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Methods 

Imaging Data 

In 2006 through 2010, 503,000 adults (aged 40-70 years) were recruited from the 
general population in the United Kingdom into a prospective cohort study ​(Sudlow et al. 
2015)​. The UK Biobank aims to scan 100,000 participants by the end of 2023 with 
various imaging modalities ​(Petersen et al. 2013) ​; the current analysis includes  ​31,494 
participants for whom lumbar spine DEXA imaging scans  (Lunar iDXA densitometer; GE 
Healthcare, Chicago, Illinois) were collected for  body composition and bone mineral 
density assessments (April 2014-September 2019). At the imaging assessment visit, 
information was collected on a range of demographic and lifestyle factors, including 
ethnicity, education, occupation, alcohol consumption, smoking status, socioeconomic 
status, and physical activity. Various measurements were also taken, including height, 
weight, waist and hip circumferences, and blood pressure. Systolic blood pressure and 
diastolic blood pressure were measured twice after the participant had been at rest for at 
least 5 minutes in the seated position by using a digital sphygmomanometer (Omron 705 
IT; OMRON Healthcare Europe B.V., Hoofddorp, Netherlands) with a suitably sized cuff; 
the average of the two systolic blood pressure measures was used in all analyses. 
Further details about the procedural characteristics for the imaging data have been 
published online . 1

 

Annotation of Abdominal Aortic Calcification: 

The baseline abdominal aortic calcification for 1,000 randomly chosen participants was 
manually quantified by four annotators using the 24-point scheme described by Kauppila 
and coworkers ​(Kauppila et al. 1997) ​. Calcification scores of the anterior and posterior 
wall of the abdominal aorta over 1st lumbar spine to 4th lumbar spine (L1 to L4) were 
recorded.  Calcification score of each section ranges from 0 to 3. Score 0 represents 
without any calcification; score 1 represents calcification length less than 1/3 of vertebra; 
score 2 represents the calcification length spanned from 1/3 to 2/3 of vertebra; score 3 
represents calcification length greater than 2/3 of vertebra. AAC score is the sum of 
calcification score from L1 to L4 with a maximum of 24. AAC score 0 represents no 
abdominal aortic calcification in lateral lumbar x-ray and AAC score 24 represents a most 

1 ​http://biobank.ctsu.ox.ac.uk/crystal/crystal/docs/DXA_explan_doc.pdf 
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severe degree of abdominal aortic calcification in lateral lumbar X-ray scan. The median 
annotation values for 1000 images of these images were used to train and test the 
machine learning models (read Machine Learning section in Methods). The median 
annotation scores were stable even on repeat assessments by all annotators (​Figure S2 ​). 
The median annotation scores were also assessed for accuracy by comparing 
associations with biomarkers from the same participants in the MrOS cohort ​(Cawthon et 
al. 2016)​. We also created a test dataset of manually annotated 300 randomly chosen 
images using the procedure above to assess the accuracy of the machine learning 
pipelines. 

Machine Learning: 
We developed an ensemble machine learning approach that combined two pipelines to score 
aortic calcification levels based only on lumbar spine DEXA scans. ​Both models developed as 
part of this work estimate AAC scores via the following 3 steps (details in the methods sections): 
 

1. Segmentation of the lower spine region. 
2. Localization of the Aortic region using a spine-curve fitting method. 
3. Regression on the localized region to predict the calcification levels from the aortic 

region. 
 

The DEXA images analyzed in this manuscript were downloaded in three batches. The DEXA 
images were not all identical in size, but were similar in scale: 444.7(mean) +/- 27.4(SD) pixels 
wide and 940.0(mean) +/- 8.3(SD) pixels high. The second batch of images that we analyzed 
had a different distribution of dimensions: 755.1(mean) +/- 65.3(SD) pixels wide and 
1665.9(mean) +/- 114.7(SD) pixels high. The third batch of images was similar to the second: 
781.5(mean) +/- 43.9(SD) pixels wide and 1654.8(mean) +/- 104.5(SD) pixels high. All images 
in the second and third batches were rescaled to 55% of their original size along each axis. 

Pipeline 1 

Detection of the Vertebrae Using Segmentation 
Previous studies ​(Han et al. 2018; Fan et al. 2019; Lessmann et al. 2019)​ have successfully 
used a fully convolutional neural network to segment out the vertebrae and determine the spinal 
curvature. The segmentation model in Pipeline 1 employs a similar approach using a U-Net to 
achieve semantic segmentation of the Pelvis and the lower spine. 
 
In order to localize the region of the DEXA scan corresponding to the Aorta, correct anatomic 
locations of the Pelvis (​P​) and 4 vertebrae (​L3-L5​, ​S1​) are needed. The network to achieve the 
necessary segmentation is based on a U-Net architecture. The network architecture consists of 
a contracting path (left side) and an expansive path (right side) as shown in ​Figure S4​. The 

https://paperpile.com/c/RS3R1m/994n
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https://paperpile.com/c/RS3R1m/PAJv+WApA+iato


contracting path follows the typical architecture of a convolutional network. It consists of the 
repeated application of two 3x3 convolutions (unpadded convolutions), each followed by a batch 
normalization layer, a rectified linear unit (ReLU) and a 2x2 max pooling operation with stride 2 
for downsampling. Each downsampling step doubles the number of feature channels. Every 
step in the expansive path consists of an upsampling of the feature map followed by a 2x2 
convolution (“up-convolution”) that halves the number of feature channels, a concatenation with 
the corresponding feature map from the contracting path (residual connection), and two 3x3 
convolutions, each followed by a ReLU. At the final layer a 1x1 convolution is used to map each 
16- component feature vector to one of 3 classes - spine, pelvis or background.  
 
The UKBB dataset has a total of ​31,494 lumbar spine DEXA scans of patients available to 
score. Of those, 200 images were randomly chosen for manual annotations of ​P​ and ​L3-L5, S1​. 
The png images of the scans were loaded on an open sourced annotation tool, QuPath 
(Bankhead et al. 2017)​, and the relevant anatomical locations were marked using the polygon 
tool. The user annotations were converted to binary masks for the 3 classes - Pelvis, vertebrae 
and background . Of the 200 images, 175 were used for training and cross-validation while the 
rest were reserved as an unseen test set to quantify the segmentation performance.  
 
Simple data augmentations in the form of crop and zoom, left-right flips and slight rotations 
(upto +/- 10 degrees) were used to augment the images in the training dataset. The network 
was trained with the multi-class cross-entropy loss using an Adam optimizer. The evaluation 
metric is the mean IoU for each of the 3 classes which is defined as (​Figure S5​): 
 

 

Aortic Region Extraction 
Once the segmentations of ​P​ and ​L3-L5, S1 ​are completed, the aortic region is localized and 
extracted via the following steps: 
 

1. Run the segmentations through post-processing steps to: 
a. Eliminate false positives for ​P​ (determined through co-localization with ​L3-L5, 

S1​). 
b. Fix broken or missing vertebrae using median height and width estimates for the 

different vertebrae 
2. Determine the centroids of each of ​L3, L4, L5, S1 ​and​ P​. Fit a spline curve to pass 

through each of these points to determine the spinal curvature 
3. Along the spinal curvature, move to the right by a fixed offset ​A​off​ and extract a 

rectangular region whose width is ​A​width​ and whose height is determined by the vertical 
distance between the centroids of ​L3​ and ​P​. Crop and/or pad the images to be of size 
196x196 pixels. 

 

https://paperpile.com/c/RS3R1m/WtSE


As illustrated in ​Figure S6​, at the output of this step, the Aortic regions will be localized and 
extracted from the original CT images. These regions are then passed on to the Regression 
module to be converted into a calcification score. 
 

Regression 
The final step in translating the DEXA images to a calcification score is to run a regression 
model that maps the extracted aortic regions to a score. The regression model consists of a 
backbone feature extractor followed by a fully connected layer and an output layer with a single 
node that outputs the calcification score. The backbone network is typically borrowed from the 
classification task on the ImageNet database. This paper explores 3 different backbone feature 
extractors: 

1. InceptionV3 ​(Szegedy et al. 2015)  
2. ResNet50 ​(He et al. 2015) 
3. Custom convolutional neural network consisting of 4 layers of convolution, batch 

normalization and a ReLu activation layer each. 
 
Of the 1300 user annotated calcification levels, 1000 images were used for training and 
cross-validation while the other 300 were held out as an unseen test set. As illustrated in ​Figure 
S7​, the ground truth data is highly skewed towards the lower calcification scores creating a high 
degree of data imbalance. In order to introduce some degree of balance, the dataset was 
augmented in a stratified manner. Augmentation routines include horizontal and vertical flips, 
random rotations, zoom and crop, random brightness changes, random contrast changes as 
well as random hue changes. During agile augmentation, images with higher scores were 
augmented with different combinations of the routines to produce as many as 32 variations of 
every image while images with lower calcification scores were augmented only once or not at 
all. 
 
Since the training set was quite small, both InceptionV3 and ResNet backbones overfit very 
readily to the dataset and performed quite poorly on the validation sets. The best results on the 
validation set were obtained when using the custom convolutional network as the backbone 
feature extractor. All results presented in this paper were, therefore, generated using this 
custom backbone network shown in the figure. 
 
