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[bookmark: _Toc39222395]Study Descriptions
[bookmark: _Toc39222396]UK Biobank
Between 2006 and 2010, patients were recruited from the NHS patient registers and contacted if they lived in close proximity to one of 22 assessment centres in England, Scotland and Wales. Detailed medical data was collected on 502,655 participants, aged between 40 and 69 at recruitment [1]. A total of 190,406 women in the UK Biobank cohort who had reported their first child’s birth weight were included in the primary analyses of this paper, as were 215,444 women and men who reported their own birth weight. All participants provided written informed consent, including for their collected data to be used by international scientists. UK Biobank has approval from the North West Multi-centre Research Ethics Committee (MREC), which covers the UK. UK Biobank’s research ethics committee and Human Tissue Authority research tissue bank approvals mean that researchers wishing to use the resource do not need separate ethics approval.
The UK Biobank data was pooled with EGG data for most of the analyses in this study.
[bookmark: _Toc39222397]ALSPAC
Women expecting a live birth between the 1st of April 1991 and 31st of December 1992 whilst living in Avon (a former county in the South-West of England centred around the city of Bristol) were invited to take part in the study. Initially 14,541 pregnancies were recruited, which resulted in 14,676 fetuses, 14,062 live births and 13,988 children alive after one year, with additional children being recruited later [2, 3]. Please note that the study website contains details of all the data that is available through a fully searchable data dictionary and variable search tool[4]. Informed consent for the use of questionnaires and clinics was obtained from the participants following the recommendations of the ALSPAC Ethics and Law Committee at the time. Please contact the Executive at alspac-exec@bristol.ac.uk if further details are required. We used a maximum of 4,862 unrelated mother-child pairs of European ancestry with phenotype and genotype data. This cohort contributed to the analyses with the following outcomes: birth weight (included also in the EGG consortium GWAS of birth weight), birth length, birth ponderal index and birth head circumference.
[bookmark: _Toc39222398]BiB
[bookmark: _GoBack]Born in Bradford (BiB) is a population-based prospective pregnancy cohort that collected detailed information from 12,450 women who experienced 13,773 pregnancies. The cohort is broadly representative of the obstetric population in Bradford, a city in the North of England, in which approximately half of the births are to mothers of South Asian origin. To be eligible for BiB women had to be expected to give birth between March 2007 and December 2010 in the maternity department at Bradford Royal Infirmary. Participants were recruited primarily at their oral glucose tolerance test (OGTT) appointment, mostly between 26-28 weeks. Ethics approval was obtained for the main platform study and all of the individual sub-studies from the Bradford Research Ethics Committee[5]. We used a maximum of 1,947 unrelated mother-child pairs of European ancestry with phenotype and genotype data. This cohort contributed to the analyses with the following outcomes: birth weight, birth head circumference, birth triceps skinfold thickness, birth subscapular skinfold thickness, sum of skinfold thickness, maternal fasting glucose, maternal 2 hour post-prandial glucose levels, cord-blood insulin, cord-blood leptin and cord-blood adiponectin.
[bookmark: _Toc39222399]EFSOCH
Between 2000 and 2004, pregnant women from a postcode defined region of Exeter, UK and their partners were recruited via the Exeter Maternity Unit database. A total of 1,017 families (98% white European) were recruited[6], from which a total of 993 live births were included in the primary analyses of this paper. All mothers and fathers gave informed consent and ethical approval was obtained from the local review committee. We used a maximum of 674 unrelated mother-child pairs of European ancestry with phenotype and genotype data. This cohort contributed to the analyses with the following outcomes: birth weight (included also in the EGG consortium GWAS of birth weight), birth length, birth ponderal index, birth head circumference, birth triceps skinfold thickness, birth subscapular skinfold thickness, sum of skinfold thickness, maternal fasting glucose and cord-blood insulin.
