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1 Canton of Vaud hospitalization data

We had access to individual-level data from 1093 patients hospitalized in the canton of Vaud up to April
14th. Of all patient 41% (448/1093) where female and 59% were male (645/1093). The median age was
70 years old (Supplementary Material, SM, Figure 1). The proportion of patients requiring Intensive Care
Units (ICUs) was of 20% (214/1093).

SM Figure 1: Age distribution of patients hospitalized for COVID-19 in the canton of Vaud up to April 14.

Of 777 patients with known outcome on April 14, 104 had deceased (13%). We estimate the hospitaliza-
tion Case Fatality Ratio (hCFR) by adjusting for the distribution of time hospitalization to death following
Nishiura et al. 2009:

hCFR(t) =
D(t)∫ t

0
C(τ)f(t− τ)dτ

where D(t) and C(t) are the cumulative number of deaths at time t, and f(u) is the PDF of the time from
hospitalization to death. We estimate f(t) from the data assuming a log-normal distribution. The estimated
hCFR was of 11% (95% CI: 10%-14%) in the four days up to the last observation on April 14 (SM Figure
2).
The distribution of times of hospitalization processes are shown in SM Figure 3, and fitted distribution
parameters given in 1.
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SM Figure 2: Estimated hospitalized Case Fatality Ratio using method from Nishiura et al. 2009,

SM Table 1: Estimated parameters of hospitalization time distributions. All times are in days and taken from the
date of hospitalization if not specified otherwise.

mean sd mean (logscale) sd (logscale)

Time hospitalized 8.49 6.58 1.81 0.87
Time to death 8.23 6.09 1.80 0.87

Time to discharge without ICU 6.29 4.66 1.56 0.80
Time hospitalized without ICU 7.35 5.79 1.68 0.85
Time to death without ICU 7.84 6.27 1.73 0.88

Time to ICU 2.35 3.79 0.18 1.05
Time hospitalized with ICU 13.14 7.50 2.37 0.72
Time in ICU 8.36 6.76 1.69 1.04
Time from ICU to discharge 8.68 6.99 1.71 1.07
Time from ICU to death 6.97 4.98 1.68 0.77
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SM Figure 3: Histograms of times to key hospitalization events. Data from canton of Vaud.
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2 Model Description

We build a COVID-19 compartmental transmission model based on the Susceptible Exposed Infected Re-
covered (SEIR) template with three I compartments. The schematic with the different transitions and
compartments is shown in SM Figure 4. Infected individuals have some probability of developing severe
symptoms which require hospitalization after a delay from symptom onset (Ih). Hospitalization can lead to
recovery or death, either through normal hospitalization (Ha,b and Hd respectively) or passing through Inten-
sive Care Units (ICUs) (Ua,b and Ud respectively). We divide some compartments in two sub-compartments,
denoted by subscripts a, b, to capture the bimodal time distributions. Data from the canton of Vaud show a
high proportion of deaths outside of hospitals (≈ 50%), we therefore also include a pathway from infection
to death without passing through hospitalization (Id).

SM Figure 4: Schematic diagram of COVID-19 transmission and hospitalization processes. There is two sinks: Death
D and recovered R. Each stage with regard to the disease may be implemented with several compartments (little
numbered boxes) to better represent the time distribution spent in that stage. Branching between stages denoted by
a, b are used to characterized bi-modal distributions of ICU and hospital stays.

