the ratio of any two states is
asymptotically constant. This observation guides the evaluation of the Jacobian in D: terms of the form P/I can be replaced
by constants that are determined from the dynamics.

We begin by considering the dynamics in the vicinity of D, when all compartments except S contain a density of order
O(ε), while S = S∗ − O(ε) = O(1) for some asymptotically small ε, and thus this pertains to trajectories in the vicinity of
D. We seek a solution in the asymptotic limit as ε→ 0, and scale the system state via

S = S∗ − εŜ, Q = εQ̂, E = εÊ, A = εÂ, P = εP̂ , I = εÎ. (17)

We now expand each quantity asymptotically in powers of ε, whereby, dropping the hats to simplify notation, the leading-order
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system takes the form

Ṡ = [1− us(t)] (βAA+ βPP + βII)S∗ − qQ+ α(1−Θ)S∗I, (18a)

Q̇ = −qQ+ α(1−Θ)S∗I, (18b)

Ė = [1− us(t)] (βAA+ βPP + βII)S∗ − γEE − αΘIµE(0, P/I), (18c)

Ȧ = paγEE − γAA− αΘIµA(0, P/I), (18d)

Ṗ = (1− pa)γEE − γPP − αΘIµP (0, P/I), (18e)

İ = γPP − (γI + τ(0))I − αΘIµI(0, P/I), (18f)

and we write τ = τ(0) for

τ(0) = τ0 sign(τ∞) =

{
τ0, τ∞ > 0,

0, τ∞ = 0,
(19)

and thus α and Θ do not depend on the state, and are given by

α = u2aτ(0)[1− us]Cfc(un)[γ−1P + (γI + τ(0))−1], (20)

Θ =
S∗fi(un)

Cfi(0)

βP γ
−1
P + βI(γI + τ(0))−1

γ−1P + (γI + τ(0))−1
. (21)

Assuming quasi-steady control inputs us, ua and un, we seek an exponential solution to the leading-order system (18) of the
form

S = cSeλt, Q = cQeλt, E = cEeλt, A = cAeλt, P = cP eλt, I = cIe
λt. (22)

Substituting (22) into (18) we obtain the system of algebraic equations

λcS = [1− us] (βAcA + βP cP + βIcI)S
∗ − qcQ + α(1−Θ)S∗cI , (23a)

λcQ = −qcQ + α(1−Θ)S∗cI , (23b)

λcE = [1− us] (βAcA + βP cP + βIcI)S
∗ − γEcE − αΘcIµE(0, cP /cI), (23c)

λcA = paγEcE − γAcA − αΘcIµA(0, cP /cI), (23d)

λcP = (1− pa)γEcE − γP cP − αΘcIµP (0, cP /cI), (23e)

λcI = γP cP − (γI + τ(0))cI − αΘcIµI(0, cP /cI). (23f)

System (23) is homogeneous with respect to (cS , cQ, cE , cA, cP , cI), and therefore we take cI = 1 without loss of generality,
and thus we have seven equations for seven unknowns. Equations (23c–23f) decouple from (23a) and (23b), and may be
solved independently, and the solution plugged into (23b) followed by (23a) to determine cQ and then cS .

For some parameters, it turns out that λ ≤ −q. In this regime, the disease is eradicated faster than the quarantined
population in Q returns to compartment S, and thus the assumption that Q and the infectious compartments are of the same
order breaks down. The leading-order dynamics in this regime describe a new time-scale separation, whereby Q acquires an
impulse of susceptibles which return exponentially. For the sake of simplicity, and since the region in parameter space where
this phenomenon is observed is not significant (requiring nearly full adoption rate ua and high social intervention us), we do
not discuss this regime further.

Solving (23) provides a wealth of structural information about the system. The sign of λ predicts whether the system
will grow or decay exponentially in time. Crucially, all quantities exhibit the same exponential evolution, and thus the ratio
of any two is constant. This motivates our replacement of the ratio P/I by cP /cI = cP when evaluating the Jacobian in D.

