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Supplementary Figure 1. Performance on high contrast trials: detection rate (left) and root mean 

square error (RMSE) (right). Dashed lines indicate the exclusion criteria (70% detection and 30° 

RMSE). Participants who did not satisfy at least one of these criteria are denoted with a cross marker 

and were excluded from further analysis. In addition, one more participant was excluded (circled) due 

to poor detection performance on low-contrast trials (<50%). This resulted in 20 controls (CTR) and 

17 attention deficit hyperactivity disorder (ADHD) participants being included in the analysis.  
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Supplementary Figure 2. 2/1 and 4/1 staircase contrast levels throughout the task. (A) Controls, (B) 

ADHD. Both groups were found to reach stable contrast levels after 100 trials. These trials were 

removed from further data analysis. The groups did not differ in the achieved contrast levels (C, D). 

n.s. = non-significant 

 

 

Emergence of prior effects 

We investigated at which point in the task the acquired expectations started to have a significant effect 

on performance and whether this was different for participants with ADHD. To do so, we computed 

cumulative moving averages at every 55 trials for different measures of interest and tested for 

significance of the prior effects (Supplementary Fig. 3). In the order presented, we tested when the 

estimation reaction times (RT) at ±32° became shorter than at all other directions (Supp. Fig.3A), 

when the detection at ±32° became higher than at all other directions (Supp. Fig.3B), when the bias at 
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±64° become more negative then  bias at ±32° (Supp. Fig.3C), and when the probability of 

hallucinating within 16° of ±32° became larger than at other directions (p_ratio; Eq. (6)) (Supp. 

Fig.3D). For all measures we performed one-tailed Wilcoxon signed rank test, pooling data across the 

groups to test for the effects of the prior, and two-tailed Wilcoxon rank-sum test for comparing the 

groups at each step of 55 trials.  

We found that the effects of the acquired priors became significant within 110 trials for all measures, 

while group differences were largely not significant, except for detection performance, where ADHD 

group showed stronger effects of the acquired priors towards the end of the task, and for estimation 

bias, where the ADHD group showed less estimation bias between trials 220 to 330 (Supplementary 

Fig. 3). 
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Supplementary Figure 3: Emergence of prior effects in controls (blue boxplots) and ADHD participants 

(orange boxplots). Cumulative moving averages of median differences between (A) estimation RTs at ±32° and 

RTs at all other directions, (B) fraction detected at ±32° and fraction detected at all other directions, (C) bias at 

±64° with respect to bias at ±32°, and (D) cumulative moving averages of the probability ratio of hallucinating 

predominantly around  ±32° on no-stimulus trials. The boxplots indicate 25th and 75th percentiles, the black 

dash in between indicates the median. The significant effects of prior are indicated above each of the plots (one-

tailed Wilcoxon signed rank test), while group differences are indicated within the plots (two-tailed Wilcoxon 

rank-sum test).  *, ** and *** denote significance levels at p<0.05, p<0.01, p<0.001 respectively.  
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Modelling 

Response strategy models (‘ADD’) 

We controlled for the possibility that the task behaviour might be explained by simple behavioural 

strategies that do not involve Bayesian integration (Laquitaine & Gardner, 2018). This class of models 

assumed that participants did not combine their expectations with sensory information but relied on 

either of them alone on any given trial.  

 The first model, ‘ADD1r’, assumed that estimations derived from prior expectations were simply 

sampled from a learnt prior distribution, pprior(θ), which was parameterized as in Eq (4) - a 

symmetrical bimodal distribution with nodes at θp and -θp and widths of σp. However, on trials when 

participants perceive motion direction, it was based solely on the sensory input, plikelihood(θs|θact) = V 

(θact, σs).  