During training, the regression model used a weighted mean squared error metric wherein 
errors in the higher calcification scores were weighted higher than those in the lower scores, 
once again with the intention of offsetting the high degree of skew in the ground truth score 
distributions. The network is trained with an Adam optimizer and the evaluation metric is the 
correlation between the predicted scores and the median user scores. The final correlation 
score between the manually annotated AAC scores and the predicted AAC scores on an 
unseen validation set is shown in ​Figure S7​.  

https://paperpile.com/c/RS3R1m/ugF4
https://paperpile.com/c/RS3R1m/BwBQ


Pipeline 2 
The second pipeline we developed in this manuscript seeks to score the degree of abdominal 
aortic calcification through analysis of a DEXA image. The analysis occurs in three steps: 

1. identification of the spine, and use of the labelled vertebrae to identify & extract the small 
region within the image that will contain the aorta; 
2. classification of the aortic sub-image using three models (one classifying calcified-vs-not 
using a low threshold for calcification, another classifying the same using a high threshold for 
calcification, and a third classifying the extent of background noise in the image into low, 
medium, or high categories); 
3. use of the scores assigned to each category by the above classification models to assign 
a calcification score using an ML regression model. 

Detection of the Vertebrae Using Segmentation 
The clinical scoring system for AAC involves the assignment of points based on the intensity 
with which the walls of the abdominal aorta can be visualized in an x-ray image adjacent to the 
L1-L4 lumbar vertebrae. Here, we attempted to isolate the relevant portion of the DEXA image 
for such evaluation by first mapping the spine and then capturing a smaller image adjacent to 
the L3 & L4 vertebrae. For our study, DEXA images were available in bulk. But they are not 
ideally suited to the detection of AAC: high levels of background intensity would often appear 
adjacent to the L1 & L2 vertebrae, often due to visualization of the rib cage. We therefore 
sought to isolate just the part of the image adjacent to vertebrae L3 & L4. That strategy is 
illustrated by the examples in Figure S8, with the lumbar vertebrae labelled in green and the 
desired aortic region circled in orange. This goal was achieved through two sequential 
processes as described below: 
 
The foundation of this AAC scoring system is the annotation of the spine and its constituent 
vertebrae in the DEXA image. That annotation defines the landmarks that are used to isolate 
the portion of the image that contains the aorta, a task that cannot be performed independently 
of these landmarks because the aorta is only clearly visible in these images when it is 
extensively calcified. 

This section describes the steps taken to annotate as many individual vertebrae as possible 
while minimizing the false-positive annotation of other parts of the image as vertebrae. This task 
was initially approached with a simple object-detection model. In order to correct mistakes made 
during the initial segmentation step, we chose to implement a series of analyses & models to 
detect & correct errors. The end product is an analysis pipeline that is summarized in​ Figure S8​. 

Initially, vertebrae are boxed using an object-detection model that is applied with a very low 
score threshold ("draw vertebra boxes"; few false negatives, many false positives). Incorrect 
annotations that are far from the spine are easily detected and removed using the unusual 



vertebra-to-vertebra angles that are produced ("trim off-axis vertebrae"). Each remaining 
vertebra is then scrutinized by a classification model that is trained using high-quality versus 
low-quality annotations that were produced by the initial object-detection model, i.e. a model to 
specifically address the first model's errors ("remove low-quality vertebrae"). Then, missing 
vertebrae (either missed initially or removed because they were poorly defined) are detected 
and filled in, using the context of the nearby annotations to increase sensitivity and specificity 
versus the initial object-detection model. In the first case, skipped vertebrae are detected 
("classify vertebra pairs") and filled in by a model appropriate to the number of consecutive 
vertebrae that were missed ("fill-in one" or "fill-in multi"). In the second case, missing vertebrae 
at the bottom of the spine are detected ("have we hit bottom?") and filled in ("extend down by 
one"). The performance of each substep is summarized in​ Figure S9​. 

Aortic Region Extraction 
After identifying all the vertebrae in the spine, the region of the scan adjacent to the L3 and L4 
lumbar vertebrae was extracted: this was the region of the scan with the abdominal aorta. 
Given an outline of the spine, it is straightforward to determine which vertebra is which given a 
single reference point. In these DEXA images, the border between the L4 and L5 vertebrae was 
often coincident with the top edge of the spine. An object-detection model was trained by 
transfer learning from the ssd_mobilnet_v1 model​. ​The best box returned by the model was 
used, irrespective of its score. Performance was measured using IoU (0.893 and 0.818 for 
training and test sets respectively). 

The aortic images were created by stacking rectangular images gathered from adjacent to the 
L3 and L4 vertebrae, using the following four-step process: 

a. definition of a vector pointing towards the aorta for each vertebra; 
b. definition offset distances and image widths using the dimensions of the lumbar 

bounding boxes and aortic vectors; 
c. definition of sub-image heights & extraction of the aortic sub-images adjacent to L3 and 

L4; and 
d. rightening & stacking the L3- and L4-adjacent sub-images into a single output image. 

For each input image (full DEXA scans), the end result of the analyses described in the links 
above was a smaller image depicting the regions adjacent to the L3 vertebra (above the white 
line) and the L4 vertebra (below the white line). The inability to identify both of those vertebrae 
resulted in no output aortic image. 

Regression 
The overall distribution of AAC values is highly skewed towards little or no aortic calcification. 
This property was observable in the training set, with most rater-generated scores at zero 
(Figure 1). We developed two models, each described below, in order to address the problem of 
sparsity of training data for high-calcification scores. The first model focuses on the lower end of 
the distribution, and was trained to distinguish between images with zero-value versus non-zero 



AAC scores. The second focuses on the higher end of the score distribution, where I used a 
more-efficient but less-precise-than-scoring method to enrich a larger test data set for 
high-calcification images.  

a) Model 1: ​For the training data, four raters scored calcification as an integer, and the 
median value was taken of those four scores. For this low-threshold AAC model, any 
image with a rater-median score of 0.5 or greater was considered "calcified". That 
approximately split the training set (264 "calcified" images, 332 "non-calcified" images). 
The ROC curves to measure the accuracy of this model is shown in ​Figure S10 ​while 
Cohen’s kappa for these models were 0.58 and 0.33 for the training and test sets 
respectively. 

b) Model 2: ​For the purpose of helping to develop higher-threshold calcification models, we 
designated a set of 5000 "sandbox" images that were non-overlapping with the validation 
and training sets, and were therefore of potential use to the model developers as training 
data, but for which they would not provide manual ratings. We used those data by 
iteratively applying a low-threshold model to those images, sorting out the "calcified" 
images, then manually enriching those images for yet-higher calcification values by 
selecting the apparently-more-calcified images from image pairs until we had sufficient 
data to train another model. We repeated this process until we had arrived at a training 
set with 170 "calcified" and 4654 "non-calcified" images, at a threshold that we estimated 
to be at approximately score=5. 
For evaluation, the original training and test sets suffered from sparsity of high-scoring 
data, making our evaluation of their performance sensitive to statistical noise. The ROC 
curves and Cohen's kappa values for a) the actual, "sandbox"-enriched training set 
(yellow - 0.71); b) the original training set, with a score threshold of 5 (green - 0.73), and 
c) the original test set, again with a score threshold of 5 (blue - 0.53) (​Figure S10​). 

For the final output value of the model (AAC score), we built and trained a small 
regression model to input the probability scores from the classification models above 
and output an AAC estimate. For the binary classification tasks, we used just one of the 
two outputs. The structure of the model is shown in ​Figure S11​. This model has 52 
trainable parameters. We experimented with many model structures and multiple 
attempts at training the model described above, evaluating performance using the "test" 
set. The statistics for the final model are shown for an unseen validation set in ​Figure 
S12​. 

Ensemble Model 
Due to the paucity of labeled data and to avoid overfitting by using the same labeled data for 
training both pipelines and the ensemble model, we used an unsupervised ensemble method to 
combine the scores from both pipelines. In particular, we took the mean calcification levels 
predicted by both pipelines as the ensemble prediction. We tested the accuracy of the ensemble 
method on 300 test images that were not used for training either model and the accuracy of the 
ensemble model was higher than the accuracy of either pipeline (Table 2). Hence, we used the 



ensemble method to quantify calcification for all participants within the cohort and these scores 
were used for all downstream analysis in this article. 
 

Associations with Biomarkers/Physiological Markers 
We used linear regression to examine the association of aortic calcification with various 
biomarkers and physiological markers. For these models, univariate associations of aortic 
calcification with each marker were evaluated with two different models. In model 1, all 
univariate associations were performed after adjusting for age and sex, while in model 2, we 
also adjusted for BMI, Townsend deprivation index, and race in addition to age and sex.  We 
chose these factors based on their associations with traditional cardiovascular outcomes and/or 
their association with aortic calcification. All p-values were calculated using the two-tailed 
t-statistic of the estimated association. The associations were considered to be significant after 
multiple hypothesis testing (i.e., Bonferroni Correction with p-value < 1.2e-4).  These 
estimations were calculated using the statsmodels package v.0.9.0 in python ​(Seabold and 
Perktold 2010)​. 