We conclude by discussing how this analysis influences the choice of initial conditions. As mentioned at the beginning
of this section, solutions depend continuously on initial conditions and parameters. From this observation we might expect
similar results for sufficiently similar initial conditions. However, in the initial outbreak dynamics, the number of infected
individuals may grow exponentially, therefore small initial discrepancies will be amplified and a realistic choice of initial con-
ditions is essential. Moreover, unrealistic dynamics are observed during a short initial transient for general initial conditions.
For example, it is tempting, for the sake of simplicity, to impose uniform initial infected conditions E0 = A0 = P0 = I0.
However, as illustrated in Figure 2, this results in an initial dip in the total number of infected individuals Σ = E+A+P + I
despite the fact that a strong outbreak occurs. The source of this unrealistic dynamic is that the uniform distribution is
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Figure 2: The number of infected individuals Σ = E + A+ P + I during an initial transient for Σ(0) = 10−4 and ua = 0.7,
where the infected and quarantine compartments are initiated uniformly (E0 = A0 = P0 = I0 = Q0) or distributed according
to (23).

not obtained via evolution of the disease dynamics, and so some transient is needed for the disease to adopt the distribution
dictated by the dynamics. While strictly speaking any non-negative initial condition may arise via population migration, the
case of greatest interest in this study is those initial conditions that respect the dynamics.

To remedy this, the initial distribution is to be governed by the solution of (23). In Figure 2 we see that the same infection
proportion Σ(0) distributed among the infected compartments according to (23) eliminates the unrealistic initial dip. This
observation has the additional advantage that the choice of initial conditions is reduced from six degrees of freedom to just
one, and we choose to fix the proportion of infections in the population at the initial time Σ(0) = E0 + A0 + P0 + I0. This
subset of initial conditions alleviates any concern about negative densities: the asymptotic analysis demonstrates that all
densities remain positive.

To appropriately model the deployment of a digital contact tracing application, one needs to specify a time-varying
adoption profile ua(t) with ua(0) = 0. In this study, we consider only constant ua profiles, neglecting the influence of
time-varying adoption rates.

S2 B Approximations

In this section, we take the leading-order system derived in Section S2 A, relevant when the infection proportion is asymp-
totically small, and deduce asymptotic approximations of many of the quantities of interest. We have already seen how
the asymptotic insight allows us to significantly reduce the degrees of freedom in choosing initial conditions, and allows us
to evaluate the Jacobian of the system at the DFE. There are further benefits to be gained by calculating the quantities
of interest: providing insight into the dominant forces driving the disease dynamics including closed-form expressions that
elucidate dependence, validating the numerical implementation, and even replacing numerical simulations when these are
excessively time-consuming, or beyond reach, as is the case in Figure 4 right of the main paper, where the time horizon is
infinite.

We begin by approximating the proportion of the population that has been infected by time t, given by

S∗ − S −Q ∼ (cS − cQ)eλt. (24)

It follows that the time t to reach a proportion of infections p is given by

t ∼ 1

λ
log

(
p

cS − cQ

)
. (25)

We find the approximation (25) agrees well with the full numerical simulations in Figure 2 left. Importantly, the asymptotic
results demonstrates that the range of τ∞ presented is representative of the entire range of τ∞ values.
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One factor contributing to the cost of contact tracing is the quantity of susceptibles quarantined (occupying the Q
compartment) during the period t ∈ [0, T ]. This is proportional to the integral

∫ T

0

Qdt ∼ cQ
eλT − 1

λ
. (26)

When there is no outbreak λ < 0, and the integral (26) has a limit as T →∞, namely
∫ ∞

0

Qdt = −cQ
λ
. (27)

We find that the approximation (27) agrees excellently with full numerical solutions in Figure 4 left. For this reason,
and because we choose an infinite time horizon, the asymptotic approximation is used to produce the shaded region in
Figure 4 right, as the numerical simulations are prohibitively time-consuming.