Putting together the estimations derived from sensory input and the ones derived from learnt 

expectations, and the possibility of random estimations, the average distribution of estimation 

responses for a single participant is: 

         p(θest|θact) = (1 − α)· [(1 − a) · plikelihood(θs|θact)  +  a · pprior(θ)] ∗V(0,σm) + α,                               (9) 

  

where the asterisk (∗) denotes convolution and ‘a’ is the probability that on any given trial the sample 

will be drawn from the prior; following the ‘Switching Observer Model’ model in Laquitaine & 

Gardner (2018), ‘a’ was defined based on the relative precision of the prior: a = 1/σp
2 / (1/σp

2 + 1/σs
2). 

Just like BAYES and BAYES_P, the resulting ‘ADD1r’ model had 4 free parameters (θp, σp, σs and α).  

 

The second model, ‘ADD2r’, was the same as ‘ADD1r’ except that it had a more complex strategy for 

trials when participants relied on the prior: instead of sampling from the complete acquired prior 

distribution ranging from −180◦ to +180◦ (Eq.  (4)), they sampled only from the negative (−180° to 0°) 

or the positive (0° to +180°) half, depending on which side of the distribution the actual stimulus 

occurred on: 

   ppriorN (θ) = V (−θp, σp)                                (10) 
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   ppriorP (θ) = V (θp, σp)                                        (11) 

  

Incorporating this into the distribution of estimation responses results in: 

  p(θest|θact) = (1 − α) · [(1 − a ) · plikelihood(θs|θact)  

  + a · ((1 – b(θ)) ppriorN (θ) + b(θ) · ppriorP (θ)]  

      ∗ V(0,σm) + α ,     (12) 

 where asterisk (∗) denotes convolution; b (θ) determines the proportion of trials in which participants 

sample from either negative or positive parts of the prior distribution, respectively; ‘b’ could take 

different values for each of the 5 angles: 0◦, ±16◦, ±32◦, ±48◦, ±64◦). The resulting model had 9 

parameters.  

Finally, we also considered two variations of the ‘ADD1r’ and ‘ADD2r’ models. These were identical 

to ‘ADD1r’ and ‘ADD2r’ except from setting σp to zero (i.e. no uncertainty in expectations); that is, on 

trials when perceptual estimates were derived only from expectations, they were equal to the mode of 

the learnt distribution. This also meant that ‘a’ was now estimated as a free parameter. These models 

are referred to as ‘ADD1r_m’ and ‘ADD2r_m’.  

Note that in previous publications using this paradigm (Chalk et al., 2010; Karvelis et al., 2018, Valton 

et al., 2019) ‘a’ was an angle-dependent free parameter which could take different values for each of 

the 5 angles: 0◦, ±16◦, ±32◦, ±48◦, ±64◦), effectively adding 5 extra parameters to each of the ADD* 

models. The reduced versions of these models (hence the subscript ‘r’) presented in this paper were 

found to outperform the previous versions of the models and for conciseness the old versions were 

excluded from model comparison.   

 

Parameter estimation 

We used the performance in trials with the highest contrast level to estimate motor noise, σm, for each 

individual. We assumed that at this level sensory uncertainty was close to zero (σs ≈ 0). To account for 

lapse estimations, the motor noise was determined by fitting estimation responses at the highest 
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contrast level to the distribution in Eq. (2) using the actual motion direction, θact, as the mean. The 

estimated motor noise for each individual was used in all subsequent model fitting as a fixed 

parameter. 

The free parameters of each model were estimated by fitting the response data from the two staircased 

contrast levels (~200 trials per participant). For each model with a set of free parameters M, we 

computed the probability distribution p(θest | θact ; M) of making an estimate θest given the actual 

stimulus direction θact. For the response strategy models, by definition, the p(θest | θact ; M) corresponds 

to average behaviour in the task (Equations 9 and 12). Bayesian models, on the other hand, explicitly 

model trial-to-trial variability in the posterior estimate, which in our case is the mean of the posterior 

(Eq. (6)). To relate this to the behavioural data we built a distribution of 1,000 samples for each 

presented angle (where each sample is the mean of the posterior obtained via Eq. (6) and perturbed by 

motor noise via Eq. (7) or (8)). 