The time spent in the observable hospitalization states were used to define the number of stages in each
compartment by fitting Erlang distributions to the data of canton de Vaud. During this process we found
that for the time to recovery for hospitalizations, th, and ICUs, tu mixture models with two groups of patients
had stronger support than a single distribution for all patients. We therefore fit for both of these groups
Erlang mixture models formulated as:

th ∼ θhErlang(kh,a, λh,a) + (1− θh)Erlang(kh,b, λh,b)

tu ∼ θuErlang(ku,a, λu,a) + (1− θu)Erlang(ku,b, λu,b),

where θh,u are the probabilities of patients being in their respective group a, and k and λ are respectively
the shape and rate parameters of the Erlang distribution. We fit the Erlang mixture models in a Bayesian
framework using Stan Carpenter et al. 2017. For inference we parameterize the model in terms of the mean
stay in each compartment µ = k/λ. Results are shown in Table 2.
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SM Table 2: Posterior parameters of Erlang mixture distributions for times from hospitalization and ICU to recovery.
We report the mean and 95% credible intervals (in parenthesis) of the posterior distributions of the probability of
patients being of group a, θ, the shape parameter (equal to the number of stages per compartment), k, and the mean
time spent in each state, µ.

Group a Group b

Compartment θ k µ k µ

Hospitalized to recovery Ha,b 0.34 (0.26-0.43) 1 3.0 (2.5-3.6) 2 9.4 (8.7-10.2)
ICU to recovery Ua,b 0.33 (0.21-0.44) 1 2.9 (2.1-3.8) 1 13.7 (12.1-15.4)

We therefore use either one (stage Ha, Ua, Ub) or two (stages Hd, Hb, Ud) compartments for each stage
based on estimated shape parameters of the Erlang distributions. With just one compartment, we obtain
an exponentially distributed transmission time. Rates of transitions are shown Table 3 and branching
probabilities in Table 4.

2.1 Model equations

The model has been implemented as a discrete-state model based on a Partially-Observed Markov Process
(POMP), simulating the transitions between compartments as discrete events using stochastic count processes
King et al. 2008; Bretó et al. 2009. Let NAB(t) be the number of individuals transiting between compartments
A,B ∈ X in the time interval [0, t) where X is the state vector,

X = {S,E, I1,2,3, Id, Ih, Ha, H
1,2
b , H, Ua, Ub, H

1,2
d , U1,2

d , R,D}

The number of transitions during a time-step ∆t is ∆NAB(t) = NAB(t + ∆t) − NAB(t). We model
time-varying R0(t) = β(t)/(3rI) as a geometric random walk defined by its calibrated variance, where β is
the transmission parameter and 1/(3rI) is the mean duration spent in the infectious compartments I1toI3.
The force of infection is expressed in terms of β(t) in the model. Given the state of the system at time t,
Xt, the model reads:
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P [∆NSE(t) = 1| Xt] = β(t)
I1(t) + I2(t) + I3(t)

P
S(t)∆t+ o(∆t)

P [∆NEI1(t) = 1| Xt] = rEE(t)∆t+ o(∆t)

P [∆NI1I2(t) = 1| Xt] = 3rII
1(t)∆t+ o(∆t)

P [∆NI2I3(t) = 1| Xt] = 3rII
2(t)∆t+ o(∆t)

P [∆NI3Id(t) = 1| Xt] = pId|I3 · 3rII3(t)∆t+ o(∆t)

P [∆NI3Ih(t) = 1| Xt] = pIh|I3 · 3rII3(t)∆t+ o(∆t)

P [∆NI3R(t) = 1| Xt] = pR|I3 · 3rII3(t)∆t+ o(∆t)

P [∆NIdR(t) = 1| Xt] = pR|Id · rIId(t)∆t+ o(∆t)

P [∆NIdD(t) = 1| Xt] = pD|Id · rIId(t)∆t+ o(∆t)

P
[
∆NIhH1

d
(t) = 1

∣∣∣Xt] = pHd|Ih · rIhIh(t)∆t+ o(∆t)

P [∆NIhHu(t) = 1| Xt] = pHu|Ih · rIhIh(t)∆t+ o(∆t)

P [∆NIhHa(t) = 1| Xt] = pHa|Ih · rIhIh(t)∆t+ o(∆t)

P
[
∆NIhH1

b
(t) = 1

∣∣∣Xt] = pHb|Ih · rIhIh(t)∆t+ o(∆t)