S2 C Final size relation

It is of great interest to know how many people will ultimately be infected without requiring full numerical simulations. In
this section, we seek a relation that quantifies the final number of susceptible in the population after the epidemic has passed
S(∞), in the absence of contact tracing ua ≡ 0 and for constant intervention us. To obtain such a final size relation, we
note that, since the model (11) admits only the disease-free equilibrium (DFE), the infectious states must vanish as t→∞.
Integrating (11a) and substituting (11g), we find that

log
S(∞)

S0
= −

∫ ∞

0

F dt = −(1− us)
∫ ∞

0

βAA(t) + βPP (t) + βII(t) dt. (28)

We now use the disease dynamics (11) to evaluate the integral terms in (28), whereby

S(∞)− S0 − E0 =

∫ ∞

0

Ṡ + Ė dt = −γE
∫ ∞

0

E dt, (29a)

−A0 =

∫ ∞

0

Ȧ dt = paγE

∫ ∞

0

E dt− γA
∫ ∞

0

Adt, (29b)

−P0 =

∫ ∞

0

Ṗ dt = (1− pa)γE

∫ ∞

0

E dt− γP
∫ ∞

0

P dt, (29c)

−I0 =

∫ ∞

0

İ dt = γP

∫ ∞

0

P dt− γI
∫ ∞

0

I dt−
∫ ∞

0

τ(I)I dt. (29d)

The final term in (29d) admits the bound

0 ≤
∫ ∞

0

τ(I)I dt ≤ τ(0)

∫ ∞

0

I dt. (30)

By successive substitution in (29), we find that all the integral terms on the right-hand side of (28) may be expressed in
relation to the final size term S(∞) and the problem constants (initial conditions and parameters), which provides the final
size inequality

0 ≤ − log
S(∞)

S0
− [S0 + E0 − S(∞)]R0|ua=0 − (1− us)

(
A0

βA
γA

+ P0
βP
γP

+ (P0 + I0)
βI

γI + τ(0)

)

≤ (1− us)
βI

γI + τ(0)
[(1− pa)(S0 + E0 − S(∞)) + P0 + I0]

τ(0)

γI
.

(31)

Since we expect the outbreak to start when S0 ≈ 1 and all other initial conditions are close to zero, we deduce the approximate
relation

0 / − logS(∞)− [1− S(∞)]R0|ua=0 / (1− us)
βI

γI + τ(0)
(1− pa)(1− S(∞))

τ(0)

γI
. (32)

With vanishingly slow testing τ0 � 1, we expect the contribution of the testing term to be negligible, whereby both
bounds (32) converge to zero to provide the estimate

logS(∞) + [1− S(∞)]R0|τ(0)=0 ≈ 0. (33)
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Figure 3: The proportion of individual remaining uninfected after the epidemic S(∞) as a function of the testing capacity
τ∞ for various values of the (a) intervention impact us; (b) testing rate τ0. The black dashed lines show the limiting
approximations derived in Section S2 C.

For a vanishingly small testing capacity τ∞ � 1, testing is quickly saturated in a significant outbreak, and the value of τ0
has little influence. By this reasoning, similar dynamics may be obtained using a vanishingly small τ0, and thus we expect
the approximation (33) to be accurate.

Similarly, when the maximum testing capacity is never exceeded, I(t) ≤ τ∞/τ0 for all t, then the upper bound in (30) is
obtained with equality, and following analogous calculations, we obtain the final-size estimate

logS(∞) + [1− S(∞)]R0|τ(0)=τ0 ≈ 0. (34)

In Figure 3 we plot S(∞) as a function of τ∞ for various social intervention factors us and testing rates τ0. The black
dashed lines show the limiting cases as τ∞ → 0 and τ∞ →∞, given in (33) and (34). We find good agreement with the full
numerical simulation, which, while justifying that the simulations were carried out to sufficiently large times, took significant
computational effort.