[bookmark: _Toc39222400]HAPO
The Hyperglycaemia and Adverse Pregnancy Outcomes (HAPO) cohort recruited 28,562 pregnant women between the 1st of July 2000 and the 30th of April 2006 from 15 clinical study centres in 10 countries (United States, Canada, Barbados, United Kingdom, the Netherlands, Thailand, Israel, Australia, Hong Kong and Singapore), four of the centres being in the United States, for their oral glucose tolerance test (OGTT) between 24 and 32 weeks. In total 25,505 pregnant women underwent OGTT, however only 23,316 women were blind tested (participants were un-blinded if they showed signs of having diabetes i.e. fasting plasma glucose > 5.8 mmol/l or 2 hour glucose > 11.1 mmol/l). The protocol was approved by the institutional review board at each field centre. All participants gave written informed consent. An external data and safety monitoring committee provided oversight [7]. We used a maximum of 1,867 unrelated mother-child pairs of European ancestry with phenotype and genotype data. This cohort contributed to the analyses with the following outcomes: birth weight (included also in the EGG consortium GWAS of birth weight), birth length, birth ponderal index, birth head circumference, birth triceps skinfold thickness, birth subscapular skinfold thickness, sum of skinfold thickness, maternal fasting glucose, maternal 2 hour post-prandial glucose levels and cord-blood c-peptide.
[bookmark: _Toc39222401]Deriving metabolically favourable adiposity phenotype and genetic variants
The metabolically favourable adiposity genetic variants were previously identified in three steps. In step 1 a GWAS for body fat percentage, as measured by bioimpedance, was performed in UK Biobank (N = 442,278)[8]. In step 2, a multivariate GWAS of metabolic biomarkers was performed (i.e. body fat percentage, HDL-Cholesterol, adiponectin, sex-hormone binding globulin, triglycerides, fasting insulin and alanine transferase). In the multivariate GWAS of metabolic traits, correlations between the genotypes were regressed against correlations between the phenotypes estimated from pre-existing summary SNP data[9], with metaCCA. The phenotype-phenotype correlations were estimated using the Pearson correlation between any pair of traits across the genome-wide associated SNPs, and the genotype-genotype correlations were estimated using a reference database from 1000 Genomes[8]. In step 3, SNPs that were associated at p < 5 x 10-8 with both body fat percentage (step 1) and multivariate metabolic outcome (step 2) were selected and those related to an increase in body fat percentage and a “favourable” metabolic profile, as indicated by hierarchical clustering with the pvclust R package, were identified and replicated [8].
[bookmark: _Toc39222402]Defining a 1 SD increase in body fat percentage 
In the original GWAS of body fat percentage, the strongest SNP was associated with a 0.051 SD increase in body fat percentage, which was equivalent to a 0.33% increase in body fat[10], hence dividing 0.33 by 0.051 we estimated the SD of body fat percentage to be 6.5%. The SD value of BMI in UKB has previously been reported to be 4 kg/m2[11].
[bookmark: _Toc39222403]Defining offspring birth weight for GWAS
For the EGG consortium GWAS we used for our primary analyses, 90% of the participants came from UK Biobank. In UK Biobank, multiple births and preterm births were excluded (preterm births defined as those < 2.2 kg due to a lack of gestational age information), and 90% of the birth weight values were self-reported[12].
[bookmark: _Toc39222404]Selecting participants of White European ancestry
In UK Biobank, we defined a subset of “white European” ancestry participants so that only those of this ethnic background were included in our analyses. To do this, we generated ancestry principal components (PCs) in the 1000 genomes samples. The UKB samples were then projected into this PC space using the SNP loadings obtained from the principal components analysis using the 1000 genomes samples. The UK Biobank participants’ ancestry was classified using K-means clustering centred on the 3 main 1000 genomes populations (European, African, South Asian). Those clustering with the European cluster were classified as having European ancestry. The UK Biobank participants were asked to report their ethnic background. Only those reporting as either “British”, “Irish”, “White” or “Any other white background” were included in the clustering analysis.
For ALSPAC, we also used PCs in the 1000 genomes sample to separate out white Europeans in the genotyped individuals (see above). 