Common variant genome wide association study 
We used the UKBB imputed genotypes ​(Bycroft et al. 2018)​, excluding SNPs with a minor allele 
frequency <1% and poor imputation quality (info value <0.9). We removed particpants who were 
not Caucasian, exhibited sex chromosome aneuploidy, heterozygosity outliers, or genotype call 
rate outliers. In total, we considered 9,572,557 SNPs and 19,051 individuals (Supplementary 
Table 1) for genetic analysis. 
 
To conduct the genetic association study, we used BOLT-LMM ​(Loh et al. 2015)​ and 
standardized machine-learned AAC, including genotype SNP chip (Illumina vs Affimetrix), sex, 
age, age​2​, and recruitment center as fixed effect covariates and genetic relatedness derived 
from genotyped SNPs as a random effect to control for population structure and relatedness. 
We verified that the test statistics showed no inflation compared to the expectation using the 
genomic control lambda coefficient (1.048) and the intercept (1.0061, s.d. 0.0087) of linkage 
disequilibrium (LD) score regression (LDSC) ​(B. K. Bulik-Sullivan et al. 2015)​.  
 
At the locus on chromosome 2, in order to ensure this association was not spurious due to poor 
genotype calls, we manually verified the  raw genotype clusters for the tag variant, rs7600800. 
We did not find evidence of poor quality genotype calls at this locus. 

https://paperpile.com/c/RS3R1m/GUbX
https://paperpile.com/c/RS3R1m/GUbX
https://paperpile.com/c/RS3R1m/thWD
https://paperpile.com/c/RS3R1m/lTeN
https://paperpile.com/c/RS3R1m/T0ldI


Genetic architecture of AAC 

Identification of distinct association signals 
We performed approximate conditional analysis using GCTA ​(Yang et al. 2012)​, considering all 
variants that passed quality control measures and were within 500kb of the locus index variant. 
As a reference panel for LD calculations, we used genotypes from 5,000 UKBB participants 
(Bycroft et al. 2018)​ that were randomly selected after filtering for unrelated, Caucasian 
participants. We excluded the major histocompatibility complex (MHC) region due to the 
complexity of LD structure at this locus (GRCh37::6:28,477,797-33,448,354; see 
https://www.ncbi.nlm.nih.gov/grc/human/regions/MHC​). For each locus, we considered variants 
with locus-wide evidence of association (p-value​joint​<10​−6​) to be conditionally independent. 

Construction of genetic credible sets 
For each distinct signal, we calculated credible sets ​(Wellcome Trust Case Control Consortium 
et al. 2012)​ with 95% probability of containing at least one variant with a true effect size not 
equal to zero. We first computed the natural log approximate Bayes factor ​(Wakefield 2007)​, Λ​j​ , 
for the j th variant within the fine-mapping region: 

 

n  Λj = l (√ V j
V j + ω) ωβ2

2V (V +ω)j j
 

 
where β​j​ and V​j​ denote the estimated allelic effect (log odds ratio for case control studies) and 
corresponding variance. The parameter ω denotes the prior variance in allelic effects and is set 
to (0.2)​2​ for case control studies ​(Wakefield 2007)​ and (0.15σ)​2​ for quantitative traits 
(Giambartolomei et al. 2014)​, where σ is the standard deviation of the phenotype estimated 
using the variance of coefficients (Var(β​j​)), minor allele frequency (f​j​), and sample size (n​j​; see 
the sdY.est function from the coloc R package ​(Giambartolomei et al. 2014)​): 
 

n f (1 )2 j j − f j ~ σ2 1
V ar(β )j

− 1  

 
Here, σ​2​ is the coefficient of the regression, estimating σ such that . σ = √σ2  
 
We calculated the posterior probability, π​j​, that the j th variant is driving the association, given l 
variants in the region, by: 

πj =
l ∑

l

k=0
Λk

(1−γ)Λj  

 
where γ denotes the prior probability for no association at this locus and k indexes the variants 
in the region (with k=0 allowing for the possibility of no association in the region). We set γ=0.05 
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to control for the expected false discovery rate of 5%, since we used a threshold of 
p-value​marginal​<5x10​−8​ to identify loci for fine-mapping. We note that setting γ=0 generates 
credible sets as proposed by The Wellcome Trust Case Control Consortium et al. ​(Wellcome 
Trust Case Control Consortium et al. 2012)​ and is suitable when one is very confident of the 
identified loci (e.g., replicated across many studies). 
 
To construct the credible set, we (i) sorted variants by increasing Bayes factors (natural log 
scale), (ii) included variants until the cumulative sum of the posterior probabilities was >=1−c, 
where c corresponds to the credible set cutoff of 0.95. 

AAC heritability estimates 
We estimated the heritability of each trait using the restricted maximum likelihood method ​(Yang 
et al. 2010)​, as implemented in BOLT-LMM with the --reml option. 

Genetic correlation of AAC with other phenotypes 
We estimated the genetic correlation of AAC with phenotypes using an LDSC-based method ​(B. 
Bulik-Sullivan et al. 2015)​, as implemented in the LD Hub web resource ​(Zheng et al. 2017)​. For 
this analysis and all other analyses using LDSC, we followed the recommendation of the 
developers and (i) removed variants with imputation quality (info) <0.9 because the info value is 
correlated with the LD score and could introduce bias, (ii) excluded the major histocompatibility 
complex (MHC) region due to the complexity of LD structure at this locus 
(GRCh37::6:28,477,797-33,448,354; see 
https://www.ncbi.nlm.nih.gov/grc/human/regions/MHC​), and (ii) restricted to HapMap3 SNPs 
(International HapMap 3 Consortium et al. 2010)​. We restricted our analysis to the 836 traits 
analysed in European populations. Of these, 754 successfully gave an estimate of genetic 
correlation. 

Partitioning of ACC heritability 
We used LDSC to partition the heritability of AAC according to functional categories ​(Finucane 
et al. 2015)​ as well as tissue/cell type specific annotations ​(Finucane et al. 2018)​. 
 
For functional categories, we used the baseline v2.2 annotations provided by the developers 
(​https://data.broadinstitute.org/alkesgroup/LDSCORE​). Following Finucane et al. ​(Finucane et 
al. 2018)​, we calculated tissue specific enrichments using a model that includes the full baseline 
annotations as well as annotations derived from (i) chromatin information from the NIH 
Roadmap Epigenomics ​(Roadmap Epigenomics Consortium et al. 2015)​ and ENCODE 
(ENCODE Project Consortium 2012)​ projects (including the EN-TEx data subset of ENCODE 
which matches many of the GTEx tissues, but from different donors), (ii) tissue/cell type specific 
expression markers from GTEx v6p ​(GTEx Consortium et al. 2017)​ and other datasets 
(Fehrmann et al. 2015; Pers et al. 2015)​, and (iii) immune cell type expression markers from the 
ImmGen Consortium ​(Heng, Painter, and Immunological Genome Project Consortium 2008)​. 
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For each annotation set, we controlled for the number of tests using the Storey and Tibshirani 
procedure ​(Storey and Tibshirani 2003)​. As noted by ​(Finucane et al. 2015)​, although heritability 
is non-negative, the unbiased LDSC heritability estimate is unbounded; thus, it is possible for 
the estimated heritability, and therefore enrichment, to be negative (e.g., if the true heritability is 
near zero and/or the sampling error is large due to small sample sizes).  
 
In order to enable visualization, we grouped tissue/cell types into systems (e.g., "blood or 
immune", "central nervous system"). These groupings and labels were the same as those used 
in Finucane et al. ​(Finucane et al. 2018)​, except for (i) the immune expression labels which we 
extended to include "stem cells" and "stromal cells" according to the ImmGen cell type 
classifications (​http://www.immgen.org​) and (ii) the "pancreas" label which we replaced with an 
"endocrine" label composed of the following tissue/cell types: adrenal gland, ovary, pancreas, 
pituitary, prostate, testis, thyroid, adrenal cortex, adrenal gland, endocrine gland, gonads, 
granulosa cells, islets of langerhans, and glucagon sensing cells.  

Genetic colocalization of AAC with other phenotypes 
We performed colocalization analysis using the coloc R package ​(Giambartolomei et al. 2014) 
using default priors and all variants within 500kb of the index variant. As performed by Guo et al. 
(Guo et al. 2015)​, we considered two genetic signals to have strong evidence of colocalization if 
PP3+PP4≥0.99 and PP4/PP3≥5 and suggestive evidence of colocalization if PP3+PP4≥0.9 and 
PP4/PP3≥3. For gene expression colocalizations, we used summary statistics from GTEx v7 
(GTEx Consortium et al. 2017)​. For disease and quantitative trait colocalizations, we used 
UKBB summary statistics of PheCodes ​(Zhou et al. 2018)​, normalized quantitative traits 
(​http://www.nealelab.is/blog/2017/7/19/rapid-gwas-of-thousands-of-phenotypes-for-337000-sam
ples-in-the-uk-biobank​). For analysis we selected UKBB phenotypes where the minimum 
p-value within the +-500kb region around the locus tag SNP was <5x10​-8​. 