P [∆NHaR(t) = 1| Xt] = rHa
Ha(t)∆t+ o(∆t)

P
[
∆NH1

bH
2
b
(t) = 1

∣∣∣Xt] = 2rHb
H1

b (t)∆t+ o(∆t)

P
[
∆NH2

bR
(t) = 1

∣∣∣Xt] = 2rHb
H2

b (t)∆t+ o(∆t)

P
[
∆NHuU1

d
(t) = 1

∣∣∣Xt] = pUd|Hu
· rHuHu(t)∆t+ o(∆t)

P [∆NHuUa
(t) = 1| Xt] = pUa|Hu

· rHu
Hu(t)∆t+ o(∆t)

P [∆NHuUb
(t) = 1| Xt] = pUb|Hu

· rHu
Hu(t)∆t+ o(∆t)

P
[
∆NH1

dU
2
d
(t) = 1

∣∣∣Xt] = 2rHd
H1

d(t)∆t+ o(∆t)

P
[
∆NH2

dD
(t) = 1

∣∣∣Xt] = 2rHd
H2

d(t)∆t+ o(∆t)

P [∆NUaR(t) = 1| Xt] = rUa
Ua(t)∆t+ o(∆t)

P [∆NUbR(t) = 1| Xt] = rUb
Ub(t)∆t+ o(∆t)

P
[
∆NU1

dU
2
d
(t) = 1

∣∣∣Xt] = 2rUd
U1
d (t)∆t+ o(∆t)

P
[
∆NU2

dD
(t) = 1

∣∣∣Xt] = 2rUd
U2
d (t)∆t+ o(∆t)

(1)

assuming that P[∆NXY > 1|Xt] = o(∆t) ∀X,Y ∈ X . Note that there is no exponents in the our mathemat-
ical formulation and superscripts denote different compartments for the same stage. Branching probabilities
from stage X to Y are noted pY |X and rates of stay in stage X is noted rX . The ensuing stochastic variations
of the state variables are:

6



∆E(t) = ∆NSE(t)−∆NEI1(t))

∆I1(t) = ∆NEI1(t)−∆NI1I2

∆I2(t) = ∆NI1I2 −∆NI2I3

∆I3(t) = ∆NI2I3 −∆NI3Id −∆NI3Ih −∆NI3R

∆Id(t) = ∆NI3Id −∆NIdR −∆NIdD

∆Ih(t) = ∆NI3Ih −∆NIhH1
d
−∆NIhHu

−∆NIhHa
−∆NIhH1

b

∆Ha(t) = ∆NIhHa −∆NHaR

∆H1
b (t) = ∆NIhH1

b
−∆NH1

bH
2
b

∆H2
b (t) = ∆NH1

bH
2
b
−∆NH2

bR

∆H1
d(t) = ∆NIhH1

d
−∆NH1

dH
2
d

∆H2
d(t) = ∆NH1

dH
2
d
−∆NH2

dD

∆Hu(t) = ∆NIhHu −∆NHuU1
d
−∆NHuUa −∆NHuUb

∆Ua(t) = ∆NHuUa
−∆NUaR

∆Ub(t) = ∆NHuUb
−∆NUbR

∆U1
d (t) = ∆NHuU1

d
−∆NU1

dU
2
d

∆U2
d (t) = ∆NU1

dU
2
d
−∆NU2

dD

∆D(t) = ∆NIdD + ∆NU2
dD

+ ∆NH2
dD

∆R(t) = ∆NI3R + ∆NIdR + ∆NHaR + ∆NUaR + ∆NUbR

S(t) = P −
∑

X∈X\{S}

X(t),

(2)

where the equation for S(t) enforces a constant total population.

SM Table 3: Rates of stay in each stage of the model. Some stages are composed of several compartments to accurately
represent distributions shapes. For example if the rate of stay in stage Ud is rUd , then rate of stays in compartments
U1

d , U
2
d is 2rUd . We parameterize the model conditioning on a mean generation time of 5.2 days Ganyani et al. 2020,

and an exposed and non-infectious duration of 2.9 days He et al. 2020, yielding a mean duration of 4.6 days in the
infectious compartments.

