Locus	Putative	Expression-	Biological relevance, experimental functional evidence, somatic alterations, familial
	target	based linking	syndromes
	gene(s)	(GTEx V8)	
1p31.1	PTGER3	PTGER3 (7	PTGER3 encodes Prostaglandin E Receptor 3, a receptor for prostaglandin E2 (PGE2), a
		tissues)	potent pro-inflammatory metabolite that is biosynthesized by Cyclooxygenase-2 (COX-2).
			COX-2 plays a critical role in mediating inflammatory responses that lead to epithelial
			malignancies and its expression is induced by NF- $\kappa\beta$ and TNF- α . The anti-inflammatory
			activity of nonsteroidal anti-inflammatory drugs (NSAIDs) such as aspirin and ibuprofen
			operates mainly through COX-2 inhibition, and long-term NSAID use decreases incidence
			and mortality from CRC.[1] Prostaglandin E2 (PGE2) is required for the activation of β -
			catenin by Wnt in stem cells,[2] and promotes colon cancer cell growth.[3] Prostaglandin
			E Receptor 3 plays an important role in suppression of cell growth and its downregulation
			was shown to enhance colon carcinogenesis.[4] Hypermethylation may contribute to its
			downregulation in colon cancer.[4]
2q21.3	LCT		Lead SNP rs1446585 is in strong LD with the functional SNP rs4988235 (LD $r^2 = 0.854$)
			in the cis-regulatory element of the lactase gene. In Europeans, the rs4988235 genotype
			determines the autosomal dominant lactase persistence phenotype, or the ability to digest
			the milk sugar lactose in adulthood. The allele determining lactase persistence (T) is
			associated with a decreased risk of CRC. This is consistent with a previous candidate
			study that reported a significant association between low lactase activity defined by the
			CC genotype and CRC risk in the Finnish population.[5] The protective effect conferred

Supplementary Table 4. Most likely target gene(s) at the 13 new loci identified across the CRC case subgroup analyses.

			by the lactase persistence genotype is likely mediated by dairy products and calcium
			which are known protective factors for CRC.[6] Consistent with a dominant model,
			associations for rs1446585 and rs4988235 became more significant when tested assuming
			a dominant model with <i>P</i> -values of 4.4×10^{-11} and 1.4×10^{-9} , respectively (see main text).
3p22.2	MLH1	<i>MLH1</i> (14	Previous candidate gene studies have reported strong and robust associations between the
		tissues)	common, <i>MLH1</i> gene promoter region and lead SNP rs1800734, and sporadic CRC cases
			with high microsatellite instability (MSI-H) status with consistent direction of effects.[7,8]
			Rare deleterious nonsynonymous mutations in the DNA mismatch repair (MMR) gene
			<i>MLH1</i> are a cause of Lynch syndrome (OMIM #609310). The risk allele of the likely
			causal SNP rs1800734 showed a strong association with MLH1 promoter
			hypermethylation and loss of MLH1 protein in CRC tumors.[8] The mechanisms of MLH1
			promoter hypermethylation and subsequent gene silencing may account for most sporadic
			CRC tumors with defective DNA MMR and MSI-H.[9]
3p21.2	STAB1;	<i>STAB1</i> (10	This signal is located in a gene dense region. The Stabilin 1 (STAB1) gene encodes an
	TLR9;	tissues); TLR9	endocytotic scavenger receptor expressed in a number of cell types, including activated
	NISCH	(3 tissues);	macrophages in human malignancies.[10] A rare missense variant in STAB1 has
		NISCH (4	previously shown to be strongly associated with serum lactate dehydrogenase (LDH)
		tissues)	levels,[11] a widely used marker of tissue damage, affirming a link between STAB1 and
			the clearance of products of cell lysis through the mononuclear phagocytic system. Human
			Protein Atlas data based on The Cancer Genome Atlas (TCGA) show that STAB1
			expression is an unfavorable prognostic marker for CRC (logrank test P=0.0008, based on
			maximally separated Kaplan-Meier curves; <i>n</i> samples=597). Lead SNP rs353548 is