Follow up analysis at the rs2107595 locus 
To assess the correlation between ​TWIST1​ and ​HDAC9​ expression and calcification visible on 
histological imaging, we downloaded the sample annotations from 
https://storage.googleapis.com/gtex_analysis_v7/annotations/GTEx_v7_Annotations_SampleAtt
ributesDS.txt​. We defined a participant’s vascular tissue as calcified if the annotation 
‘calcification’ appeared in the ‘Pathology categories’ field. We downloaded expression data from 
GTEx v7 (dbGaP Accession phs000424.v7.p2). For each arterial tissue (coronary, aorta, or 
tibial) and gene (​TWIST1​ or ​HDAC9​), we used a logistic regression model, adjusted for age and 
sex, to assess the association between expression levels and calcificaiton. We used the 
Bonferroni procedure to correct for multiple models by multiplying each p-value by 6.  
We explored ​Twist1​ expression patterns in single cell expression data from mouse aorta ​(Kalluri 
et al. 2019)​ (Figure S17). 
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In addition to the colocalizations described in the main text, we tested for colocalization with 
lipid-related quantitative traits directly measured in UKBB, even though no genetic association 
(p-value<5x10​-8​) was found at this locus, due to the importance of lipids for coronary artery 
disease (CAD)-related phenotypes. We found no evidence of colocalization (Supplementary 
Tables 4, 5, 6, 7), suggesting that the genetic effect at the rs2107595 locus on AAC and 
CAD-related phenotypes is not directly related to lipid biology. We also repeated the 
colocalization analysis for CAD and blood pressure traits using genetic studies that did not 
include UKBB participants ​(Nikpay et al. 2015)​, ​(Hoffmann et al. 2017)​. We found similarly 
strong evidence of colocalization for both traits (Supplementary Table 7). 
 
Finally, given the strong colocalization of AAC with CAD and SBP signals as well as  the 
substantially larger sample sizes of these traits (n​effective​ for CAD=76,054 and SBP=340,159), we 
performed fine-mapping at this locus using associations with CAD and SBP in UKBB. Two 
SNPs, rs2107595 and rs57301765, that are in strong LD with each other 
(1000GENOMES:phase_3:GBR r​2​>0.99) constituted the 95% credible sets for both traits. 

Prognostic Analyses of Aortic Calcification: 

Association of different diseases with AAC 
We used Cox proportional hazards models to examine the association of aortic calcification with 
various diseases. The 10th edition of the international classification of diseases (ICD10) 
diagnosis codes and date of initial diagnoses were extracted from electronic health records of all 
participants. The ICD10 codes are hierarchically organized and were created for insurance 
billing purposes. ThePheWAS codes attempt to group the different ICD10 codes into medically 
meaningful groups ​(Denny et al. 2010)​. We converted the ICD10 codes at level 2 hierarchy into 
PheWAS codes before associating with the predicted aortic calcification. Any participant 
diagnosed with the PheWAS code prior to baseline was removed from analysis before 
calculating associations with aortic calcification. For these models, univariate associations of 
aortic calcification with each marker were evaluated with two different models. In model 1, all 
univariate associations were performed after adjusting for age and sex, while in model 2, we 
also adjusted for BMI, Townsend deprivation index, and race in addition to age and sex.  We 
chose these factors based on their associations with traditional cardiovascular outcomes and/or 
their association with aortic calcification. All p-values were calculated using the two-tailed 
t-statistic of the estimated association. These estimations were calculated using the statsmodels 
package v.0.9.0 in python ​(Seabold and Perktold 2010)​. 

Comparison of risk from Aortic Calcification and LDL: 
We used Cox proportional hazards models ​(Cox 2018)​ to compare the risk for acute myocardial 
infarction from aortic calcification and LDL with the following model: 

(t)  (t) e λ = λ 0
α 

  
where: 
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+ +  α  DL α =  0 + α LDL × L  riglycerideα triglyceride × t  AC α DL AC α AAC × A +  LDL.AAC × L × A  
where represents the baseline risk, represents the risk due to increase of LDL,  α 0  α LDL  α AAC 

represents the risk due to increase in aortic calcification, represents the risk due to α triglyceride  
increase in triglycerides, and was used to measure the risk due to the interaction α LDL.AAC  
between LDL and triglycerides. The LDL and triglyceride levels were logged and standardized 
while aortic calcification levels were standardized before measuring the risk for acute MI events. 
 
Acute MI events were defined as the first occurence of  I21, I22, I23, I24.1 or I25.2 from the 
ICD10 codes in the electronic health records similar to ​(Millett, Peters, and Woodward 2018)​. 
Any participant diagnosed with acute MI events prior to baseline was removed from analysis 
before comparing risks from aortic calcification and LDL. We created four different models to 
correct the risk for statin usage that reduces LDL without reducing systolic blood pressure 
completely (Figure S22 and S23) in addition to a naive model in which no statin correction was 
performed. The first model was a naive model built for statin nonusers and the estimates for 
LDL risk are confounded by survivorship bias due to the nonrandomness of statin usage. In 
model 2, we adjusted the LDL and triglyceride levels for statin users by adding 1.25 mmol/L to 
the LDL levels for statin users while no adjustment was performed for non-statin users ​(Nissen 
et al. 2005)​ (Figure S22).  In model 3, we adjusted the LDL and triglyceride levels for statin 
users by dividing the measured LDL for statin users by 0.65 while no adjustment was performed 
for non-statin users ​(Nissen et al. 2005)​ (Figure S22). Finally, in model 4, we imputed the LDL 
levels for statin users based on systolic blood pressure, diastolic blood pressure, pulse, age, 
sex, and measured blood biomarker (albumin, alkaline phosphatase, alanine aminotransferase, 
aspartate aminotransferase, bilirubin, urea, calcium, creatinine, cystatin C, gamma 
glutamyltransferase, glucose, glycated haemoglobin (HbA1c), insulin growth factor, phosphate, 
rheumatoid factor. Testosterone, sex hormone binding globin, total protein, urate, and vitamin 
D) levels in serum. Imputation was performed using multiple imputation by chained equations 
(MICE) ​(Azur et al. 2011)​. In the MICE procedure a series of regression models are run whereby 
each variable with missing data is modeled conditional upon the other variables in the data. To 
evaluate the sensitivity of the results to the imputed values, we performed the risk of LDL and 
aortic calcification with ten different sets of LDL and triglyceride imputations and each MICE 
imputation was performed with 50 iterations to relax from initial estimates. The estimated risk 
scores were not sensitive to the imputation set as shown in Figure S24. 
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Supporting Information Text 

Manual Annotation of Abdominal Aortic Calcification 
Four annotators quantified the abdominal aortic calcification by assessing the digitized baseline 
lateral DEXA scans of lumbar spine using a visual semiquantitative method  ​(Kauppila et al. 
1997)​ for 1300 randomly chosen participants.  In this method, the severity of calcific deposits in 
the anterior and posterior walls of the abdominal aorta adjacent to each of the first four lumbar 
vertebrae (L1-L4) were assessed individually, using the midpoint of the intervertebral space 
above and below the vertebrae as boundaries. Severity scores for each of these eight segments 
(0–3) were added to yield an AAC score (0-24).  
 
We utilized 1000 images for training and testing both machine learning pipelines while 300 
images were kept aside for estimating accuracy on a validation dataset.  The inter-annotator 
variability was measured over the training data initially (​Table S1​). In general, the 
inter-annotator variability was lowest for highly calcified and low/noncalcified individuals while 
annotations were most variable for participants with intermediate levels of calcification (​Figure 
S1​). To assess the effect of intra-annotator variability of the median annotation scores, we 
chose 136 images with the highest inter-annotator variability within the training dataset (i.e., the 
images on which there was the largest disagreement within different annotators) and all four 
annotators re-annotated these images. While the inter-annotator variability remained within 
patients with high calcification scores, the reannotated median calcification score showed a 
Pearson correlation of 0.93 with the original calcification scores indicating that the median 
calcification score was a pretty reliable indicator of calcification within the cohort (​Figure S2​). 
The calcification scores for the 300 images in the validation dataset were also highly correlated 
across annotators as well as with the median calcification score (​Tables S2​). The manually 
annotated median calcification scores also have similar trends of correlations with biomarkers in 
the MrOS cohort with expert annotated calcification scores ​(Szulc et al. 2014)​ (​Table S3​). 

Automation of Estimating Abdominal Aortic Calcification 
The UKBB has collected whole body ​DEXA scans for 31,494 of the participants to estimate 
their bone mineral density. As the previous sections explain, the calcification of the Aorta is 
visible in these scans and can be quantified based on the scoring methodology illustrated in ​(de 
Bie et al. 2017)​ (​Figure S8​). Coronary arteries are visible in DEXA scans only when calcified. 
 
The first approach this paper took towards scoring these images was to train a deep regression 
model that mapped the complete lumbar spine CT images on to user annotated AAC scores. 
The model used a ResNet50 architecture ​(He et al. 2015)​ as backbone and had a fully 
connected layer followed by a linear output layer to score the calcification levels in the images. 
However, due to the highly variable background noise in the images coupled with the high 
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degree of noise in the user annotated scores, the model performed quite poorly as can be seen 
in ​Figure S3​ below even on a limited range of scores. 
 