EFSOCH only included participants of white British origin (defined using PCs) for analyses [6]. Nonetheless, principal component analysis was performed to assess ancestry of the sample using flashPCA [13]. Outliers were defined as >4.56 SD from the cluster mean (defined using 1000 Genomes European data as the reference) and excluded (n=21 individuals [0.76%])
HAPO is a multi-ethnic cohort, and ethnicity was self-reported by the participants[7].
BiB is a multi-ethnic cohort of mostly white Europeans and South Asians, and most of the participants self-reported their ethnicity. Where self-reported ethnicity was unavailable, ethnicity reported in GP records was used, and where that was unavailable, South Asians were separated from the rest of the remaining cohort using Nam Pechan[5], a computer program for identifying South Asian names[14].
[bookmark: _Toc39222405]Genotyping
For UKB, we analysed data from the May 2017 release of imputed genetic data (which has been extensively described elsewhere)[15], which was then pooled with the results from the EGG GWAS[12]. Given the reported technical error with non-HRC imputed variants[16], we focused exclusively on the set of ~40M imputed variants from the HRC reference panel. As we decided to use Structural Equation Modelling (SEM) as a sensitivity analyses separate from the overall UKB + EGG analyses (see Data Analyses in main paper), we also analysed the UKB participants separately. 
To account for population structure and relatedness in UKB, a linear mixed model implemented in BOLT-LMM v2.3[17] was used to perform genome-wide association (GWA) analysis of birth weight in the UKB sample. Only autosomal single nucleotide polymorphisms (SNPs) which were common (MAF>1%), in Hardy Weinberg equilibrium (p value > 1x10-6), passed QC in all 106 batches and were present on both genotyping arrays were included in the genetic relationship matrix (GRM). For the GWA analyses of birth weight of the first child (i.e. using the maternal genotype), the genotyping array and genotyping release (interim vs. full) were included as covariates in the regression model. For the GWAS of participants own BW, genotyping array, age at baseline and sex were adjusted for in all models.
For ALSPAC, EFSOCH, HAPO and BiB, the SNPs used in this study (see below) were taken from genome-wide imputed data that had been completed for both the mothers and their offspring (fetal genotype). In ALSPAC maternal data was obtained from the Illumina 610 Quad Array and fetal data was obtained from the Illumina 550 Quad Array. In EFSOCH maternal and fetal data were obtained from the Illumina Infinium HumanCoreExome-24, and in BiB maternal and fetal data was obtained from two separate chips, an Illumina HumanCoreExome array and Illumina Infinium Global Screening array (GSA). In HAPO maternal and fetal data were obtained from Illumina genome-wide arrays at the Broad Institute (Cambridge, MA) or Johns Hopkins Center for Inherited Disease Research (Baltimore, MD)[3, 6, 18, 19].
For both ALSPAC and EFSOCH, genotype data were imputed against Haplotype Reference Consortium HRC v1.1 reference panel after quality control (MAF >1%, HWE>1×10-6, sex mismatch, kinship errors and 4.56 SD from the cluster mean of any sub-populations cluster). For HAPO, genotype data were imputed using SHAPEIT v.2 and IMPUTE2 v.2.3.0 with 1000 Genomes Phase 3 data after quality control as previously described. For BiB, genotype data were imputed against HRC r1.1 using Minimac4, after quality control (MAF >1% and HWE>1×10-6)[3, 6, 20].
For UKB + EGG[12] and MAGIC[21], the summary results of associations between SNPs and offspring birth weight (maternal genotype) was extracted from the GWAS results (see main paper for details on how each GWAS was conducted). For ALSPAC, EFSOCH, HAPO and BiB, individual level SNP data was extracted and summary data were generated using multivariate linear regression of birth weight against the maternal SNPs (adjusting for gestational age, child’s sex and genotype).
To make sure that the outcome data (BW) and exposure data (metabolically favourable adiposity and BMI) were comparable, the SNPs effects were harmonized to the metabolically favourable adiposity/BMI raising alleles using procedures that have previously been described[22].
