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S1 Data

All data used in this paper were obtained from publicly available sources. The daily number of cases and

deaths in the five countries were obtained from the European Centre for Disease Prevention and Control

(ECDC) website [1]. We have used data up to 13th May, 2020. In terms of identifying day zero for each

country, we have assumed that the numbers reported correspond to those reported in the country on the

previous day. A negative number of cases was reported for Spain on 19th April, 2020, so this was set to zero

in this study. The UK hospital data used were the data made available as part of the daily press conferences

[2]. Data were used from 18th March to 11th May. For the period from 18 - 26 March there were no data

available for Scotland and Wales, but the data for the rest of the UK was scaled appropriately for this period

to take this into account.

S2 Methodology

It is not immediately obvious how the initial number of exposed (E0) and infected (Ic0 and Iu0 ) cases should

be specified. Ic0 cannot be set to the number of confirmed new cases (nor the cumulative number of cases)

at the start of the period since it should correspond to the total number of confirmed cases at that time.

The approach adopted here is to treat E0 as a further parameter to be fitted to the data and then to set

Ic0 = ρE0 and Iu0 = (1 − ρ)E0, where rho is the proportion of confirmed cases out of the total number of

cases (confirmed and unconfirmed) for a given country as discussed in the main text. The initial value of S,

denoted S0, is set to N − E0 − Ic0 − Iu0 and R0 is set to zero.
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As noted in the main paper, the reproduction number R0 is given by ρβ/γ+(1−ρ)αβ/γ. This expression

is obtained from finding the dominant eigenvalue of the next generation matrix [3]. Recall that α allows

for a reduction in the transmission rate for the unconfirmed cases or alternatively for asymptomatic or sub-

clinical cases if the infectious group is divided up differently. Since our focus is on confirmed and unconfirmed

subgroups it does not seem reasonable to set α to the same value for each country since the number of tests

carried out varies from one country to another. However, as a result of keeping the ratio of confirmed to

unconfirmed cases fixed, α does not play a crucial role in our calculations. Different values of α will result

in different values of βpre and βpost. To see this, note that since ρ = Ic/(Ic + Iu), then in equation (1),

β(t)
SIc

N
+ αβ(t)

SIu

N
= β(t)

SIc

N

(
1 + α(

1− ρ
ρ

)

)
. (S1)

Hence, different values of α amount to rescalings of βPre and βPost such that for different α1 and α2, we

have

RPre
0 = β1 (ρ+ α1(1− ρ)) /γ = β2 (ρ+ α2(1− ρ)) /γ (S2)

and similarly for RPost
0 . So α is important if one is interested in the values of βPre and βPost, but the

constraints mean that it has no effect on the corresponding R0 values and hence on the dynamics. Since

we focus on the R0 values in the results, we set α = 1 and hence do not distinguish between confirmed and

unconfirmed cases in terms of transmission rates. Nevertheless, the model permits different transmission

rates to be explored.

In terms of fitting the two-stage SEIR model to data, we fit γIct to the number of newly confirmed cases

on a given day since the cumulative sum of both terms must be equal and the number of newly confirmed

cases on a given day can be assumed to be proportional to the number in group Ic on that day. When

considering the number of deaths rather than new cases, we scale γIct by the ratio of the total number of

deaths to the total number of confirmed cases in a given country and then fit this quantity to the number

of reported deaths. In the case of UK hospital numbers, we first of all apply the model to the number of

confirmed cases in the UK as discussed in the context of figure 1 in the main paper. Scaling the resulting

values for Ic0 by 0.9 (as well as translating it in time) gives a reasonable approximation to the hospital data.

Hence we use this scaling of Ic0 when fitting the model to the hospital data.

When fitting the model to the newly confirmed cases this means that tlockdown represents the number

of days after day zero that the lockdown is reflected in the number of confirmed cases. As noted in the

main document, we obtain this value by finding which day gives the best fit to the data. We achieve this

by setting tld to a particular value, say seven days, then integrate the differential equations to find the best

fitting parameters for the parameters E0, βPre and βPost. When carrying out the integration, βPre is used

before tld and βPost afterwards as specified in (2). We then repeat this process for a range of values of

tld to find tlockdown by determining the value which together with the corresponding values of the other

parameters gives the best overall fit to the data. The number of days between the actual lockdown and

tlockdown corresponds to delay between onset of infection and subsequent confirmation.
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The predictive accuracy of the models was evaluated using the root mean squared error (RMSE):

RMSE =

√∑nt

i=1(yi − ŷi)2
nt

(S3)

and mean absolute error (MAE):

MAE =

∑nt

i=1 |yi − ŷi|
nt

. (S4)

where y represents the data, ŷ the predicted values and nt the number of test cases.