The automatic scoring methodology adopted in both models of this paper, therefore, relies on a 
segmentation methodology of large structures that would always be visible in these scans such 
as the Pelvis and the Spine in order to first localize the region where the Aorta can be seen. 
Once localized, any calcification that is seen in the Aortic region is quantified and mapped to a 
score via a regression model. Both pipelines developed as part of this work estimates AAC via 3 
steps (details in methods). 
 
The main goal of the computer vision and machine learning exercise was to find a way to 
automate and scale the scoring of aortic calcifications to the entire UKBB dataset in the 
absence of a large volume of ground truth user annotations. The segmentation, region 
extraction and regression architectures were all chosen with this constraint in mind. Since the 
annotated dataset was quite small, we explored 2 separate machine learning models to 
automate the scoring of these images. Eventually, the scores from these 2 models were 
averaged to create an ensemble score. As expected, the ensemble score had a higher 
correlation score to the median annotated scores than either of the 2 models separately.  
 
With this ensemble method, we have managed to score a total of 29,957 DEXA images with 
only 200 segmentation annotations and 1300 calcification score annotations. Given that the 
UKBB imaging modality is highly consistent, the models given out in the github page can very 
well be used to infer the scores on future DEXA scans as they become available. 
 
 
 

  



SI Figures 
 

 
 
Figure S1: ​The variability in calcification across annotators increases for medium level 
calcified participants.  
 
 

 
Figure S2: ​The median scores for 136 manually annotated scans from two rounds of 
annotation are highly correlated. 



 
 

 
Figure S3:​ Conventional deep learning regression approaches with ResNet50 architecture 
performed poorly on a test set while quantifying aortic calcification from the complete lumbar 
spine DEXA scans. 
 
 

 
Figure S4:​ U-net architecture used for segmenting relevant spine and pelvis regions in pipeline 
1. The input DEXA image is shown on the left and the binary masks for the 3 output classes - 
background, lower spine and pelvis - are shown on the right. 
 



                             
Figure S5: (a)​ shows the histogram of IoU values obtained across the test set along with the 
median value. ​(b)​ shows an overlay of the ground truth segmentation mask and the predicted 
segmentation mask for a typical example image whose IoU is close to the median value. The 
yellow regions show the regions of overlap while the blue regions show gaps in the prediction 
mask. 
 

 
Figure S6:​ Schematic representation of the steps to extract abdominal aortic region from 
lumbar spine DEXA scans. (a) shows the input image. (b)-(c) show the predicted 
segmentation masks of the lower spine and the pelvis. (d)-(f) show the predicted 



centroids of the different vertebrae (connected), predicted centroid of the pelvis and the 
overall spinal curvature together with the estimated aortic region to the right of the spine. 
(g) shows the binary mask of the predicted aortic region. (h) shows the aortic region 
extracted from the original input image. This is then fed into a regression model to score 
the calcification level. 
 
 
 

 
Figure S7:​ The predicted AAC from pipeline 1 as compared to manually annotated calcification 
scores for the validation dataset. 
 
 

 
Figure S8:​ Segmentation steps within machine learning pipeline 2 for predicting AAC 
from DEXA scans. 
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Figure S9: A. ROC curve measuring the accuracy of the models for eliminating bad vertebrae in 
step b of pipeline 2 for training dataset (green) and test dataset (green). The Cohen's kappa 
values for its performance on the training set (green) and test set (blue) are 0.743 and 0.638 
respectively. B. ROC curve measuring the accuracy of the models for extending vertebra to the 
bottom of the spine in step e of the segmentation step of pipeline 2 for training dataset (green) 
and test dataset (green). The Cohen's kappa values for its performance on the training set 
(green) and test set (blue) are 0.917 and 0.874 respectively. 
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Figure ​S10​: A. ROC curve measuring the accuracy of the model 1 that classifies calcified 
aorta from non-calcified aorta. The Cohen’s kappa values for training (green) and test 
sets (blue) are 0.58 and 0.33 respectively. B. ROC curve measuring the accuracy of the 
model 2 that classifies high-threshold aortic calcification. The original training and test 
sets are shown in green and blue respectively while the sandbox enriched training set is 
shown in yellow in B. The Cohen’s kappa values for original training, sandbox enriched 
training and test sets  are 0.53, 0.71, and 0.73 respectively. 
 
 

 
Figure S11: ​Architecture of neural network used to regress calcification values from 
output of models 1 and 2 for classifying calcified images from noncalcified images. 
 
  



 
Figure S12: ​The comparison of predicted AAC to median annotation scores for the 
validation dataset from pipeline 2. 
 
 

 
Figure S13 ​: Association of biomarkers with AAC in the MrOS cohort and in this study. The 
biomarkers that are significantly associated with AAC in MrOS cohort are also 
significantly associated with predicted AAC in this study even though the effect sizes are 
slightly lower in the UK biobank cohort. All associations are calculated after adjusting for 
age and sex. 
 



 
 
 

 
Figure S14: ​Association of predicted AAC with diet. ​Univariate regression analysis of risk 
factors at baseline for predicted AAC after adjusting for age and sex in model 1 and after 
adjusting for ​socioeconomic factors, BMI, and smoking status in addition to adjusting for age 
and sex in model 2​.​ ​The blue dots represent mean effect size while the intervals represent 
standard errors for the effect size.  



 
 
Figure S15: ​Box plot showing the level of different risk factors (serum Phosphate, 
Calcium, Vitamin D3, and glycated Hemoglobin HbA1c) of participants stratified according 
to level of calcification (higher AAC score represented by larger group number). There is 
very little change in the distribution of different biomarkers as a function of AAC group 
(except for HbA1c levels in the highest quintile of AAC) and most participants would be 
within clinically healthy levels for these biomarkers. The center line at each age 
represents the median biomarker level for all participants in that calcification category 
while the lower and upper boundaries of the box indicate the 25th and 75th percentile of 
the serum biomarker level for that calcification category. The lower and upper ends of 
the lines denote the 95% confidence interval of the serum biomarker level for that 
calcification category.   
 
 



 
 
Figure S16: ​Box plot showing the variation of ​estimated glomerular filtration rate (​eGFR​) of 
participants grouped according to level of (higher AAC score represented by larger 
group number). The eGFR was calculated from Cystatin-C levels using the formula ​(Grubb 
et al. 2014)​. The eGFR for the participants with the highest levels of AAC (categories 3 
and 4) tend to be lower, indicating that their kidneys are not functioning as efficiently as 
the other participants on average. The center line at each age represents the median 
biomarker level for all participants in that calcification category while the lower and upper 
boundaries of the box indicate the 25th and 75th percentile of the eGFR for that 
calcification category. The lower and upper ends of the lines denote the 95% confidence 
interval of the eGFR for participants within a particular calcification category.   
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Figure S17 Heritability enrichment of AAC across different genomic annotations. P-values 
(y-axis) of either total enrichment (top row facet) or positive regression coefficients (tau; 
bottom row facet) across annotations (x-axis) and datasets (column facets). Enrichment is 
calculated by dividing the proportion of heritability explained by SNPs in an annotation by 
proportion of SNPs in an annotation (proportion ​h2​/proportion ​SNPs​). Regression coefficients 
represent the average contribution of an annotation to per-SNP heritability, correcting for 
annotations in the baseline model (Methods). 
 
 



 
Figure S18. Colocalization of AAC and eQTLs for proximal genes (facets) across various 
tissues (y-axis). The x-axis shows the posterior probability of configuration 4 (PP4; one 
shared SNP associated with trait 1 and trait 2) over the posterior probability of 
configuration 3 (PP3; two independent SNPs associated with trait 1 and trait 2). Missing 
points for ​TWIST1 ​due to ​TWIST1 ​not having sufficient expression in “spleen” or 
“Epstein-Barr virus transformed lymphocytes” to be tested in the GTEx v7 eQTL analysis.  



 
 
 
 

 
Figure S19: Expression of ​Twist1 in mouse aorta cell subtypes, with clusters as identified                           
in ​(Kalluri et al. 2019)​. EC1 corresponds to a subset of endothelial cells characterized by                             
expression of genes involved in extracellular matrix organization. This corresponds to a                       
cluster identified in ​(Lukowski et al. 2019) as having a mesenchymal phenotype,                       
quiescence, and high mitochondrial content, preceding the others two more                   
differentiated states in pseudotime. 
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Supplementary Figure S20: P-value for genetic correlation between AAC and 754 traits, 
computed using LD Score Regression. Points are colored if they are significant after 
adjustment for multiple testing (Benjamini-Hochberg q-value < 0.05).  



 
Figure S21: ​The hazard ratios for different covariates in different Cox proportional hazard 
models for predicting acute MI events in the future for (A) complete cohort with 
experimentally measured LDL levels, (B) nonstatin users in cohort with experimentally 
measure LDL levels, (C) complete cohort with statin corrected LDL levels (method 1), and 
(D)  complete cohort with statin corrected LDL levels (method 2). 
 



 
Figure S22 ​: Effect of statins on LDL-Blood Pressure relationship. The relationship 
between baseline LDL and Triglyceride levels to blood pressure is plotted for all UK 
biobank participants before and after statin correction (c1 and c2 represent the two statin 



correction methods). Blue represents people who don’t take statin medication are shown 
in blue while statin takers are shown in orange. The uncorrected LDL levels are lower 
than that predicted by blood pressure for statin takers and the correction methods 
reduce this discrepancy.   