[bookmark: _Toc39222406]Potential violation of MR assumptions by the fetal genotype
The third MR assumption is that the genetic instrument only influence the outcome through the exposure. Violation of this assumption may occur through horizontal pleiotropy and we describe below the sensitivity analyses that we used to explore that in our main analyses. A further potential violation of this assumption in this study is a path via the fetal genotype[23]. Maternal genetic variants that influence BMI and/or favourable adiposity will also be associated with the distribution of said genetic variants in the fetus, which may influence fetal growth and hence birth weight. For the primary study, this potential bias was addressed using WLM adjusted weights (see below). For the secondary study, this potential bias was addressed by adjusting the outcome-maternal SNP associations for the fetal genotype, which was available in in all four cohorts (ALSAPC, BiB, EFSOCH and HAPO) contributing to the secondary study.
[bookmark: _Toc39222407]Structural Equation Modelling and Weighted Linear Modelling theory
A structural equation model (SEM) can be used to estimate the maternal specific genetic effect on offspring birth weight independent of the offspring genotype at individual genetic loci in the absence of genetic data in mother-child pairs, by using the participant’s genotype, their own birth weight measurement and their offspring’s birth weight measurement. These observed variables are combined with two latent (unobserved) variables, the grandmother’s genotype and the offspring’s own genotype, which are correlated 0.5 with the participants own genotype. A full description of SEM can be found in Warrington et al 2018[24]. In brief, the model uses the variances and co-variances between the observed variables (own birth weight, offspring birth weight and own genotype), and full information maximum likelihood, to estimate the parameters of interest including that maternal and fetal specific effects. The model can incorporate participants with only their own birth weight and own genotype (including males) or their own genotype and offspring birth weight by creating different sub-groups of participants and constraining the parameters to be equal across the sub-groups. The SEM is computationally intensive, making it difficult to use at a genome-wide level, so the authours developed a linear approximation of the SEM that gave the same effect estimates and standard errors but was computationally efficient. This linear approximation, referred to as a weighted linear model (WLM), combined the unadjusted maternal and fetal effect estimates at a single locus, using the following formula

where  is the maternal specific genetic effect on the outcome (here, offspring birth weight),  is the unadjusted maternal genetic effect from a GWAS of maternal genotype on offspring birth weight and  is the unadjusted fetal genetic effect from a GWAS of own genotype on own birth weight[12, 24]. 
The WLM is also used to estimate the standard error of the SNP-maternal specific effect, using the following formula

The estimated maternal specific genetic effect from the WLM, , has been shown to be equivalent to the estimated effect from a conditional linear model in mother-child pairs, where offspring birth weight is regressed on the maternal and offspring genotype[12].
[bookmark: _Toc39222408]Extracting own birth weight data in UK Biobank
In order to perform the SEM in UK Biobank, we needed data on participants own birth weight, in addition to the data on offspring birth weight (described above). A total of 280,315 participants reported their own birth weight in kilograms at either the baseline visit or at least one of the follow-up visits. Participants reporting being part of a multiple birth were excluded from our analyses (N=10,057). For participants reporting birth weight at more than one visit (N=11,629), the average across the reported BWs were used, and if the largest difference between any 2 time points was >1kg, they were excluded (N=80). Data on gestational duration were not available. However, in order to exclude likely pre-term births, participants with birth weight values <2.5kg were excluded. We also excluded those with a birth weight >4.5kg as these are likely to be reporting errors or extreme outliers (total number excluded because of <2.5kg or >4.5kg birth weight=37,691). Participants’ own birth weight was regressed against year of birth and assessment centre location. Residuals from that regression model were then used in all analyses with values converted to standard deviation units for analysis.
