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Statistical analyses 15 

Estimating the number of imported cases 16 

For each African country 𝑟, we denote the daily number of air passengers that arrived from an 17 

epicentre country 𝑒 by 𝑣𝑒→𝑟
(𝑡)

 (𝑡 = 𝑡𝑒 , 𝑡𝑒 + 1, … , 𝑇𝑒→𝑟), where 𝑡𝑒 refers to the start date of the 18 

COVID-19 epidemic in the epicentre country 𝑒, and 𝑇𝑒→𝑟 refers to the last day that non-citizens and 19 

non-residents travelling from country 𝑒 were allowed to enter country 𝑟. Each day the probability 20 

that an air passenger travelling from country 𝑒 to country 𝑟 was an imported case is denoted by 𝑝𝑒
(𝑡)

, 21 

which we assume to be dependent on both the origin country 𝑒 and time 𝑡, but independent from 22 

the destination country 𝑟. Hence, the total number of COVID-19 cases imported from an epicentre 23 

country 𝑒 to an African country 𝑟 by the time the travel ban came into force (denoted by 𝑀𝑒→𝑟 24 

below) can be expressed as the sum of the following independent binomial random variables (i.e. 25 

daily number of infections imported from 𝑒 to 𝑟): 26 

𝑀𝑒→𝑟 = ∑ 𝑀𝑒→𝑟
(𝑡)

𝑇𝑒→𝑟

𝑡=𝑡𝑒

, 27 

𝑀𝑒→𝑟
(𝑡)

~𝐵𝑖𝑛 (𝑣𝑒→𝑟,
(𝑡)

  𝑝𝑒
(𝑡)

). 28 

Given that in most cases the daily number of air travellers 𝑣𝑒→𝑟
(𝑡)

 before the travel ban came into 29 

force was reasonably large (≥20), the random variable 𝑀𝑒→𝑟 can be approximated using a Poisson 30 

distribution: 31 

𝑀𝑒→𝑟 ~̇ 𝑃𝑜 ( ∑ 𝑣𝑒→𝑟
(𝑡)

∙  𝑝𝑒
(𝑡)

𝑇𝑒→𝑟

𝑡=𝑡𝑒

). 32 

We used the imported COVID-19 case data reported by Singapore as well as flight data to provide a 33 

conservative estimate for 𝑀𝑒→𝑟, under the assumption that Singapore, being one of the countries 34 

with the highest surveillance capacity1, has detected all the imported cases. Owing to the delay from 35 

infection to hospital admission, we considered all cases imported from country 𝑒 to Singapore that 36 

were reported by date (𝑇𝑒→𝑟 + 9) (hereinafter denoted as 𝑆𝐺𝑒,𝑟) based on Linton et al.’s estimated 37 

mean incubation period and time from illness onset to hospital admission2. We assumed that the 38 

ratio between the daily number of air travellers from epicentre 𝑒 to country 𝑟 and to Singapore 39 

remained stable in the presence of the changes in flight pattern in response to the COVID-19 40 

pandemic. Hence, the ratio between the expected numbers of cases imported from epicentre 𝑒 to 41 

African country 𝑟 and to Singapore can be derived using the March 2017 flight data: 42 
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𝔼[𝑀𝑒→𝑟]

𝔼[𝑆𝐺𝑒,𝑟]
=  

∑ 𝑣𝑒→𝑟
(𝑡)

∙  𝑝𝑒
(𝑡)𝑇𝑒→𝑟

𝑡=𝑡𝑒

∑ 𝑣𝑒→𝑆𝐺
(𝑡)

∙  𝑝𝑒
(𝑡)𝑇𝑒→𝑟

𝑡=𝑡𝑒

=
∑ 𝑣𝑒→𝑟

(𝑡)
𝑡 in Mar 17

∑ 𝑣𝑒→𝑆𝐺
(𝑡)

𝑡 in Mar 17

. 43 

This allows us to model 𝑀𝑒→𝑟 (and 𝑆𝐺𝑒,𝑟) as Poisson random variables with mean parameters 44 

proportional to the numbers of air passengers travelling from epicentre 𝑒 to country 𝑟 (and to 45 

Singapore) using the March 2017 flight data: 46 

𝑀𝑒→𝑟~̇ 𝑃𝑜 (𝛽𝑒,𝑟 ∙ ∑ 𝑣𝑒→𝑟
(𝑡)

𝑡 in Mar 17
), 47 

𝑆𝐺𝑒,𝑟~̇ 𝑃𝑜 (𝛽𝑒,𝑟 ∙ ∑ 𝑣𝑒→𝑆𝐺
(𝑡)

𝑡 in Mar 17
). 48 

Here, 𝛽𝑒,𝑟 refers to the proportionality constant to be estimated using the reported value of 𝑆𝐺𝑒,𝑟 49 

and flight data, and was assigned a uniform prior with support (0, 1). We performed Markov Chain 50 