Parameter Source Value or bound Unit Description

rE He et al. 2020 1
2.9 d−1 rate of exit of the E compartment

rI He et al. 2020; Ganyani et al. 2020 1
4.6 d−1 rate of exit of the I1, I2, I3, Id compartments

rIh Scire et al. 2020 1
1.6 d−1 rate of exit of the Ih compartment

rHa Vaud data 1
3.04 d−1 rate of exit of the Ha compartment

rHb
Vaud data 1

4.69 d−1 rate of exit of the H1
b , H

2
b compartments

rHu Vaud data 1
1.98 d−1 rate of exit of the Hu compartment

rHd
Vaud data 1

3.92 d−1 rate of exit of the H1
d , H

2
d compartments

rUa
Vaud data 1

2.94 d−1 rate of exit of the Ua compartment
rUb

Vaud data 1
13.66 d−1 rate of exit of the Ub compartment

rUd
Vaud data 1

3.31 d−1 rate of exit of the U1
d , U

2
d compartments
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SM Table 4: Branching probabilities of the model. The probability from stage A to stage B is pB|A. There are nine
different pathways from susceptible to either death or recovery. We assume that the proportion of severe infections
that have sever symptoms which would require hospitalization is of 7.5%, that 50% of deaths happen outside of
hospitals (data from cantons of Vaud as above and Geneva from OpenZH), that the hospitalized case fatality ratio is
of 11% (data from canton of Vaud, see above), and an population-level infection fatality ratio (IFR) of 0.75 % which
is in the range of published estimates Verity et al. 2020; Russell et al. 2020.

Parameter Source Value or bound Description

IFR Assumed 0.75% Infection fatality ratio
ps Assumed 7.5% Probability of severe symptoms
ph Deduced from Vaud data | IFR 45.4% Probability of hospitalization
pId|I3 Deduced from Vaud data | IFR, ps psph
pIh|I3 Deduced from Vaud data | IFR, ps ps(1− ph)
pR|I3 Deduced |ps (1− ps)
pD|Id Deduced from Vaud data | IFR, ps 0.0916
pR|Id Deduced from Vaud data | IFR, ps 1− pD|Id
pHd|Ih Vaud data (1− 0.73) · (1− 0.72)
pHu|Ih Vaud data (1− 0.73) · 0.72
pHa|Ih Vaud data 0.73 · 0.34
pHb|Ih Vaud data 0.73 · (1− 0.34)
pUd|Hu

Vaud data 18%
pUa|Hu

Vaud data 33%
pUb|Hu

Vaud data 34%

3 Model Selection and Fitting/Calibration

We calibrate the model separately for each canton on the daily death and hospitalization until April 24. The
calibration procedure is based on a frequentist multiple iterated filtering algorithm (MIF2 Ionides, Bretó,
and King 2006). Given variations in reporting. The observation model is formulated as follows:

deaths(t) ∼ Poisson(∆D(t))

∆hosp(t) ∼ Skellam(∆H(t),∆DH(t) + ∆RH(t))

where, ∆D(t), ∆H(t), ∆DH(t), ∆RH(t) are respectively the number of new deaths, hospitalized, and deaths
and discharged from hospitals at time t, ε is the reporting rate (between 0 and 1), k is the over-dispersion
parameter of the negative binomial distribution, and ∆hosp(t) is the difference between the number of current
hospitalizations at times t and t − 1, for which we choose a Skellam distribution. The full log-likelihood
of the observation model was taken as the sum of the individual log-likelihoods of the ∆hosp(t) and of the
deaths(t). The cases were not used as their inclusion did not refine the calibration, due to the difference in
testing procedure in time.

The final parameters are shown in Table 4.