 

 
Figure S23 ​: Graphical Models for MI event based on LDL and AAC. The relationship 
between different lipid levels and their predictions of future MI events. LDL and 
triglyceride levels affect plaque formation increasing systolic blood pressure and the 
probability of future myocardial infarction events. Aortic calcification forms a parallel 
independent pathway for systolic blood pressure increase. Statins reduce LDL and 
triglyceride levels and in (A) do not affect acute MI events as they only affect blood 



pressure through LDL levels. However, in ​Figure S22, ​we show that statin takers do have 
higher blood pressure than that predicted by LDL levels alone and this is because statins 
do not remove old plaque that is determined by past lipid levels (B). Hence, we apply 
statin correction to LDL levels to get an unbiased estimate of LDL risk and compare it to 
Aortic Calcification risk in this article.   



 
 

 
Figure S24 ​: Comparison of LDL risk to Calcification risk with LDL imputation for statin 
users. Ten random initializations with MICE were used to impute the LDL level for statin 
users  while LDL levels for non-statin users were used unadjusted. Cox proportional 
hazards were used to compare the hazard from LDL and aortic calcification over the UK 



biobank population. In spite of the variability from imputation, the hazard ratios for LDL 
and calcification risk levels were similar across all 10 models. 

   



Supplementary Tables 
A) 

 Annotator 1 Annotator 2 Annotator 3 Annotator 4 Median 

Annotator 1 1 0.84 0.72 0.74 0.92 

Annotator 2 0.84 1 0.75 0.78 0.93 

Annotator 3 0.72 0.75 1 0.69 0.85 

Annotator 4 0.74 0.78 0.69 1 0.86 

Median 0.92 0.93 0.85 0.86 1 

 
B) 

 Annotator 1 Annotator 2 Annotator 3 Annotator 4 Median 

Annotator 1 1 0.61 0.56 0.53 0.74 

Annotator 2 0.61 1 0.57 0.53 0.8 

Annotator 3 0.56 0.57 1 0.55 0.79 

Annotator 4 0.53 0.53 0.55 1 0.75 

Median 0.74 0.8 0.79 0.75 1 

 
Table S1 ​: Variability of manual annotation over the training set for the 4 different 
annotators measured using (A) Pearson Correlation and (B) Spearman correlation. 
   



 
A. 

 Annotator 1 Annotator 2 Annotator 3 Annotator 4 Median 

Annotator 1 1 0.86 0.78 0.75 0.94 

Annotator 2 0.86 1 0.73 0.67 0.93 

Annotator 3 0.78 0.73 1 0.7 0.85 

Annotator 4 0.75 0.67 0.7 1 0.73 

Median 0.94 0.93 0.85 0.73 1 

 
B. 

 Annotator 1 Annotator 2 Annotator 3 Annotator 4 Median 

Annotator 1 1 0.68 0.67 0.56 0.83 

Annotator 2 0.68 1 0.71 0.51 0.88 

Annotator 3 0.67 0.71 1 0.55 0.84 

Annotator 4 0.56 0.51 0.55 1 0.57 

Median 0.83 0.88 0.84 0.57 1 

 
Table S2 ​: Variability of manual annotation over the validation set for the 4 different 
annotators measured using (A) Pearson Correlation and (B) Spearman correlation. 
   



 
 

 MrOS Cohort UKBB Cohort 

Phenotype Correlation Correlation 

Age 0.3 0.28 

Systolic Blood 
Pressure 0.15 0.18 

Pulse 0.09 0.02 

Glucose 0.08 0.06 

Cystatin C 0.12 0.09 

HDL -0.06 -0.01 

Phosphate 0.17 0.05 

Triglycerides 0.1 0.04 

 
Table S3 ​: Correlation of annotated abdominal aortic calcification with different 
phenotypes across MrOS and UKBB cohorts. Only phenotypes significantly correlated 
with aortic calcification in MrOS cohort are displayed in the above table. 
   



 

 Model 1 Model 2 

Biomarker Effect size P-value Effect size P-value 

Albumin 0.006 (0.006) 0.3 0.003 (0.006) 0.6 

Alkaline phosphatase -0.001 (0.006) 0.9 0.004 (0.006) 0.5 

Alanine aminotransferase 0.005 (0.006) 0.4 0.02 (0.006) 5.50E-03 

Apolipoprotein A -0.03 (0.006) 1.30E-06 -0.05 (0.006) 9.70E-13 

Apolipoprotein B 0.02 (0.006) 1.50E-04 0.03 (0.006) 4.90E-06 

Aspartate aminotransferase 0.005 (0.006) 0.4 0.01 (0.006) 0.06 

Direct bilirubin -0.008 (0.006) 0.2 -0.005 (0.006) 0.4 

Urea -0.008 (0.006) 0.2 0.0003 (0.006) 0.95 

Calcium 0.02 (0.006) 1.00E-03 0.02 (0.006) 1.00E-03 

Cholesterol -0.008 (0.006) 0.2 -0.008 (0.006) 0.2 

Creatinine -0.04 (0.006) 1.40E-07 -0.02 (0.006) 1.00E-03 

C-reactive protein 0.01 (0.006) 0.09 0.02 (0.006) 0.001 

Cystatin C 0.01 (0.006) 0.04 0.02 (0.006) 0.003 

Gamma glutamyltransferase 0.02 (0.006) 9.20E-05 0.03 (0.006) 1.70E-06 

Glucose 0.03 (0.006) 1.40E-07 0.04 (0.006) 7.10E-10 

Glycated haemoglobin (HbA1c) 0.07 (0.006) 1.10E-36 0.08 (0.006) 1.20E-40 

HDL -0.04 (0.006) 3.20E-10 -0.06 (0.007) 1.40E-19 

IGF-1 -0.006 (0.006) 0.3 -0.004 (0.006) 0.5 

LDL -0.002 (0.006) 0.7 0.002 (0.006) 0.7 

Lipoprotein A 0.001 (0.006) 0.8 0.003 (0.006) 0.4 

Oestradiol 0.004 (0.011) 0.7 -0.004 (0.03) 0.9 

Phosphate 0.05 (0.006) 4.60E-16 0.04 (0.006) 4.00E-13 

Rheumatoid factor -0.002 (0.006) 0.9 -0.003 (0.006) 0.9 

Sex hormone binding globulin 0.02 (0.007) 0.01 0.0003 (0.006) 0.97 

Total bilirubin 0.02 (0.006) 2.00E-03 -0.01 (0.006) 0.03 

Testosterone -0.02 (0.02) 0.3 -0.04 (0.02) 0.06 

Total protein 0.01 (0.006) 0.07 0.02 (0.006) 1.00E-03 

Triglycerides 0.02 (0.006) 9.20E-05 0.03 (0.006) 1.20E-07 

Urate 0.004 (0.007) 0.6 0.02 (0.007) 4.00E-03 



Vitamin D -0.0005 (0.006) 0.9 -0.004 (0.006) 0.5 

 
Table S4:​ Association of predicted AAC with biomarkers ​Univariate regression analysis of 
risk factors at baseline for predicted AAC after adjusting for age and sex in model 1 and after 
adjusting for ​socioeconomic factors, BMI, and smoking status in addition to adjusting for age 
and sex in model 2​.​ ​The estimate of the effect size and the standard error of the estimated 
effect size are given along with p-values for each coefficient in a univariate fit. 
 
   



 

Physiological Measure 

Model 1 Model 2 

Effect size P-value Effect size P-value 

Hand grip strength (left) -0.03 (0.008) 1.20E-04 -0.03 (0.008) 8.35E-05 

Hand grip strength (right) -0.02 (0.008) 4.00E-03 -0.02 (0.008) 3.48E-05 

Waist circumference -0.03 (0.008) 9.00E-06 0.007 (0.012) 0.59 

Hip circumference -0.04 (0.008) 4.30E-12 -0.03 (0.01) 0.011 

Standing height -0.05 (0.008) 2.50E-09 -0.05 (0.008) 5.70E-11 

Fasting time 0.02 (0.005) 3.00E-04 0.02 (0.005) 3.06E-03 

Heel bone ultrasound T-score -0.07 (0.016) 5.90E-04 -0.06 (0.016) 1.88E-04 

Heel bone mineral density (BMD) 
T-score -0.04 (0.008) 8.40E-09 -0.03 (0.008) 1.50E-05 

Pulse rate 0.02 (0.006) 1.00E-03 0.02 (0.006) 5.75E-05 

Number of correct matches in round 0.005 (0.005) 0.4 0.004 (0.005) 0.46 

Number of incorrect matches in round -0.001 (0.006) 0.8 -0.002 (0.005) 0.68 

Time to complete round 
-0.0002 
(0.006) 0.97 

0.0002 
(0.006) 0.97 

Number of times snap-button pressed -0.01 (0.005) 0.08 
-.0.009 
(0.005) 0.1 

Duration to first press of snap-button in 
each round -0.007 (0.008) 0.4 -0.006 (0.008) 0.45 