S2 D Basic reproduction number

In this section, we aim to calculate the basic reproduction number of (11) using the next-generation method [4, 11], and the
analysis of Section S2 A which allows us to evaluate the Jacobian at the DFE. To this end, we write the system state in vector
form Y = (S,Q,E,A, P, I). The state vector may be decomposed into (S,Q), the uninfected components, and the remaining
compartments, all describing infected states at different stages of illness progression. The regularised system dynamics (see
Section S2 A) may then be decomposed via

Ẏ = F(Y)− V(Y), (35)

where the rate F describes new infections, while V incorporates all other transmissions between compartments (see [11] for
a detailed explanation of the decomposition in a general setting). In particular,

F(Y) =




0
0
FS
0
0
0



, V(Y) =




FS − qQ
qQ
δE

−paγEE + γAA
−(1− pa)γEE + γPP
−γPP + (γI + τ)I




+




α(1−Θ)IS
−α(1−Θ)IS

α(1−Θ)IE + αΘIµE(I, P/I)
α(1−Θ)IA+ αΘIµA(I, P/I)
α(1−Θ)IP + αΘIµP (I, P/I)
α(1−Θ)I2 + αΘIµI(I, P/I)



. (36)

We highlight the unique (up to a multiplicative scale) disease-free equilibrium (DFE) Y∗ = (S∗, 0, . . . , 0), around which
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we linearise the system (35), to obtain the Jacobian matrices evaluated at the DFE,

DF(Y∗) =

(
0 0
0 F

)
, DV(Y∗) =

(
M1 M2

0 V

)
, (37)

where F, V ∈ R4×4 matrices, M2 ∈ R2×4, and M1 ∈ R2×2 associated with the state decomposition above. In particular,

F = (1− us)S∗




0 βA βP βI
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0



, V =




γE 0 CE,P CE,I
−paγE γA CA,P CA,I

−(1− pa)γE 0 γP + CP,P CP,I
0 0 −γP + CI,P γI + τ(0) + CI,I


 , (38)

where τ(0) is given by (19) and the contact tracing terms are given by the shorthand

CK,I = αΘ[µK(0, cP )− cPµ′K(0, cP )], CK,P = αΘµ′K(0, cP ), (39)

for K ∈ {E,A, P, I}, where primes denote differentiation with respect to the state ratio, cP is deduced in Section S2 A, and
αΘ is given by

αΘ = S∗u2aτ(0)(1− us)fc(un)
[
βP γ

−1
P + βI(γI + τ(0))−1

] fi(un)

fi(0)
. (40)

The matrix F describes the rates at which infected individuals produce secondary infections, while the matrix V describes
the transmission rates of infected individuals amongst other infected compartments excluding secondary infections but in-
cluding infection removal, such that V −1 describes the average residence durations in each infected compartment [11]. The
next-generation matrix FV −1 then describes the expected number of new infections produced by infected individuals in each
infected compartment.

This leads naturally to defining the basic reproduction number R0 describing the average number of secondary infections
generated by a primary infection in a susceptible population, which is given by the spectral radius of the next generation
matrix FV −1,

R0 = ρ(FV −1) = max{|λ| : λ eigenvalue of FV −1}. (41)

It is well-known [11] that R0 is a threshold parameter: if R0 > 1 the system is unstable, and the introduction of infected
individuals leads to a disease outbreak, whereas ifR0 < 1 the introduction of a sufficiently small number of infected individuals
does not lead to disease outbreak in the population. In other words, the system undergoes a bifurcation whereby the stability
of the DFE changes as R0 passes through 1.

