
Supplemental Material
Multipatient Ventilation Design

The lumped-parameter models in the Pulse Physiology Engine are shown in Figure 1 for the respiratory
system and the ventilator. Two patients respiratory circuits are connected to a single ventilator for transient
circuit analysis. The air pressure, flow, and volume and substance amounts are calculated for each time
step. This physics-based approach provides an flexible methodology for changing the resistors and/or
capacitors in the lumped-parameter models to represent disease states, such as ARDS.

Figure 1: The combined closed-loop lump-parameter fluid circuit for simulating multipatient ventilation.
A new entire system state is calculated every two ms. The Pulse dynamic circuit solver and transporter is leveraged
to ensure sound physics-based results with conservation of energy and mass. Not explicitly shown are interactions
with all other Pulse physiological systems, most notably, the alveolar-capillary partial pressure gradient diffusion gas
exchange with the cardiovascular system.

Diffusion Impairment Factor Design

To implement the COVID-19 disease state, the Diffusion Impairment Factor (DIF) was calculated. The factor
was mapped to the cardiovascular circuit in Pulse at the intersection of the cardiovascular and respiratory
circuits, as shown in Figure 2.

1



Figure 2: The Diffusion Impairment Factor (DIF) implementation on the Cardiovascular Circuit in the
Pulse Physiology Engine. The DIF severity is mapped to cardiovascular circuit modifiers to hinder alveolar gas
exchange and increase pulmonary shunting.

The pulmonary shunt resistance and alveolar surface area are both reduced by a factor (y) based on
severity (x [0 to 1]) following exponential decay equation:

y = 10ln(x b
a )+ln(a)

Where, a is 1.0 and b is 0.1 for the alveolar surface area and a is 1.0 and b is 0.01 for the pulmonary shunt
resistance change.

Patient Exclusion Criteria

As noted in the Methods section, the patients were initially stabilized on a single ventilator. By varying
the DIF and modifying the compliance, the patients were created with various disease states. Some of
these patients were unable to meet our scoring criteria for multipatient ventilation on an individual venti-
lator. Therefore, they were excluded from further analysis, so prevent noise in the data. Table 1 shows the
percentage of patients able to meet the oxygen saturation scoring criteria of at least 89%.

Table 1: Patient Exclusion Results. Patients with higher DIF severities require a higher ventilator FiO2
setting to achieve positive (green) outcomes based on SpO2. The total fraction of patients that are included for
multipatient simulation analysis are listed in the third column. The minimum FiO2 setting is 0.21 (natural air).

DIF Mean Minimum FiO2 for SpO2 > 89% Fraction of Patients Achieving SpO2 > 89%
0.3 0.21 100%
0.4 0.21 100%
0.5 0.23 100%
0.6 0.27 100%
0.7 0.46 100%
0.8 0.95 29%
0.9 N/A 0%

Simulation Pseudocode

For this study, we chose the following ranges (Minimum, Maximum, Step):

• PEEP (cmH2O) : Minimum:10, Maximum:20, Step Size:5

• Compliance (mL/cmH2O) : Minimum:10, Maximum:50, Step Size:10

2



• DIF (%): Minimum:30, Maximum:90, Step Size:10

This generates a total of 12,642 unique simulations to execute. The execution loop is shown in Algorithm
1.

Algorithm 1: The Pulse multi-patient execution pseudocode for this investigation.

Set patient resistances to 5 cmH2O-s/L;
Set ventilator RR to 20 bpm and I:E Ratio to 1:2;
for Range of PEEP do

Set ventilator PEEP;
for Range of average compliances do

Calculate the optimal PIP for TV to 6 mL/kg based on current PEEP and average
compliance;

Calculate a range of inner level compliances for each patient;
for Calculated patient compliances do

Set patient compliances;
for All combinations of patient DIF do

Set Patient DIFs;
while any patient SpO2 < 89% (pass) and ventilator FiO2 < 100% (fail) do

Increase ventilator FiO2 and simulate until SpO2 is stable for 10s;
end
Store results;

end
end

end
end

Oxygen saturation stability is determined by storing the lowest SpO2 of all engines as a baseline value
at a specified time. For each subsequent time step, we sample the lowest SpO2 calculated and determine
the percent difference with the baseline value. The SpO2 is considered stable when the percent different is
less than 0.25% for 10s. Once a stable SpO2 value is achieved, the FiO2 setting on the ventilator is adjusted
accordingly:

• If the SpO2 is trending down and < 85%, FiO2 is increased by 10%

• If the SpO2 is trending down and >= 85%, FiO2 is increased by 2.5%

• If the SpO2 is trending up and < 88%, FiO2 is increased by 5%

• If the SpO2 is trending up and > 88%, FiO2 is increased by 1%

Pulse Physiology Engine Architecture

Architecturally, a single instance of the multiplex ventilation engine accepts a list of simulations to run.
Each simulation in the list contains the compliance, resistance, and impairment for each patient, and the
ventilator settings for the simulation. As each engine simulates, it creates a log of the simulation and a CSV
(Comma Separated Values) file containing the simulation results for each timestep. When both patients
within the engine reach final homeostasis, the final values of interest will be appended to the simulation
list for the entire experiment. When all engines have completed, the simulation list is output as a JSON
(JavaScript Object Notation) file.