Number of days/week walked 10+ 
minutes 0.004 (0.005) 0.5 -0.002 (0.005) 0.76 

Duration of walks 0.01 (0.04) 0.04 0.006 (0.006) 0.24 

Number of days/week of moderate 
physical activity 10+ minutes 0.0006 (0.005) 0.9 -0.007 (0.005) 0.21 

Duration of moderate activity 0.005 (0.006) 0.4 -0.001 (0.006) 0.85 

Number of days/week of vigorous 
physical activity 10+ minutes -0.004 (0.005) 0.4 -0.008 (0.005) 0.15 

Duration of vigorous activity -0.005 (0.007) 0.5 -0.006 (0.007) 0.34 

Time spent watching television (TV) 0.02 (0.005) 1.40E-05 0.03 (0.006) 3.46E-06 

Time spent using computer 0.02 (0.006) 4.00E-03 0.01 (0.006) 0.011 

Time spent driving 0.01 (0.006) 8.00E-03 0.015 (0.006) 9.00E-03 

Sleep duration 0.007 (0.005) 0.2 0.007 (0.005) 0.19 

Forced vital capacity (FVC) -0.04 (0.008) 1.10E-08 -0.06 (0.008) 1.88E-12 



Forced expiratory volume in 1-second 
(FEV1) -0.06 (0.008) 2.30E-16 -0.06 (0.008) 1.32E-16 

Peak expiratory flow (PEF) -0.03 (0.007) 8.30E-07 -0.03 (0.007) 2.25E-05 

Heel quantitative ultrasound index (QUI) -0.04 (0.008) 8.40E-08 -0.03 (0.008) 1.37E-05 

Heel bone mineral density (BMD) -0.04 (0.008) 8.20E-09 -0.03 (0.008) 1.39E-05 

Heel Broadband ultrasound attenuation 
(BUA) -0.04 (0.008) 1.60E-08 -0.03 (0.008) 2.94E-05 

Ankle spacing width -0.05 (0.009) 8.50E-08 -0.04 (0.01) 2.48E-04 

Diastolic blood pressure -0.003 (0.006) 0.6 0.01 (0.006) 0.08 

Systolic blood pressure 0.06 (0.006) 6.10E-21 0.07 (0.006) 1.09E-29 

Ankle spacing width (left) -0.03 (0.011) 8.00E-03 -0.03 (0.013) 0.051 

Pulse wave reflection index -0.02 (0.01) 2.00E-02 -0.02 (0.009) 1.21E-02 

Pulse wave peak to peak time -0.003 (0.01) 0.7 -0.002 (0.01) 0.81 

Signal-to-noise-ratio (SNR) of triplet 
(left) -0.002 (0.009) 0.9 

-0.0009 
(0.009) 0.92 

Signal-to-noise-ratio (SNR) of triplet 
(right) -0.002 (0.009) 0.9 -0.001 (0.009) 0.89 

Number of triplets attempted (left) 0.01 (0.009) 0.3 0.01 (0.009) 0.19 

Number of triplets attempted (right) 0.01 (0.009) 0.3 0.01 (0.009) 0.21 

Maximum digits remembered correctly 0.007 (0.017) 0.7 0.008 (0.016) 0.64 

Time to complete test 0.01 (0.016) 0.5 0.007 (0.016) 0.67 

Time to answer 0.004 (0.009) 0.7 0.003 (0.009) 0.76 

Duration screen displayed 0.002 (0.009) 0.8 
0.0003 
(0.010) 0.97 

Number of attempts 0.0003 (0.009) 0.97 
-0.0003 
(0.009) 0.98 

ECG, heart rate 0.04 (0.014) 2.00E-03 0.05 (0.014) 1.00E-03 

ECG, phase time 0.012 (0.013) 0.4 0.01 (0.013) 0.93 

ECG, phase duration 0.03 (0.014) 0.04 0.03 (0.014) 0.03 

ECG, number of stages in a phase -0.007 (0.013) 0.6 -0.007 (0.013) 0.61 

Maximum workload during fitness test -0.07 (0.017) 7.90E-05 -0.07 (0.017) 3.32E-05 

Maximum heart rate during fitness test -0.007 (0.014) 0.6 -0.005 (0.014) 0.74 

Number of trend entries -0.04 (0.015) 6.00E-03 -0.04 (0.015) 2.00E-03 

Medication for cholesterol, blood 
pressure, diabetes, or take exogenous 
hormones 0.05 (0.007) 4.20E-13 0.05 (0.007) 5.46E-14 



Weight (pre-imaging) -0.07 (0.008) 8.20E-17 -0.10 (0.013) 3.72E-13 

Height -0.05 (0.01) 4.00E-07 -0.05 (0.01) 7.22E-08 

Ventricular rate 0.03 (0.008) 3.40E-05 0.03 (0.008) 1.09E-05 

P duration -0.009 (0.008) 0.26 -0.007 (0.008) 0.37 

QRS duration -0.020 (0.008) 0.015 -0.020 (0.008) 0.03 

Fluid intelligence score -0.020 (0.009) 0.05 -0.01 (0.009) 0.14 

Speech-reception-threshold (SRT) 
estimate (left) 0.02 (0.01) 0.09 0.01 (0.01) 0.14 

Speech-reception-threshold (SRT) 
estimate (right) 0.02 (0.01) 0.07 0.01 (0.01) 0.16 

Birth weight -0.05 (0.007) 0.44 -0.008 (0.007) 0.21 

Mean time to correctly identify matches 0.006 (0.006) 0.29 0.005 (0.006) 0.36 

Smoking status 0.13 (0.005) 7.84E-119 - - 

Cascot confidence score -0.01 (0.02) 0.55 -0.01 (0.02) 0.6 

Number of fluid intelligence questions 
attempted within time limit -0.003 (0.009) 0.8 0.001 (0.009) 0.9 

Number of correct matches in round 1 -0.01 (0.008) 0.1 -0.01 (0.008) 0.17 

Number of incorrect matches in round 1 0.006 (0.008) 0.74 0.003 (0.008) 0.65 

Time to complete round 1 0.006 (0.008) 0.75 0.004 (0.008) 0.63 

Errors before selecting correct item in 
numeric path (trail 1) 0.05 (0.05) 0.35 0.06 (0.05) 0.43 

Errors before selecting correct item in 
alphanumeric path (trail #2) -0.04 (0.03) 0.28 -0.04 (0.03) 0.24 

Interval between previous point and 
current one in numeric path (trail #1) 0.008 (0.008) 0.28 0.009 (0.008) 0.26 

Forced expiratory volume in 1-second 
(FEV1) -0.08 (0.009) 1.23E-20 -0.08 (0.009) 9.94E-19 

Forced vital capacity (FVC) -0.06 (0.009) 8.98E-12 -0.07 (0.009) 3.14E-14 

Duration to complete numeric path (trail 
#1) 0.01 (0.008) 0.087 0.01 (0.008) 0.16 

Duration to complete alphanumeric path 
(trail #2) 0.04 (0.008) 1.19E-05 0.03 (0.008) 8.27E-05 

Number of symbol digit matches made 
correctly -0.04 (0.008) 4.23E-06 -0.03 (0.008) 1.00E-04 

Fluid intelligence score 1 -0.02 (0.008) 0.01 -0.02 (0.008) 0.04 

Number of symbol digit matches 
attempted -0.04 (0.008) 4.13E-06 -0.03 (0.008) 8.60E-05 



Value entered -0.006 (0.008) 0.41 -0.004 (0.008) 0.61 

Duration to entering value 0.007 (0.008) 0.38 0.004 (0.008) 0.57 

Maximum digits remembered correctly 1 -0.02 (0.008) 0.035 -0.02 (0.008) 0.021 

Total errors traversing numeric path 
(trail #1) -0.002 (0.02) 0.92 0.0007 (0.02) 0.97 

Total errors traversing numeric path 
(trail #2) 0.005 (0.01) 0.73 0.004 (0.01) 0.75 

Body mass index (BMI) -0.03 (0.006) 3.64E-10 - - 

Weight -0.06 (0.006) 6.04E-18 -0.09 (0.014) 2.42E-11 

Pulse wave Arterial Stiffness index 0.01 (0.01) 0.27 0.008 (0.01) 0.43 

Heterozygosity 0.005 (0.006) 0.34 -0.008 (0.01) 0.4 

Heterozygosity, PCA corrected 0.002 (0.006) 0.75 
-0.0009 
(0.006) 0.86 

Genetic principal components -0.01 (0.006) 0.03 0.018 (0.02) 0.35 

Genetic relatedness pairing -0.02 (0.03) 0.45 -0.02 (0.03) 0.5 

Genetic relatedness factor 0.0004 (0.03) 0.99 0.002 (0.03) 0.94 

Average X chromosome intensities for 
determining sex -0.002 (0.01) 0.89 -0.003 (0.01) 0.76 

Average Y chromosome intensities for 
determining sex -0.007 (0.02) 0.63 -0.009 (0.02) 0.54 

Minimum carotid IMT (intima-medial 
thickness) at 120 degrees 0.03 (0.02) 0.12 0.03 (0.02) 0.22 

Mean carotid IMT (intima-medial 
thickness) at 120 degrees 0.05 (0.02) 0.03 0.04 (0.02) 0.07 