The calculations have been carried out using MATLAB and a non-linear curve-fitting function has been

used to find the best fitting parameters E0, βPre and βPost simultaneously.

S3 Parameter estimates based on the number of deaths

As discussed in the main paper, the results obtained from the number of cases were compared with those

obtained by fitting the two-stage model to the number of deaths in a given country for validation purposes.

Results are presented in table S1.

Table S1: Estimates for the pre- and post-lockdown reproduction numbers with 95% confidence intervals.

These estimates are based on the recorded number of deaths due to COVID-19.

RPre
0 RPost

0 R2

France 3.44 (2.18-4.69) 0.66 (0.57-0.76) 0.68

Germany 1.63 (1.39-1.86) 0.67 (0.56-0.78) 0.56

Italy 2.26 (2.05-2.47) 0.83 (0.81-0.86) 0.90

Spain 3.29 (2.73-3.85) 0.77 (0.73-0.80) 0.90

UK 2.43 (1.97-2.90) 0.85 (0.79-0.91) 0.78

S4 Sensitivity of parameter estimates

The results in the main paper are based on a mean latent period, dl, of 3.8 days, a mean infectious period,

di, of 3.4 days and a mortality rate, m, of 0.66%. As discussed, these are reasonable values in light of the

literature, but given that there is also disagreement about these values, several other variations have also

been considered. In particular, we consider dl = 4.8, di = 5.0, m = 0.33% and m = 1.32%, in each case

keeping the other parameters as they were. Results are presented in table S2. The changes in dl and di

result in higher values of RPre
0 and lower values of RPost

0 , while in most cases the changes in m have little

effect. Overall, the results are similar to those adopted in the main paper, particularly in the case of RPost
0 .
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Table S2: Estimates for the pre- and post-lockdown reproduction numbers for different values of the latent

period, dl, the infectious period, di, and the percentage mortality rate, m, based on the recorded daily

number of confirmed cases. †UK results are based on hospital data.

dl = 3.8 dl = 4.8 dl = 3.8 dl = 3.8 dl = 3.8

di = 3.4 di = 3.4 di = 5.0 di = 3.4 di = 3.4

m = 0.66 m = 0.66 m = 0.66 m = 0.33 m = 1.32

France
RPre

0 2.08 2.37 2.68 2.12 2.07

RPost
0 0.67 0.64 0.63 0.70 0.65

Germany
RPre

0 2.50 2.68 2.79 2.50 2.50

RPost
0 0.67 0.63 0.60 0.68 0.67

Italy
RPre

0 2.35 2.77 2.88 2.58 2.35

RPost
0 0.82 0.80 0.78 0.88 0.80

Spain
RPre

0 2.82 3.53 3.68 3.30 2.80

RPost
0 0.68 0.65 0.62 0.75 0.66

UK†
RPre

0 2.27 2.43 2.51 2.28 2.26

RPost
0 0.91 0.89 0.86 0.96 0.88

S5 Sensitivity of predictive accuracy

Results for predictive accuracy are also considered for the same parameters used in section S4. Although

not shown here, these alternatives give similar goodness of fit results when applied to the whole dataset.

Furthermore, as the table indicates the results are similar in terms of predictive accuracy, so changing the

parameters does not change the results dramatically in most cases. In several cases, a lower mortality rate

results in much better accuracy, while a higher mortality rate gives worse results. It would be interesting to

see whether data from other countries would show the same trend. We also see how these parameters affect

relaxation in the next section.

S6 Sensitivity of results for relaxation

Again, we consider how the results are affected by changing the parameters as in the previous two sections.

To keep the plots less cluttered, we only consider the scenarios where there is no relaxation and where there

is 50% relaxation.