In our model, V −1 may be computed explicitly (but is too unwieldy to reproduce here), and since F has only one non-zero
row, the product FV −1 has only one non-zero row. Therefore FV −1 has only a single non-zero eigenvalue, whose modulus
is the spectral radius. Since the associated eigenvector is (1, 0, . . . , 0), the non-zero eigenvalue is given simply by the first
matrix entry, (FV −1)11, that is, the product of the first row of F with the first column of V −1, namely

R0 = (1− us)S∗ (RA +RP +RI) , (42a)

RA =
βA
γA

1

Λ

{
pa

[
(γI + τ(0))(CA,P + CP,P + γP ) + (CI,I + CA,I + CP,I)γP + CI,ICP,P − CI,PCP,I

]

+ (CA,ICI,P − CA,PCI,I)(1− pa)− CA,P (γI + τ(0))− CA,IγP
}
, (42b)

RP = (1− pa)βP
γI + τ(0) + CI,I

Λ
, (42c)

RI = (1− pa)βI
γP − CI,P

Λ
, (42d)

Λ = [(1− pa)CE,I + CP,I ](γP − CI,P ) + [(1− pa)CE,P + CP,P + γP ](γI + τ(0) + CI,I). (42e)

In the absence of contact tracing, ua = 0, the contact tracing terms CK,J vanish and we find that

R0|ua=0 = (1− us)S∗
[
pa
βA
γA

+ (1− pa)

(
βP
γP

+
βI

γI + τ(0)

)]
. (43)

In Figure 4, we demonstrate that the R0 calculation produces a threshold parameter by comparing numerical solutions
to the asymptotic predictions on either side of the R0 = 1 level set. The excellent agreement suggests that the analysis that
provides a way to evaluate at the DFE is representative of the system dynamics. That all the parameters below the R0 = 1
level set exhibit disease outbreak, while all those above it exhibit no outbreak validates with the theoretical predictions.
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Figure 4: (a) Basic reproduction number R0 (duplicate of Figure 3 left of the main paper). The dashed line indicates the
critical level set R0 = 1. Marks on either side of the critical level set correspond to parameters used in (b) for comparison.
(b) Total infections E +A+ P + I over time for different ua and us values marked in (a).

S3 Further numerical simulations

S3 A Outbreak prevention

In this section, we study further how the basic reproduction number sheds light on outbreak prevention. In Figure 5a we
plot the basic reproduction number R0 in (ua, un)-space. We see that there is little variation in R0 for un / e1/2−O(e0). In
Figure 5b we illustrate, in (ua, us)-space, the herd immunity required 1−S∗ to ensure no outbreak will occur. This quantity
is particularly relevant after a wave of the disease has passed through the population. If social intervention measures were
put in place, relaxing these might result in a second disease outbreak if there is insufficient herd immunity. From another
perspective, Figure 5b demonstrates how relaxing intervention measures may be justified as a function of herd immunity.

In Figure 6 we plot intervention thresholds (level sets of parameter space where R0 = 1, separating the space into regions
where a disease outbreak does or does not occur) when the entire population is initially susceptible S∗ = 1, to explore how
these change with notification thresholds un, social intervention levels us, and testing rates τ0. In Figure 6a we see that, as we
increase the notification threshold un, the effect of contact tracing is diminished as infected contacts are not being informed
to isolate. In Figure 6b we observe that, with increased testing rates τ0, the outbreak region of parameter space shrinks.
This is because faster testing results in earlier isolation of infectious individuals, as well as increased contact tracing. At low
adoption rates ua ≈ 0, the threshold is improved only due to testing, while at larger ua the gains are amplified. Similarly,
in Figures 6c and 6d increasing social intervention us and testing rates τ0 results in a smaller outbreak region of parameter
space.

These additional results exhibit the importance of the basic reproduction number in determining the conditions to prevent
a primary or secondary outbreak in the high-dimensional parameter space.