Maximum carotid IMT (intima-medial 
thickness) at 120 degrees 0.04 (0.02) 0.08 0.03 (0.02) 0.12 

Minimum carotid IMT (intima-medial 
thickness) at 150 degrees 0.02 (0.02) 0.25 0.02 (0.02) 0.34 

Mean carotid IMT (intima-medial 
thickness) at 150 degrees 0.04 (0.02) 0.09 0.03 (0.02) 0.11 

Maximum carotid IMT (intima-medial 
thickness) at 150 degrees 0.01 (0.02) 0.53 0.01 (0.02) 0.52 

Minimum carotid IMT (intima-medial 
thickness) at 210 degrees 0.10 (0.02) 7.18E-05 0.09 (0.02) 1.03E-05 

Mean carotid IMT (intima-medial 
thickness) at 210 degrees 0.10 (0.02) 1.73E-06 0.09 (0.02) 2.45E-05 

Maximum carotid IMT (intima-medial 
thickness) at 210 degrees 0.09 (0.02) 3.35E-05 0.08 (0.02) 3.62E-04 



Minimum carotid IMT (intima-medial 
thickness) at 240 degrees 0.05 (0.02) 0.02 0.04 (0.02) 0.08 

Mean carotid IMT (intima-medial 
thickness) at 240 degrees 0.06 (0.02) 3.00E-03 0.03 (0.02) 0.02 

Maximum carotid IMT (intima-medial 
thickness) at 240 degrees 0.07 (0.02) 1.00E-03 0.06 (0.02) 7.00E-03 

Body fat percentage -0.02 (0.007) 1.00E-03 0.05 (0.01) 4.93E-04 

Whole body fat mass -0.03 (0.006) 1.07E-09 -0.01 (0.02) 0.39 

Whole body fat-free mass -0.10 (0.01) 5.32E-23 -0.10 (0.01) 8.86E-15 

Whole body water mass -0.10 (0.01) 5.58E-23 -0.10 (0.01) 9.84E-15 

Basal metabolic rate -0.09 (0.009) 5.20E-23 -0.10 (0.01) 1.11E-13 

Impedance of whole body 0.05 (0.008) 2.72E-12 0.04 (0.009) 9.99E-06 

Impedance of leg (right) 0.06 (0.006) 8.07E-20 0.05 (0.008) 5.24E-10 

Impedance of leg (left) 0.05 (0.006) 7.86E-18 0.04 (0.007) 1.23E-08 

Impedance of arm (right) 0.05 (0.008) 9.81E-09 0.03 (0.01) 4.14E-04 

Impedance of arm (left) 0.04 (0.008) 2.00E-07 0.03 (0.01) 3.00E-03 

Leg fat percentage (right) -0.02 (0.01) 0.08 0.10 (0.02) 1.08E-07 

Leg fat mass (right) -0.04 (0.007) 2.15E-08 0.006 (0.02) 0.75 

Leg fat-free mass (right) -0.10 (0.01) 9.36E-28 -0.10 (0.01) 3.60E-15 

Leg predicted mass (right) -0.10 (0.01) 6.93E-25 -0.11 (0.01) 2.85E-15 

Leg fat percentage (left) -0.03 (0.01) 0.019 0.10 (0.02) 1.52E-06 

Leg fat mass (left) -0.04 (0.007) 3.76E-09 -0.06 (0.02) 0.77 

Leg fat-free mass (left) -0.09 (0.01) 1.71E-22 -0.10 (0.01) 1.98E-13 

Leg predicted mass (left) -0.10 (0.01) 1.13E-22 -0.10 (0.01) 1.19E-13 

Arm fat percentage (right) -0.03 (0.008) 2.32E-05 0.05 (0.02) 2.32E-03 

Arm fat mass (right) -0.04 (0.006) 1.92E-11 -0.03 (0.01) 0.07 

Arm fat-free mass (right) -0.10 (0.01) 7.95E-20 -0.10 (0.01) 3.70E-12 

Arm predicted mass (right) -0.10 (0.01) 1.24E-20 -0.10 (0.01) 5.13E-12 

Arm fat percentage (left) -0.04 (0.008) 3.36E-06 0.04 (0.02) 0.014 

Arm fat mass (left) -0.04 (0.006) 1.74E-11 -0.02 (0.01) 0.07 

Arm fat-free mass (left) -0.09 (0.01) 5.45E-18 -0.09 (0.01) 1.60E-10 

Arm predicted mass (left) -0.08 (0.01) 1.70E-16 -0.07 (0.01) 3.54E-09 

Trunk fat percentage -0.02 (0.006) 1.00E-03 0.02 (0.009) 0.012 

Trunk fat mass -0.03 (0.006) 2.50E-09 -0.01 (0.01) 0.36 

Trunk fat-free mass -0.10 (0.01) 3.38E-20 -0.09 (0.01) 3.84E-13 



Trunk predicted mass -0.10 (0.01) 2.32E-20 -0.09 (0.01) 4.17E-13 

 
Table S5 ​: Association of predicted AAC with physiological markers. ​Univariate regression 
analysis of risk factors at baseline for predicted AAC after adjusting for age and sex in model 1 
and after adjusting for ​socioeconomic factors, BMI, and smoking status in addition to adjusting 
for age and sex in model 2​.​ ​The estimate of the effect size and the standard error of the 
estimated effect size are given along with p-values for each coefficient in a univariate fit. 
 
   



 

CBC Measure 

Model 1 Model 2 

Effect size P-value Effect size P-value 

White blood cell (leukocyte) 
count 0.05 (0.006) 4.82E-20 0.05 (0.006) 1.23E-15 

Red blood cell (erythrocyte) 
count -0.03 (0.007) 1.90E-05 -0.01 (0.007) 0.07 

Haemoglobin concentration -0.01 (0.007) 0.07 -0.01 (0.007) 0.19 

Haematocrit percentage -0.01 (0.007) 0.15 -0.006 (0.007) 0.4 

Mean corpuscular volume 0.03 (0.006) 5.00E-07 0.01 (0.006) 0.05 

Mean corpuscular 
haemoglobin 0.02 (0.006) 8.70E-05 0.007 (0.006) 0.25 

Mean corpuscular 
haemoglobin concentration -0.004 (0.006) 0.49 -0.006 (0.006) 0.33 

Red blood cell (erythrocyte) 
distribution width -0.0004 (0.006) 0.95 0.002 (0.006) 0.71 

Platelet count 0.02 (0.006) 5.30E-05 0.02 (0.006) 8.61E-05 

Platelet crit 0.03 (0.006) 5.00E-06 0.03 (0.006) 1.87E-05 

Mean platelet 
(thrombocyte) volume -0.001 (0.006) 0.86 -0.003 (0.006) 0.65 

Platelet distribution width 0.0003 (0.006) 0.96 0.002 (0.006) 0.67 

Lymphocyte count 0.02 (0.006) 1.00E-03 0.02 (0.006) 4.00E-03 

Monocyte count 0.04 (0.006) 1.41E-11 0.04 (0.006) 8.97E-11 

Neutrophill count 0.05 (0.006) 4.57E-19 0.04 (0.006) 1.03E-14 

Eosinophill count 0.02 (0.006) 1.74E-04 0.02 (0.006) 1.00E-03 

Basophill count 0.01 (0.006) 0.03 0.0085 (0.006) 0.13 

Nucleated red blood cell 
count 0.002 (0.006) 0.72 0.001 (0.006) 0.84 

Lymphocyte percentage -0.02 (0.006) 4.00E-03 -0.015 (0.006) 0.01 

Monocyte percentage 0.002 (0.006) 0.75 0.005 (0.006) 0.4 

Neutrophill percentage 0.01 (0.006) 0.035 0.01 (0.006) 0.08 



Eosinophill percentage 0.004 (0.006) 0.43 0.004 (0.006) 0.47 

Basophill percentage 0.008 (0.006) 0.16 0.005 (0.006) 0.36 

Nucleated red blood cell 
percentage 0.0004 (0.006) 0.95 -0.0003 (0.006) 0.95 

Reticulocyte percentage 0.02 (0.006) 6.00E-03 0.02 (0.006) 7.54E-05 

Reticulocyte count 0.01 (0.006) 0.03 0.02 (0.006) 1.76E-04 

Mean reticulocyte volume 0.05 (0.006) 0.42 -0.003 (0.006) 0.61 

Mean sphered cell volume 0.02 (0.006) 4.00E-03 -0.0006 (0.006) 0.91 

Immature reticulocyte 
fraction 0.02 (0.006) 5.90E-05 0.03 (0.006) 8.62E-08 

High light scatter 
reticulocyte percentage 0.02 (0.006) 5.50E-05 0.04 (0.006) 2.87E-09 

High light scatter 
reticulocyte count 0.02 (0.006) 4.53E-04 0.04 (0.006) 5.74E-09 

 
Table S6 ​: Association of predicted AAC with complete blood count markers. ​Univariate 
regression analysis of risk factors at baseline for predicted AAC after adjusting for age and sex 
in model 1 and after adjusting for ​socioeconomic factors, BMI, and smoking status in addition to 
adjusting for age and sex in model 2​.​ ​The estimate of the effect size and the standard error 
of the estimated effect size are given along with p-values for each coefficient in a 
univariate fit. 
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