			located in an intron of the toll like receptor 9 (<i>TLR9</i>) gene which could also be involved.
			This key component of innate and adaptive immunity is a drug target for many immune-
			mediated diseases, and the antagonist drug hydroxychloroquine is included in
			chemotherapy combination clinical trials for colorectal carcinoma (ClinicalTrials.gov
			Identifier: NCT01006369). The Nischarin (<i>NISCH</i>) gene encodes an α5 integrin-binding
			protein and may be a tumor suppressor gene that limits breast cancer progression.[12]
			Nischarin inhibits Rac-induced cell migration and invasion in breast and colon epithelial
			cells.[13]
5q32	CDX1		The intestine-specific transcription factor caudal-type homeobox 1(CDX1) encodes a key
			regulator of differentiation of enterocytes in the normal intestine and of CRC cells. CDX1
			is central to the capacity of colon cells to differentiate and promotes differentiation by
			repressing the polycomb complex protein BMI1 which promotes stemness and self-
			renewal. Colonic crypt cells express BMI1 but not CDX1. The repression of BMI1 is
			mediated by microRNA-215 which acts as a target of CDX1 to promote differentiation
			and inhibit stemness.[14] Consistent with this view, CDX1 has been shown to inhibit
			human colon cancer cell proliferation by blocking β -catenin/T-cell factor transcriptional
			activity.[15]
7q32.3	KLF14;	LINC00513	The Krüppel-like factor 14 (<i>KLF14</i>) gene is a strong candidate involved in TGF- β
	LINC00513	(transverse	signaling. We previously reported loci at known CRC oncogene KLF5 and at KLF2.[16]
		$\operatorname{colon} + 2$	The imprinted gene <i>KLF14</i> shows monoallelic maternal expression, and is induced by
		tissues)	TGF- β to transcriptionally corepress the TGF-beta receptor II (<i>TGFBR2</i>) gene.[17] A cis-
			eQTL for <i>KLF14</i> , that is uncorrelated with our lead SNP rs73161913, acts as a master

			regulator related to multiple metabolic phenotypes, [18,19] and an independent variant in
			this region has been associated to basal cell carcinoma.[20] The signal overlaps with an
			eQTL for the lncRNA gene <i>LINC00513</i> which may be involved in the regulation of
			KLF14 expression.
10q23.31	PANK1;	PANK1	At 10q23.31, GTEx data show that the lead SNP rs7071258 is an eQTL in transverse
	KIF20B	(transverse	colon tissue for genes Pantothenate Kinase 1 (PANK1) and Kinesin Family Member 20B
		colon + 3	(KIF20B). The enzyme encoded by PANK1 catalyzes the rate-limiting reaction in the
		tissues);	biosynthesis of coenzyme A and may play a role in tumor metabolism.[21] KIF20B has
		KIF20B	been suggested to play an oncogenic role in bladder carcinogenesis.[22] KIF20B missense
		(transverse	variant rs34354493 (canonical transcript, p.Lys1609Glu) is in high LD with the lead
		colon + 7	variant ($r^2=0.90$) and is predicted to be deleterious by multiple algorithms (CADD,
		tissues)	DANN, Polyphen, SIFT).
14q22.1	PYGL;	PYGL	GTEx data show that, in gastrointestinal tissues, the lead SNP is a <i>cis</i> -eQTL co-regulating
	NIN;	(transverse	expression of genes PYGL, ABHD12B, and NIN. Glycogen Phosphorylase L (PYGL) is the
	ABHD12B	colon + 12	strongest candidate. We recently identified and replicated an association between
		tissues);	genetically predicted PYGL expression and CRC risk in a transcriptome-wide association
		ABHD12B	study that used transverse colon tissue transcriptomes and genotypes from GTEx to
		(transverse	construct prediction models.[23] Favaro et al. showed that this glycogen metabolism gene
		colon + 8	plays an important role in sustaining proliferation and preventing premature senescence in
		tissues); NIN	hypoxic cancer cells.[24] In different cancer cells lines, silencing of PYGL, expression of
		(transverse	which is induced by exposure to hypoxia, led to increased glycogen accumulation and