4 Assessment of Model Fit

SM Figures 5 and 6 show model fits at the national and cantonal levels respectively.
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SM Table 5: Estimated values of R0 at the beginning of the epidemic (March 01-March 10) and after the imple-
mentation of non-pharmaceutical interventions (March 29-April 5). Estimates given in terms of the median and 95%
quantile range (in parenthesis).

March 01-March 10 March 29-April 5

Canton median 95% QR median 95% QR

Switzerland 3 (2.7-3.3) 0.4 (0.28-0.6)
Berne 2.2 (1.7-2.7) 0.5 (0.27-0.9)

Basel-Landschaft 3 (2.4-3.6) 0.28 (0.07-0.7)
Basel-Stadt 3.3 (2.3-4.5) 0.2 (0.04-0.7)

Fribourg 2.7 (2.2-3.3) 0.5 (0.2-0.8)
Geneva 2.6 (2.2-3.1) 0.4 (0.23-0.8)

Graubünden 1.4 (0.9-2) 0.27 (0.05-0.7)
Jura 2 (1.6-2.5) 0.5 (0.2-0.9)

Neuchatel 2 (1.7-2.4) 0.6 (0.3-1)
Ticino 2.5 (2.1-3.1) 0.5 (0.3-0.9)
Vaud 3 (2.6-3.4) 0.5 (0.29-0.8)
Valais 2.2 (1.8-2.6) 0.4 (0.15-0.7)
Zurich 2.2 (1.8-2.6) 0.5 (0.26-0.8)

SM Table 6: Estimated proportion of population infected with SARS-CoV-2 as of April 24 2020. Estimates given in
terms of the median and 95% quantile range (in parenthesis).

Canton Proportion infected [%]

Switzerland 3.0 (2.7-3.4)
Berne 1.5 (1.1-2.1)
Basel-Landschaft 3.0 (2.3-4.1)
Basel-Stadt 4.9 (3.7-6.4)
Fribourg 3.2 (2.4-4.4)
Geneva 7.8 (6.6-9.9)
Graubünden 2.0 (1.4-3.3)
Jura 2.8 (1.7-4.1)
Neuchatel 4.8 (3.6-6.4)
Ticino 14.1 (11.6-17.7)
Vaud 6.0 (5.1-7.1)
Valais 4.6 (3.6-6.5)
Zurich 1.6 (1.3-2.1)
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SM Figure 5: Model fit at at national level. Model results are given in terms of the 95% (light gray) and 50% quantile
ranges of the smoothing distribution of R0 at the maximum likelihood estimates of inferred parameters. Data (points)
from Probst 2020

SM Figure 6: Cantonal level fits. Legend as in SM Figure 5. Data (points) from openZH 2020.

5 Mobility analysis

SM Figure 7 explores the cross-cantonal correlation between reduction in R0 and mobility changes.
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SM Figure 7: Cross-cantonal association between reductions in R0 and activity-related mobility. Left: Scatter plots
of maximal reduction in activity against maximal estimated reduction in R0, vertical error bars indicate the 95%
quantile range of R0. Right: correlation coefficients per activity.

6 Changepoint analysis

We used Bayesian changepoint models to infer dates of changes in R0 reduction using the mcp package in
R Lindeløv 2020. We test both models with one, two and three segments between two intercepts to cover
possible changes in the speed of decrease of R0 between assuming stable baseline and final post-NPI states
as observed in exploratory analysis. We used Bayesian leave-one-out cross-validation to select the number
of changepoints Vehtari, Gelman, and Gabry 2017.

SM Figure 8: Cantonal-level probability that R0 was below one at dates of NPIs. National scale probability denoted
by ’CH’. NPI numbers correspond to 1) Ban of events of more than 1000 people on February 28, 2) School closure
on March 13, 3) Closure of all non-essential commercial activities on March 16, 4) Ban of gatherings of more than 5
people and recommended home isolation on March 20.
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SM Figure 9: Date at which R0 fell below 1. Estimates are shown in terms of the median (point), IQR (thick error
bars) and 95% quantile range (error bars). National crossing date denoted by ’CH’.