[bookmark: _Toc39222409]Sensitivity analyses to explore horizontal pleiotropy and additional sources of invalid instruments
[bookmark: _Toc39222410]MR-Egger
MR-Egger uses linear regression of the SNP associations with birth weight against the SNP associations with maternal metabolically favourable adiposity or BMI, but does not force the intercept through zero, thus relaxing the assumption that the SNP influences birth weight only through maternal metabolically favourable adiposity or BMI [25]. If a non-zero intercept is observed, this indicates that there may be bias in the fixed effect pooled Wald Ratios and/or IVW instrumental variable estimates due to horizontal pleiotropy. Whilst relaxing the no horizontal pleiotropy assumption and providing an estimate that takes account of non-symmetrical pleiotropy (the slope value), MR-Egger, and for that matter all analyses we have used to test for horizontal pleiotropy, introduces an additional assumption - the Instrument Strength Independent of Direct Effect (INSIDE) assumption. INSIDE assumes that the association of the genetic instrument with the exposure is not correlated with the association of the genetic instrument with the outcome (i.e. the association with outcome that is not via the exposure of interest). In relation to this study the INSIDE assumption is likely to be violated via offspring genotype because of the association of maternal genotype to risk factor and to her offspring genotype[23], and so MR-Egger is unlikely to be a useful approach for testing this source of bias. We used WLM, SEM and mother-child pair analyses to adjust for this (see methods in main paper) and used MR-Egger as a sensitivity analysis to explore possible violation of the exclusion restriction criteria via maternal genetic horizontal pleiotropy. For our MR-Egger analyses we estimated the standard error using a random effects model and confidence intervals using a t-distribution.
[bookmark: _Toc39222411]Weighted-Median Analysis
With weighted-median analysis, the weighted-median instrumental variable of all the SNPs is taken as the causative effect, with each SNP being weighted by its effect on the exposure, thus reducing the effect of single weak instruments[26]. This method also relaxes the assumption of there being no bias due to asymmetrical horizontal pleiotropy but it assumes that no more than 50% of the combined SNPs weight is from invalid instruments. This approach will be biased if there is a single horizontal pleiotropic SNP with 50% of the weight or multiple pleiotropic SNPs, each with less than 50% of the weight, but that together are 50% or more of the weight. As with MR-Egger this is likely to be violated by offspring genotype as 50% of maternal alleles will be transferred to the fetus; our fetal genotype adjusted results are the key way of testing for bias via that route[23]. The weighted median analyses were as a sensitivity analysis to explore possible violation of the exclusion restriction criteria via maternal genetic horizontal pleiotropy.
[bookmark: _Toc39222412]Radial MR
As an additional sensitivity analyses we performed Radial MR. Radial MR is a linear regression, where the square root of the SNPs weighting (which for first-order weights equivalent to the SNP-exposure divided by the SNP-outcome standard error) is plotted on the x-axis and the Wald ratio multiplied by the square root of the SNPs weighting is plotted on the y-axis. Radial MR has advantages over traditional MR-Egger, in that it is a better method for detecting and visualising outlying genetic instruments, and allows for more precise and accurate estimates of the intercept, making it better at detecting horizontal pleiotropy. We also performed Rückers Q test and I2 to explore between SNP heterogeneity in the Radial MR results[27].
[bookmark: _Toc39222413]Measuring Pregnancy Glucose outcomes in selected cohorts for secondary analyses
In BiB, all women were offered a 75g oral glucose tolerance test (OGTT) at around 26-28 weeks gestation, with samples for analyses of fasting glucose and 2-hour post-prandial glucose being collected. Women attend the OGTT having fasted overnight. Samples were immediately processed, and plasma glucose concentrations (mmol/l) were measured at the clinical biochemistry laboratory of the Bradford Royal Infirmary using a Siemens Advia 2400 analyser following a standard protocol. The coefficients of variation range between 1·73% at 3·2 mmol/L and 0·64% at 19·1 mmol/L[28, 29].
In EFSOCH, fasting blood samples were taken from both parents at 28 weeks of gestation (the parents having fasted for 10 hours); this was done in the morning at the parents’ home. Plasma glucose levels were measured at the Royal Devon and Exeter Hospital pathology laboratories using manufacturer’s standard reagents on Modular analysers (Roche Diagnostics, Lewes, East Sussex, U.K.)[6, 30]. 