Monte Carlo to sample from the posterior distribution of 𝛽𝑒,𝑟 using the JAGS software3, with 20,000 51 

iterations burn-in and 150,000 iterations thinned for a posterior sample of size 5,000. The posterior 52 

sample for all the model parameters was then used to estimate the uncertainty distribution of the 53 

total number of COVID-19 cases imported from the 12 major epicentres to each country.  54 

In March 2020, a spike in the number of cases imported from United Kingdom and United States was 55 

observed in Singapore, which was partly due to the increase in the number of returning Singaporean 56 

students studying overseas4. This change in flight patterns, however, may not be applicable to all 57 

African countries. Therefore, to be even more conservative, we also derived the imported case count 58 

estimates excluding United Kingdom and United States from the 12 epicentre countries previously 59 

considered. The resulting estimates were subsequently used in the simulations of the onward spread 60 

of SARS-CoV-2 to get our estimates of case numbers over time. 61 

Simulating the onward transmission following importation 62 

We performed 1,000 simulations drawing from our estimated distribution of the number of 63 

imported cases to project the onward spread of SARS-CoV-2 in each country up to 31st May 2020 or 64 

the date when we estimate 10,000 infections was reached, whichever was earlier. The time of 65 

infection for the cases imported from country 𝑒 to country 𝑟 was simulated via resampling from the 66 

reporting dates of the 𝑆𝐺𝑒,𝑟 cases, which was then shifted backwards by 9 days to account for the 67 

delay from infection to hospital admission based on Linton et al.’s estimates2. To account for the 68 

effect of quarantine measures on the onward transmission, we only included the estimated 69 

imported cases who had acquired the infection prior to the mandatory quarantine of travellers 70 

coming into force, so that the estimation of local SARS-CoV-2 spread is conservative. Hence, 71 

following Cori et al.5, in each simulation 𝑠, the total infectiousness of the infected individuals in a 72 
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country 𝑟 on day 𝑡 (denoted by 𝐼𝑟
(𝑡)

[𝑠]
̃

) can be expressed as the weighted sum of the past incident 73 

infections (considered up to 14 days prior to 𝑡): 74 

𝐼𝑟
(𝑡)

[𝑠]
̃

= ∑ 𝜔𝑢 ∙ 𝐼𝑟
(𝑡−𝑢)[𝑠].

14

𝑢=1

 75 

In the equation above, 𝐼𝑟
(𝑡−𝑢)[𝑠] denotes the number of incident infections in country 𝑟 on day (𝑡 −76 

𝑢) generated in simulation 𝑠, which included both the number of incident local infections and the 77 

effective number of imported infections (i.e. after adjusted for the effect of mandatory quarantine 78 

measures, if applicable) whose infection date was (𝑡 − 𝑢). The weight parameter 𝜔𝑢 can be derived 79 

from the cumulative distribution function of COVID-19’s serial interval based on Nishiura et al.’s 80 

estimate (denoted by 𝐹(∙))6: 81 

𝜔𝑢 = ∫ 𝐹(𝜏 + 1) − 𝐹(𝜏)
𝑢

𝑢−1

𝑑𝜏 . 82 

Following Pearson et al.7, we assumed the number of secondary cases produced by each COVID-19 83 

case to follow a negative binomial distribution with mean 2.0 and dispersion parameter 0.58, before 84 

stay-at-home order came into force. In the presence of stay-at-home order, we created two 85 

scenarios for the percentage reduction of the reproduction number: (1) 25% reduction, and (2) 50% 86 

reduction. To be conservative, we assumed that the stay-at-home order, once implemented, can be 87 

sustained up to the end date of our simulations. Hence, following the algorithm implemented by 88 

Churcher et al.8, in each simulation 𝑠 we generated the number of incident local infections in 89 

country 𝑟 on day 𝑡 (𝐴𝑟
(𝑡)[𝑠]) as follows:  90 

𝐴𝑟
(𝑡)[𝑠] ~ 𝑁𝐵 (𝐼𝑟

(𝑡)[𝑠]
̃

∙ 0.58, (1 +
𝑅0𝑟

(𝑡)

0.58
)

−1

). 91 

The negative binomial distribution above modelled the number of failures before the 𝐼𝑟
(𝑡)[𝑠]
̃

∙ 0.58th 92 

success in a Bernoulli process with a success probability (1 +
𝑅0𝑟

(𝑡)

0.58
)

−1

 for each trial, where 𝑅0𝑟
(𝑡) 93 

denotes the instantaneous reproduction number in country 𝑟 on day 𝑡 as defined by Cori et al.5 94 

Finally, based on the results obtained from the 1,000 simulations, we derived the estimated 95 

probability of reaching 10,000 infections by end of March, April, and May respectively for each 96 

African country.  97 
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