All of the models fit the actual data well and give results that are almost indistinguishable when there is

no relaxation. For 50% relaxation, the different parameter settings have different effects in different countries,

but all are fairly similar to the results presented in the main paper. In all cases, a higher mortality rate
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Table S3: Results for k-step ahead prediction for the number of confirmed cases on the last 10 days. †UK

results are based on hospital data.

dl = 3.8 dl = 4.8 dl = 3.8 dl = 3.8 dl = 3.8

di = 3.4 di = 3.4 di = 5.0 di = 3.4 di = 3.4

m = 0.66 m = 0.66 m = 0.66 m = 0.33 m = 1.32

France
RMSE 1119 1115 1102 1120 1118

MAE 603 625 642 596 607

Germany
RMSE 399 378 362 395 401

MAE 298 288 282 295 299

Italy
RMSE 672 662 649 572 720

MAE 628 618 605 522 679

Spain
RMSE 839 828 819 818 864

MAE 642 621 601 600 652

UK†
RMSE 1667 1632 1626 1237 1856

MAE 1601 1612 1609 1203 1799

results in a greater number of cases compared to the original results, though for some countries the difference

is very small. A lower mortality rate gives lower numbers for four of the five countries, but in most cases

the difference is relatively small. Overall, increasing the infectious period to 5.0 yields the greatest increase

in numbers and so it will be compared with the original parameter settings in more detail below.

In the main paper, the consequences of relaxation were only investigated during a six week period, but

here we let the models run for 400 days from day zero to get an idea what the longer term consequences

might be if there were no further interventions. Based on the results from figure S1, we only consider the

original setting of parameters along with the alternative setting where the infectious period is set to di = 5.0.

The results are shown in figure S2 for both 25% and 50% relaxation.

Of course, a lot of caution is needed with these results and confidence intervals have not been displayed

to keep the plots simpler. However, the results reinforce the point from the main paper of the dramatic

difference between 25% and 50% relaxations. In all cases, 50% relaxation leads to a higher peak than the

earlier peak in each country, in most cases much higher, for both values of di. Needless to say, lockdowns

would be reintroduced before any of these extremely serious scenarios could occur, but the results highlight

that numbers could increase very quickly in some cases, particularly the UK. The results in Germany and

the UK are particularly high (note the different scale for these countries). The high numbers of cases in the

UK results has been discussed in the main paper. The extremely high result for Germany arises from the

assumption that far few people have had COVID-19 so far in Germany based on the much lower number of

deaths and so the effective reproductive number remains higher in Germany for longer. For 25% relaxation,
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Figure S1: The effect on the daily number of confirmed cases (hospital numbers for the UK) of relaxing the

lockdown by 50% with parameters as described in the main paper ( ), or as in the main paper but with

dl = 4.8 ( ), di = 5.0 ( ), m = 0.33% ( ) and m = 1.32% ( ), or no relaxation ( ). Note that

the results for the UK are on a different scale.
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Figure S2: The effect on the daily number of confirmed cases (hospital numbers for the UK) of relaxing the

lockdown with parameters as described in the main paper for 50% ( ) and 25% ( ), or with parameters

as in the main paper but with di = 5.0 for 50% ( ) and 25% ( ). Note that the results for Germany

and the UK are on a different scale from the other countries.
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the numbers of cases are much lower in all countries, though in some cases this leads to a second peak

comparable in height to the earlier peaks, but spread out over a much longer period. These results again

suggest that relaxations should be kept well below 25%.
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Figure S3: The effect on daily numbers of hospital patients in the UK of relaxing the lockdown by 15% with

parameters as described in the main paper ( ), or as in the main paper but with dl = 4.8 ( ), di = 5.0

( ), m = 0.33% ( ) and m = 1.32% ( ), or with the parameters in the main paper and no relaxation

( ).

To explore this further, we also consider the effect of a 15% relaxation. Results are presented in figure S3

for the UK since from figure S1 it is clear that the increases in the UK are greater than for the other countries.

The same variations in parameter settings considered in figure S1 are used again. For the parameter settings

used in the main paper, the numbers of patients remains more or less constant, though when the model is

run for longer the numbers quickly start to decrease again. Similarly, even for the parameter settings that

give a slight increase in numbers, the numbers soon start to decline again. Although not shown here, for a

10% relaxation, there is no increase for any of the parameter settings. Hence, a relaxation of around 10-15%

is needed if COVID-19 is to be kept under control. Similar calculations suggest that such a relaxation would

also be adequate for the other countries.
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