In HAPO, women underwent a 75g OGTT between 24 and 32 weeks gestation, trying to be as close to 28 weeks as possible, with samples for analyses of fasting glucose and 2-hour post-prandial glucose being collected. Aliquots of plasma glucose samples were sent to field centre laboratories to be analysed. Values were un-blinded if fasting plasma glucose (FPG) was >5.8 mmol/L, if 2-h OGTT plasma glucose (PG) was >11.1 mmol/L. Otherwise, women, caregivers, and HAPO Study staff (except for laboratory personnel) remained blinded to glucose values. All glucose samples were additionally analysed at the HAPO Central Laboratory (Belfast, Northern Ireland, U.K.) using a chemical analyser (Vitros 750; Ortho Clinical Diagnostics, Rochester, NY), in order to avoid bias from centre-to-centre variation. Only the results from women who remained blinded were included in the analyses[31].
Individual studies in MAGIC, measured fasting glucose from whole blood, plasma or serum (or a combination of all three) with whole blood fasting glucose being corrected to plasma fasting glucose by multiplying the result by 1.13. Participants were excluded if they were diagnosed with diabetes, undergoing diabetes treatment, had a fasting glucose level greater than 7 mmol/l, pregnant, did not fast or had fasting glucose or fasting insulin greater than three standard deviations away from the mean[21].
[bookmark: _Toc39222414]Measuring Cord-Blood outcomes in selected birth cohorts for secondary analyses
In BiB, cord blood was extracted from a vein or artery by the attendant mid-wife at delivery. Samples were refrigerated at 4°C in EDTA tubes until collected by laboratory staff within 12 hours. Samples were then spun, frozen and stored at -80°C. They were transferred to the Biochemistry Department of Glasgow Royal Infirmary for analyses (with no previous thawing), where leptin and adiponectin were measured by a highly sensitive in house ELIZA with better sensitivity at lower levels than commercial assays. Insulin was measured using an ultrasensitive solid-phase two-site immunoassay ELIZA (Mercodia, Uppsala, Sweden) that does not cross-react with pro-insulin. Laboratory staff were blinded to the participants ethnicity and other characteristics[29].
In EFSOCH, cord blood was extracted from a vein or artery by the attendant mid-wife at delivery. The blood was stored at 4°C until being collected by the researchers. The cord blood was spun to separate out the plasma which was then stored at -80°C. The plasma was then tested for insulin levels when appropriate at the Regional Endocrine Laboratories (Birmingham, UK) using immunochemiluminometric assays (Molecular Light Technology, Cardiff, U.K.)[6, 32].
In HAPO, cord blood plasma was extracted at each centre, was stored at -20°C and sent to the Central Laboratory for analysis. A subsect of plasma was then stored at -70°C, before being tested for c-peptide using a solid-phase, two-site fluoro-immunometric assay (Autodelfia, Perkin-Elmer, Waltham, Massachusetts, United States). C-peptide has an advantage over insulin in that it is less likely to be destroyed by haemolysis, thus allowing for a more accurate representation of cord insulin levels if haemolysis has occurred in a substantial number of samples [33]. 
[bookmark: _Toc39222415]BMI SNP validation 
The first MR assumption is that the genetic instruments are robustly associated with the exposure. The metabolically favourable adiposity and BMI genetic instruments were discovered in separate, non-overlapping GWAS of mixed sex individuals who were not pregnant, hence it is possible that the genetic instruments do not associate with adiposity in the same way in pregnancy. We therefore tested the SNPs association with BMI (only UKB had body fat percentage) in ALSPAC, EFSOCH, HAPO and BiB, and compared that to the effect reported in the main BMI GWAS. We were not able to find studies with relevant genotypes and body fat percent measured in pregnancy and so could not explore whether the genetic variants we used for the metabolically favourable adiposity related to percent body fat in a similar way in pregnancy as in the original GWAS.
The SNP associations with mothers pre-pregnancy BMI for each of the mother-child pair cohorts were pooled. The pooled SNP-maternal BMI associations were then regressed against the GWAS reported SNP-BMI associations. We also regressed the SNP-maternal BMI associations for each cohort individually.