S3 B Optimal notification threshold

In this section, we further demonstrate the nature of the trade-off inherent in choosing a notification threshold. In Figure 7b
we plot the proportion of infections in the population as a function of time for various notification thresholds un. We see
that as the notification threshold is lowered, the more aggressive contact tracing is more effective in eradicating the disease.
However, In Figure 7a we plot the corresponding quarantine costs. We see that for un below the optimal, the quarantine
costs are inflated. As un is increased beyond the optimal value, the quarantine costs are initially lower, because the tracing
is more precise. However, over time the cost accumulates because the disease is not being eradicated effectively.
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Figure 5: (a) Basic reproduction number R0 in (ua, un)-space for us = 0.3. The dashed line indicates the critical level
set R0 = 1, which is the intervention threshold separating the parameter space where there will or will not be an outbreak.
(b) Herd immunity 1 − S∗ required to prevent an epidemic. Beyond the R0 = 1 level set no herd immunity is required.
However, if social interventions and contact tracing adoption are such that R0 > 1, then a proportion of the population needs
to have obtained immunity to prevent disease outbreak.

S3 C Infections saved by new adopters

In this section we calculate an expression approximating the number of new adopters required to reduce the total number of
infections by one. S + Q quantifies the uninfected (susceptible and healthy quarantined) proportion of the population. We
emphasise the dependence of the dynamics on the contact tracing adoption fraction ua by writing (S+Q)(t;ua), and denote
the population size by N . The number of infections saved over a time horizon T due to an additional adopter may then be
written as

N(1− (S +Q)(T ;ua))−N(1− (S +Q)(T ;ua + 1/N)) =
∂(S +Q)

∂ua
(T ;ua) +O(1/N) ∼ ∂(S +Q)

∂ua
. (44)

The inverse of (44) is the quantity of interest, representing the number of adopters required to save an infection.
The inverse of (44) is plotted in Figure 8 for T = 3 years. For small values of ua and us, additional contact tracing

participation helps reduce infections. However, when ua is too low, the influence of additional adopters is dramatically
reduced (reflecting the dependence on u2a versus us). In these cases, the epidemic has passed through the population within
three years.

Near the R0 = 1 boundary, additional adopters save many infections by postponing the disease peak beyond the time
horizon. Thus, sufficiently close to the boundary where the disease does not significantly invade within three years, new
adopters make less impact. Ultimately, in both of these two regions, where [∂(S +Q)/∂ua]−1 ≤ 1, just a single new adopter
can save another from infection.

S3 D The impact of tracing delay

In this section we explore how a delay t0 in contact tracing influences its efficacy. Recall from Section S3 D that a traced
contact is calculated to have progressed to compartment K ∈ {E,A, P, I,R} by the time of tracing with probability µK . A
delay of t0 days in the contact tracing manifests as a redistribution of the traced contacts among the compartments via µK .
For small t0, most of the traced contacts will be in compartment E, but as t0 increases, traced contacts are more likely to
have been removed (R), as shown in Figure 9a. With increasing t0, as the probability of traced contacts being removed rises,
the efficacy of contact tracing diminishes (Figure 9b). We note that Figure 9b is strikingly similar to Figure 6a: in both the
limit t0 →∞ and the limit un →∞ contact tracing has no effect, therefore, these two parameters must interpolate between
the same two limiting cases.
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Figure 6: Intervention threshold determining whether there will be disease outbreak for various social intervention levels us
notification thresholds un and testing rates τ0 in (a,b) (ua, us)-space; (c,d) (ua, un)-space.

S3 E Robustness to deviations in the distributions

In this section, we demonstrate how our results change with changes in the distributions ρc and pi by varying the infection
uncertainty e0, the infectious exposure level e1/2, and the contact variability c0. To do this, we explore the intervention
threshold curve (the level set R0 = 1) in (ua, un)-space (as illustrated in Figures 5a, 6c and 6d).