Pulse Physiology Engine Data Model

Pulse implements its data model (model definitions) via Google Protocol Buffers (GPB). This provides the
ability to support instantiation and control of Pulse engines from various programming languages and
network protocols. GPB also provides the ability to read and write data in the popular JSON format for
readability and import into popular data analysis libraries. The GBP definitions used by the Multiplex

3



Ventilation Engine can be found here, and below is an example of the data properties computed for a single
patient.
Patient State JSON:

{
"ID": 0,
"Compliance_mL_Per_cmH2O": 10,
"Resistance_cmH2O_s_Per_L": 5,
"ImpairmentFraction": 0.40000000596046448,
"RespirationRate_Per_min": 20,
"IERatio": 0.5,
"PEEP_cmH2O": 10,
"PIP_cmH2O": 55,
"FiO2": 0.21,
"AirwayFlow_L_Per_min": -384.06825814934518,
"AirwayPressure_cmH2O": 1043.4194836658687,
"AlveolarArterialGradient_mmHg": 45.619370140146856,
"ArterialCarbonDioxidePartialPressure_mmHg": 39.819789561334652,
"ArterialOxygenPartialPressure_mmHg": 75.85119486614299,
"CarricoIndex_mmHg": 367.5726868121024,
"EndTidalCarbonDioxidePressure_mmHg": 20.822935895891064,
"IdealBodyWeight_kg": 75.3,
"MeanAirwayPressure_cmH2O": 25,
"OxygenationIndex": 11.003491209618154,
"OxygenSaturation": 0.9603982517625641,
"OxygenSaturationIndex_mmHg": 6.3974838958631794,
"SFRatio": 4.6503130439307032,
"ShuntFraction": 0.087940097305858056,
"TidalVolume_mL": 449.99997579831688,
"TotalLungVolume_mL": 2680.9772230837052,
"AchievedStabilization": true,
"OxygenSaturationStabilizationTrend": -0.11851467873102428
}

Resource Requirements

Pulse has a small memory footprint (< 10MB of RAM) and simulates at 10x real-time while using 100%
of one average CPU core. Since the multiplex ventilation engine contains two patients, but with a shared
respiratory circuit it runs around 6x real-time using 100% of one CPU core. Pulse is not a good candidate for
multi-threaded execution of the physiology analysis as the individual system models must be executed in
series. A runner was created to run each simulation in the simulation list on its own CPU core via threads.
For our study, we employed an Alienware Area-51 R6 with dual processors (16-Cores each, overclocked up
to 3.6GHz) and 64GB of RAM.

Graphical User Interface

As part of this effort, we created bindings to instantiate and control the multiplex engine using the Python
programming language. We were able to create and deploy a Jupyter Notebook that provides a simple
interface for end users to customize their own patients (via compliance, resistance and impairment factors)
and control the ventilation while viewing simulation results in real-time. The Jupyter Notebook GUI can
be found in our gitlab repository and is shown in Figure 3.

4

https://gitlab.kitware.com/physiology/jupyter


Figure 3: Jupyter Notebook User Interface. The user interface allows for patient customization of the disease state
and the ventilator settings for multipatient ventilation. Results of the simulation are shown in the lower portion of
the simulation.

Source Code and Associated Data

The Pulse Physiology Engine, the multiplex ventilation engine for Pulse, and the GUI are open source
under the Apache 2.0 software license. All code can be obtained from our gitlab repository, and can be
used to generate all of the final study data. To build the engine, follow the build instructions provided on
the repository ReadMe. All data used in this study, as well as run instructions for the multiplex ventilation
engine can be found in the multiplex ventilation engine ReadMe.

5

https://gitlab.kitware.com/physiology/engine/-/tags/STUDY_MULTIPLEX_VENTILATION_1_0_0
https://gitlab.kitware.com/physiology/engine/-/blob/3.x/ReadMe.md
https://gitlab.kitware.com/physiology/engine/-/blob/3.x/src/cpp/study/multiplex_ventilation/ReadMe.md