As can be seen in sFigure 10:a), though there is little predictive power (adjusted R2=0.36) in the SNP-maternal BMI vs SNP-GWAS BMI association (likely because there is a high level of error in the associations), the size and direction of the association (1.2 ± 0.2) is consistent with a direct association. Therefore the BMI associations in the mother-child pair cohorts are valid. For each individual mother-child pair cohort, there was a consistently positive association between the SNP-maternal BMI effect and SNP-GWAS BMI effect (see sFigures 10:b)-f)).
[bookmark: _Toc39222416]Collider bias test
For the two sample MR that we used in the primary study, an additional risk of bias may arise from adjustments made in the exposure GWAS[34]. This may have influenced our MR analyses of metabolically favourable adiposity because body fat percentage is conditional on the total body weight and conditioning on heritable traits (such as weight) can introduce collider bias in genotype-phenotype associations[35].
For the metabolically favourable adiposity SNPs, we extracted the SNP-associations (in SD units) for body fat percentage (N=442,278), fat mass (N=442,449) and lean mass (N=443,134) from UK Biobank (see sTable 9 for summary data). We then pooled the SNP-associations for each trait (unweighted) to get a per allele score for the SNPs effect on each trait. If the metabolically favourable adiposity SNPs had a stronger relative effect on lean mass than fat mass, that would indicate the presence of collider bias.
As can be seen in sFigure 14, though the metabolically favourable adiposity SNPs are associated with lower lean mass, the effect on greater fat mass and body fat percentage is eight times the magnitude (-0.0018 vs 0.0149). Thus there is no evidence of collider bias being a major factor in the association of metabolically favourable adiposity on BW. 
[bookmark: _Toc39222417]Testing potential confounders and mediators
The second MR assumption is that the genetic instruments are not associated with known confounders of the relationship between the exposure and outcome (which could mediate/bias the effect estimate[36]). To explore the possible associations of SNPs with observed confounders, we calculated two weighted allele scores (WAS) from the instrumental variable SNPs for metabolically favourable adiposity and BMI and determined the “per allele” association of these WAS with maternal smoking and socioeconomic position (SEP; assessed using maternal educational attainment). Smoking is one of the strongest determinants of fetal growth and birth weight[37], and influences adiposity[38]. SEP captures (to some extent) other potential confounders, such as maternal diet, that also relate to adiposity and potentially birth weight. Each SNP was weighted by the magnitude of its effect on the exposure as reported in the original GWAS. These associations were examined in UKB, ALSPAC, BiB, EFSOCH (which does not have data on education so that was not examined in this cohort) and HAPO.
If a substantial association with a WAS and a potential confounder/mediator was found, we redid the analyses adjusting for the confounder/mediator using multivariable MR analyses (see below). We found a substantial association between the BMI WAS with both smoking and SEP (see sTable 9).
[bookmark: _Toc39222418]Multivariable MR analyses
To adjust for maternal smoking in the MR analyses of BMI’s effect on BW, we used the only genome-wide significant SNP (rs3025343) from the Furberg et al 2010[39] GWAS of former vs current smoking. To adjust for maternal education in the multivariable MR of the effect of BMI on birth weight we aimed to use SNPs that were genome-wide significant and replicated from the most recent GWAS of completed years of education that were not discovered using UK Biobank[40]. In both analyses we used the IVW method for the multivariable MR analyses this requires summary data on all of the: exposure SNP associations with exposure, outcome and confounder and confounder SNP associations with confounder outcome and exposure.
Adjusting for smoking and educational attainment made no substantial difference to the effect of BMI on birth weight (see sTable 10).


[bookmark: _Toc39222419]Supplementary Tables
[bookmark: _Toc39222420]sTable 1: Characteristics of genome-wide association studies of the exposures
See Supplementary_tables_for_2nd_paper.xlsx
a) For Locke et al 2015[41] and Lu et al 2016[10], the Recovery participants are those with Metabochip data.
b) For Ji et al 2019[8], the Recovery participants are the participants from the GWAS that contributed to the multivariate analyses.