SM Figure 10: Changepoints of R0 and dates of NPIs. Left: Dates of initiation and stabilization of reduction
in R0 based on changepoint models with single slope in terms of the median (points), IQRs (thick error bars)
and 95% quantile ranges (error bars). Right: Posterior probabilities that R0 started decreasing before the date of
implementation of NPIs as described in Figure 1 of the main text. National-level estimates are denoted by ’CH’.
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SM Table 7: Model comparison results of changepoint models applied to estimated R0 time series. We considered
models with two plateaus connected by either one (model1), two (model2) or three (model3) distinct slopes. Model
comparison was performed by Bayesian leave-one-out cross-validation Vehtari, Gelman, and Gabry 2017. Difference
in estimated log pointwise predictive density (elpd) between two models are considered significant if their absolute
value is larger than 5 times their standard error (SE). The best fitting model is ordered first for each canton. National
scale models denoted by ’CH’.

Canton Model elpd difference SE significant

BE model3 0.0000000 0.0000000
BE model2 -0.6675670 1.2140749 FALSE
BE model1 -94.8766837 12.1712432 TRUE

BL model3 0.0000000 0.0000000
BL model2 -0.2864307 0.4527180 FALSE
BL model1 -8.9822685 2.1418540 FALSE

BS model3 0.0000000 0.0000000
BS model2 -2.5160741 0.8680027 FALSE
BS model1 -205.6078012 22.6092620 TRUE

CH model3 0.0000000 0.0000000
CH model2 -63.7843668 12.0206299 TRUE
CH model1 -63.8752597 16.2223803 FALSE

FR model3 0.0000000 0.0000000
FR model2 -4.7053226 2.1881538 FALSE
FR model1 -12.1537456 6.1634667 FALSE

GE model3 0.0000000 0.0000000
GE model2 -9.1269377 5.4125328 FALSE
GE model1 -21.9255808 9.0988603 FALSE

GR model3 0.0000000 0.0000000
GR model2 -5.3913506 4.6699981 FALSE
GR model1 -73.8487168 13.1231392 TRUE

JU model2 0.0000000 0.0000000
JU model3 -47.0447743 7.2033450 TRUE
JU model1 -53.7500523 9.3085257 TRUE

NE model3 0.0000000 0.0000000
NE model2 -8.2987815 4.4514442 FALSE
NE model1 -19.3360196 6.5748078 FALSE

TI model3 0.0000000 0.0000000
TI model2 -48.6373831 8.7871880 TRUE
TI model1 -65.4690638 14.8095040 FALSE

VD model3 0.0000000 0.0000000
VD model1 -40.4790495 16.2094131 FALSE
VD model2 -60.3699654 6.6993957 TRUE

VS model3 0.0000000 0.0000000
VS model2 -13.8340777 3.8148460 FALSE
VS model1 -22.0766069 5.1957260 FALSE

ZH model2 0.0000000 0.0000000
ZH model3 -23.2795225 5.4139018 FALSE
ZH model1 -31.6578508 5.8042425 TRUE
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SM Figure 11: Changpoints in activity-related mobility. Dates of initiation and stabilization of reduction in each
type of mobility based on changepoint models with single slope in terms of the median (points), IQRs (thick error
bars) and 95% quantile ranges (error bars). National-level estimates are in panel ’CH’.
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SM Figure 12: Posterior probabilities that activity-related mobility started decreasing before the date of implemen-
tation of NPIs as described in Figure 1 of the main text. National-level estimates are denoted by ’CH’.

SM Figure 13: Google trends for COVID-19 and changes in R0 in Switzerland. Trends corresponds to the keyword
”coronavirus” (red line), time evolution of R0 from the main text.
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SM Figure 14: Proportion the reduction in the effective reproduction number Reff

linked to depletion of susceptibles due to buildup of community immunity.
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