It is instructive to distinguish between two sections of the intervention threshold curve. For small un the curve is nearly
vertical: for increasing un the increases in ua are exponentially small. This is a consequence of low-exposure contacts having
an exponentially small probability of infection, therefore, increasing un (corresponding to not notifying contacts who are
unlikely infected) has a negligible effect on the contact tracing precision. When un ≈ e1/2 −O(e0) the curve turns, and with
increasing un, increases in ua are of the same magnitude. In this section of the curve, contacts are all very likely to have been
infected, therefore, to maintain the intervention threshold with increasing un requires additional contact tracing adoption
ua. We can derive a simple form that approximates the curvature in this section of the curve by noting that pi ≈ 1 (up to
an exponentially small correction). Therefore, the contact tracing term αΘ given in (40) satisfies

αΘ ∝ u2a
∫ ∞

un

ρc(e)pi(e) de

≈ u2afc(un),

(45)
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Figure 7: (a) Infectious proportion; (b) quarantine cost; versus time for ua = 0.5, us = 0.35, and different notification
thresholds un. Denoting the optimal notification threshold by uoptn and the critical notification threshold (for which R0 = 1)
by u∗n, the simulations use values un = uoptn +(u∗n−uoptn )i/5 for i = −5,−4, . . . , 5. The simulations correspond to Figure 4 left
of the main paper.
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Figure 8: The number of new contact tracing adopters required to save one infection over a three-year period. There are two
primary regions where this quantity is low (i.e. each new contact tracing adopter saves a relatively large number of infections):
low social intervention measures us with moderately low adoption fraction ua, and also close to the R0 = 1 boundary. In
these regions, each new adopter saves another from infection.

where the constant of proportionality is independent of ua and un. With the parametrisation (12), this takes the form

αΘ ∝∼ u2a e−un/c0 . (46)

The intervention threshold is given by the level set R0 = 1, on which αΘ is constant when all else is fixed. It then follows
that dun/dua ≈ 2c0/ua, and thus,

un ≈ 2c0 log(ua) + const. (47)

The approximation (47) is plotted as a black dashed curve in Figure 10a, where we find excellent agreement with the exact
solution. We thus call this curve section the logarithmic segment.
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Figure 9: (a) Probabilities µK for K ∈ {E,A, P, I,R} as a function of the tracing delay t0. (b) Intervention threshold
determining whether there will be disease outbreak for tracing delays t0 ∈ {0, 2, 4, 7, 14}.

Increasing the infection uncertainty e0 leads to requiring more intervention (either higher ua for fixed un or lower un for
fixed ua) to prevent an outbreak. While the general structure of the intervention threshold curve is preserved, the transition
between the vertical and the logarithmic segments becomes less sharp with increasing infection uncertainty.

Increasing the infectious exposure level e1/2 serves to shift the intervention threshold curve (Figure 10b). This is the result
of a change in e1/2 corresponding to a translation in pi (see (12)). It then follows from (40) that, under the transformation
e1/2 7→ e1/2 + x, the contact tracing term αΘ is transformed via

αΘ(e1/2) 7→ αΘ(e1/2 + x) ∝ u2a
∫∞
un
ρc(e)pi(e+ x) de

∫∞
0
ρc(e)pi(e+ x) de

= u2a

∫∞
un+x

ρc(e− x)pi(e) de
∫∞
x
ρc(e− x)pi(e) de

= u2a

∫∞
un+x

ρc(e)pi(e) de
∫∞
x
ρc(e)pi(e) de

= u2a
fi(un + x)

fi(x)
,

(48)

where the constant of proportionality is independent of ua, un, and e1/2. The quantity fi(x) is approximately constant
for small x, since changing x corresponds to including/excluding the contribution of low-exposure, hence low-risk, contacts.
Thus, the transformation in αΘ is well approximated by a translation in un.

Changing the contact variability c0 has negligible effect on the vertical segment of the intervention threshold curve, while
the slope of the logarithmic segment steepens with increasing c0 (Figure 10c) as predicted by the approximation (47), which
shows excellent agreement with the exact solution. A steeper slope corresponds to more relaxed intervention measures (larger
un for fixed ua, or larger ua for fixed ue). Increased contact variability results in more high-risk contacts, and hence the
contact tracing precision improves, allowing for more relaxed intervention to prevent disease outbreak.