[bookmark: _Toc39222421]sTable 2: Details of SNPs used in our Mendelian Randomisation analyses
See Supplementary_tables_for_2nd_paper.xlsx

[bookmark: _Toc39222422]sTable 3: Measurement of birth anthropometric traits in selected cohorts for secondary analyses
See Supplementary_tables_for_2nd_paper.xlsx

[bookmark: _Toc39222423]sTable 4: Maternal SNP-birth weight associations across the included studies 
See Supplementary_tables_for_2nd_paper.xlsx

[bookmark: _Toc39222424]sTable 5: Maternal SNP-glucose outcomes across the included studies
See Supplementary_tables_for_2nd_paper.xlsx

[bookmark: _Toc39222425]sTable 6: Maternal SNP-cord blood outcomes across the included studies
See Supplementary_tables_for_2nd_paper.xlsx

[bookmark: _Toc39222426]sTable 7: SNP-birth anthropometric outcomes for included studies
See Supplementary_tables_for_2nd_paper.xlsx
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a) For the education adjustment, of the 74 non-UK Biobank identified SNPs from Okbay et al[40], only 33 had both birth weight data in EGG + UK Biobank data and BMI data in Locke et al[41], and only five had smoking data in Furberg et al[39] as well.
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[bookmark: _Toc39222431]sFigure 1: Summary of methods and data contributing to the secondary analyses
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[bookmark: _Toc39222432]sFigure 2: Leave-one-out analysis for the effect of maternal metabolically favourable adiposity on offspring birth weight.
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[bookmark: _Toc39222433]sFigure 3: Comparison of Wald Ratio meta-analysis estimates calculated using WLM-adjusted SNP associations from EGG + UK Biobank with estimates calculated using SEM adjusted SNP associations from UK Biobank alone, for metabolically favourable adiposity.
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[bookmark: _Toc39222434]sFigure 4: Leave-one-out analysis for the effect of genetically instrumented maternal BMI on offspring birth weight.
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[bookmark: _Toc39222435]sFigure 5: Comparison of Wald Ratio meta-analysis estimates calculated using WLM-adjusted SNP associations from EGG + UK Biobank with estimates calculated using SEM adjusted SNP associations from UK Biobank alone, for BMI.
[image: C:\Users\wdt204\Downloads\WLM_SEM_graph_BMI2.png]
[bookmark: _Toc39222436]sFigure 6: Radial MR-Egger analyses with and without outliers for metabolically favourable adiposity. 
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[bookmark: _Toc39222437]sFigure 7: Radial MR graph for metabolically favourable adiposity.
[image: ]
a) The values presented are in SD units, the SD value for birth weight being 484g.
b) The confidence intervals are to 97.5%, and the results were estimated using an iterative model 
[bookmark: _Toc39222438]sFigure 8: Radial MR-Egger analyses with and without outliers for BMI.
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[bookmark: _Toc39222439]sFigure 9: Radial MR graph for BMI.
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a) The values presented are in SD units, the SD value for birth weight being 484g.
b) The confidence intervals are to 97.5%, and the results were estimated using an iterative model 
[bookmark: _Toc39222440]sFigure 10: Correlations between SNP-maternal pre-pregnancy BMI associations with SNP-GWAS BMI associations for all cohorts (in kg/m2)
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The x-axis for all of these report the SNP-BMI association as reported in Locke et al 2014 (N = 322,154). For each of the subgraphs, the y axis reports the SNP- pre-pregnancy BMI association for: all of the mother-child pair cohorts combined (N = 11,915) in a), ALSPAC (N = 6,449) in b), BiB (N = 2,853) in c), EFSOCH (N = 844) in d), HAPO 1 (N = 1,010) in e), and HAPO 2 (N = 759) in f).The green-dashed line is the predicted fit, the black line is the observed fit. 
[bookmark: _Toc39222441]sFigure 11: Genetic associations of metabolically favourable adiposity SNPs with body fat percentage, fat mass and lean mass
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