The parameters were estimated by maximizing the fit of the log likelihood function for the 

experimental data for each participant individually: 

   𝑀 =   argmax! log   p 𝜃𝑒𝑠𝑡   =    𝜃𝑖,𝑑𝑎𝑡𝑎|𝜃𝑖
!
!  ,                                   (13) 

  

where θi,data  is participant’s estimation response, θi is the actual presented motion direction  on  the ith 

trial and n is the number of trials. The maximum likelihood was found using fminsearchbnd function 

in Matlab, by minimizing negative log-likelihood. Parameters α, a and b were bounded between 0 and 

1, while θp, σp and σs were bounded from 0 to ∞. To reduce the possibility of convergence at local 

maxima we performed 20 different initializations with parameter values randomly sampled from the 

range that we found in our previous work (Chalk et al., 2010; Karvelis et al., 2018; Valton et al., 

2019). A set of parameters with the largest log-likelihood was selected as the best fit. 

 

Model Comparison 
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To compare the model fits we used Bayesian Information Criterion (BIC), which approximates the log 

of model evidence (e.g., see Burnham and Anderson, 2004): 

  −2 · log(P (D|M )) ≈ BIC = −2 · log(P (D|M, Θ)) + k · log(n)   ,                  (14) 

 

where M is model, D is observed data and P (D|M, Θ) is the likelihood of generating the experimental 

data given the most likely set of parameters, Θ; k is the number of model parameters and n is the 

number of data points (or equivalently, the number of trials). BIC evaluates the model by balancing 

the goodness of fit with model complexity (i.e. the number of model parameters) to avoid over-fitting. 

Lower BIC score indicates a better model. We also performed a random effect Bayesian model 

selection analysis (Rigoux et al., 2014). For this, we used the VBA Matlab toolbox (Daunizeau et al., 

2014) and used participant-level BIC as an approximation of the log-model evidence required for the 

analysis 

 

Parameter recovery 

To test the reliability of the parameter estimates of our winning BAYES_P model we performed 

parameter recovery. Note that this analysis has already been reported in Valton et al. (2019), but we 

repeat it here for completeness. Parameter recovery allowed us to simultaneously test whether 

parameters are identifiable (e.g., whether likelihood and prior uncertainty is not correlated and can be 

distinguished) and whether having ~200 trials (the amount of low contrast trials in our data) for data 

fitting and using maximum likelihood estimation are sufficient to give reliable results. 

First, we generated 100 sets of parameters (i.e. 100 synthetic individuals) by randomly sampling each 

parameter from a Gaussian distribution that had a mean and variance as the parameter estimates from 

the collected participant data. Second, for each set of parameters we simulated data for 200 trials with 

the winning model by randomly sampling from the estimation probability distribution, which, as for 

the behavioural data, was built from a 1000 posterior means (Eq. (6)), each perturbed by motor noise 

(Eq. (8)) Finally, we fitted the winning model to the simulated data. To evaluate the goodness of 
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recovered parameters we computed the coefficient of determination (R2) for a linear regression, which 

quantified how well the actual parameters predicted the recovered ones.     

We found that the winning BAYES_P model recovered parameters very well, which was reflected in 

the coefficient of determination (R2) for all recovered parameters being R2 ≥ 0.84 (Supplementary 

Fig. 4). 

 

 

 

 

 

Supplementary Figure 4. Parameter recovery with BAYES_P model. (A) θp - mean of the prior 

expectations (R2 = 0.96), (B) σp - uncertainty of the prior expectations (R2 = 0.89), (C) σs - uncertainty 

in the sensory likelihood (R2 = 0.84), (D) αp – prior-based lapse rate (R2 = 0.94). X-axes – actual 

parameters used for simulating the data (denoted with the superscript ‘act’), Y-axes – recovered 

parameters (denoted with the superscript ‘rec’) from fitting the model to the simulated data. The 

dashed diagonal line is a reference line indicating perfect parameter recovery. 