We conclude that, despite quantitative changes, the results remain qualitatively similar when the contact and infection
distributions are altered. It follows that the model is robust to uncertainties and small errors in the parametrisation of these
distributions.
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(b) e1/2 ∈ {2.6, 2.8, 3, 3.2, 3.4}.
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Figure 10: Intervention threshold determining whether there will be disease outbreak for social intervention measures us = 0.35
and various distribution parameters e0, e1/2, and c0. The black dashed curve illustrates the approximation given in (47) where
the constant is fixed by choosing a single point on the corresponding solid curve.

Appendices

A Transition probabilities

In this section, we outline the calculation of the transition probabilities PB|A defined in Section S1 B as

PB|A(s) = P(individual in B at t = s | individual in A at t = 0). (49)

For the sake of simplifying the notation, we denote the transition rate from compartment K by γK . However, this ought
to be understood as all contributions to the transition, and is therefore replaced by γK + α(1 − Θ)I for all K 6= I and
γI + τ(I) + α(1−Θ)I for K = I.

Starting and finishing in the same compartment is calculated via

PE|E(s) = 1− P(leave E by t = s) = 1− γE
∫ s

0

e−γEr dr = e−γEs. (50)
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Each transition requires a new integration, for example,

PA|E(s) = pa

∫ s

0

Q(leave E at t = r)(1− P(leave A by t = s | enter A at t = r)) dr

= pa

∫ s

0

γEe−γEre−γA(s−r) dr = paγE
e−γEs − e−γAs

γA − γE
,

(51)

One may compute all the transitions in this way, remembering that from compartment E to compartment R one may arrive
via two different routes. We find that

PP |E(s) = (1− pa)γE
e−γEs − e−γP s

γP − γE
,

PI|E(s) = (1− pa)
γEγP
γP − γI

(
e−γEs − e−γP s

γE − γP
− e−γEs − e−γIs

γE − γI

)
,

PR|E(s) = (1− pa)

[
1− e−γEs +

γE
γI − γP

(
γI

e−γEs − e−γP s

γE − γP
− γP

e−γEs − e−γIs

γE − γI

)]

+ pa

(
1− e−γEs + γE

e−γAs − e−γEs

γA − γE

)
,

PI|P (s) = γP
e−γP s − e−γIs

γI − γP
,

PI|I(s) = e−γIs.

(52)

When t0 = 0 these take the forms

pE,P =
γP

(γE + γI)(γE + γP )
, pE,I =

1

γE + γI
,

pA,P =
γEγP (γA + γE + γI + γP )pa

(γA + γI)(γE + γI)(γA + γP )(γE + γP )
, pA,I =

γEpa
(γA + γI)(γE + γI)

,

pP,P =
γE(γE + γI + 2γP )(1− pa)

2(γE + γI)(γE + γP )(γI + γP )
, pP,I =

γE(1− pa)

(γE + γI)(γI + γP )
,

pI,P =
γEγP (γE + γI + γP )(1− pa)

2γI(γE + γI)(γE + γP )(γI + γP )
, pI,I =

γEγP (1− pa)

2γI(γE + γI)(γI + γP ))
,

pR,P = (1− pa)pR,P,0 + pa pR,P,1, pR,I =
γE

2γI(γE + γI)

(
γP (1− pa)

γI + γP
+

2γApa
γA + γI

)
,

pR,P,0 =
γE(γ2I + γIγP + γEγI + γEγP + γ2P )

2γI(γE + γI)(γE + γP )(γI + γP )
, pR,P,1 =

γAγE(γ2I + γAγE + γIγP + γ2P + (γA + γE)(γI + γP ))

γI(γA + γI)(γE + γI)(γA + γP )(γE + γP )
.

(53)
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