		colon + 2	increased reactive oxygen species levels that contributed to p53-dependent induction of
		tissues)	senescence and impaired tumorigenesis.[24]
14q32.12	RIN3	RIN3	Lead SNP rs61975764 is an eQTL for gene Ras And Rab Interactor 3 (RIN3) in colon
		(transverse	tissue, the risk allele G being associated with decreased expression. RIN3 functions as a
		colon + 11	RAB5 and RAB31 guanine nucleotide exchange factor involved in endocytosis.[25,26]
		tissues)	
14q32.2	BCL11B		The lead SNP rs80158569 of this highly localized proximal colon-specific association
			signal is located in a normal colonic crypt enhancer region and overlaps with multiple
			transcription factor binding sites, making it a strong functional candidate. The nearby gene
			BCL11B encodes a transcription factor that is required for normal T cell
			development,[27,28] and that has been identified as a SWI/SNF complex subunit.[29]
			BCL11B acts as a haploinsufficient tumor suppressor in T-cell acute lymphoblastic
			leukemia (T-ALL).[30,31] Experimental work reported by Sakamaki et al. suggests that
			impairment of Bcl11b promotes intestinal tumorigenesis in mice and humans through
			deregulation of the β -catenin pathway.[32]
19p13.3	STK11;		This signal is located in a gene-dense region. Lead SNP rs62131228 is intronic to gene
	SBNO2		Strawberry notch homologue 2 (SBNO2), a transcriptional corepressor of NF- $\kappa\beta$ in
			macrophages that plays a role in the STAT3-regulated anti-inflammatory signaling
			pathway.[33] The nearby tumor suppressor gene Serine/Threonine Kinase 11 (STK11) is
			an especially plausible candidate effector gene. Mutations in this gene cause Peutz-Jeghers
			syndrome (OMIM #175200), an autosomal dominant disorder characterized by the growth

			of hamartomatous gastrointestinal polyps and an increased risk of various
			neoplasms.[34,35]
20q13.31	BMP7	<i>BMP7</i> (3	The Bone Morphogenetic Protein 7 (BMP7) gene is a strong candidate. In normal
		tissues)	intestinal cell crypts, various gradients of TGF- β family members interact with the
			antagonistic Wnt signaling pathway to maintain homeostasis. Members of the TGF- β
			family, including several bone morphogenetic proteins (BMPs), frequently have somatic
			mutations in sporadic CRC tumors, have been implicated by GWASs, and germline
			mutations are causative for familial CRC syndromes.[36] BMP7 signaling in TGFBR2-
			deficient stromal cells promotes epithelial carcinogenesis through SMAD4-mediated
			signaling.[37] In CRC tumors, BMP7 expression correlates with parameters of
			pathological aggressiveness such as liver metastasis and poor prognosis.[38]
22q13.31	FAM118A;	FAM118A	GTEx data show that the lead SNP rs736037 is an eQTL for gene FAM118A in many
	FBLN1	(transverse	tissues, including transverse colon. The function of <i>FAM118A</i> is poorly understood.
		colon + 40	FAM118A missense variant rs6007594 (canonical transcript, p.Arg239His) is in high LD
		tissues)	with the lead variant rs736037 (r^2 =0.96) and is predicted to be deleterious by multiple
			algorithms (CADD, DANN, Polyphen). The protein encoded by the nearby Fibulin 1
			(FBLN1) gene plays a role in the organization and function of the extracellular matrix and
			basement membranes. FBLN1 has been implicated in tumor-related processes and both
			oncogenic and tumor-suppressive properties have been described for this protein.[39]
			Other genes in the region are no obvious candidates.

References

- 1 Jänne PA, Mayer RJ. Chemoprevention of colorectal cancer. *N Engl J Med* 2000;**342**:1960–8. doi:10.1056/NEJM200006293422606
- 2 Goessling W, North TE, Loewer S, *et al.* Genetic interaction of PGE2 and Wnt signaling regulates developmental specification of stem cells and regeneration. *Cell* 2009;**136**:1136–47. doi:10.1016/j.cell.2009.01.015
- 3 Castellone MD, Teramoto H, Williams BO, *et al.* Prostaglandin E2 promotes colon cancer cell growth through a Gs-axin-betacatenin signaling axis. *Science* 2005;**310**:1504–10. doi:10.1126/science.1116221
- 4 Shoji Y, Takahashi M, Kitamura T, *et al.* Downregulation of prostaglandin E receptor subtype EP3 during colon cancer development. *Gut* 2004;**53**:1151–8. doi:10.1136/gut.2003.028787
- 5 Rasinperä H, Forsblom C, Enattah NS, *et al.* The C/C-13910 genotype of adult-type hypolactasia is associated with an increased risk of colorectal cancer in the Finnish population. *Gut* 2005;**54**:643–7. doi:10.1136/gut.2004.055939
- 6 World Cancer Research Fund/American Institute for Cancer Research. Continuous Update Project Expert Report 2018. Diet, nutrition, physical activity and colorectal cancer. *Available at dietandcancerreport.org*
- 7 Raptis S, Mrkonjic M, Green RC, *et al.* MLH1 -93G>A promoter polymorphism and the risk of microsatellite-unstable colorectal cancer. *J Natl Cancer Inst* 2007;**99**:463–74. doi:10.1093/jnci/djk095
- 8 Mrkonjic M, Roslin NM, Greenwood CM, *et al.* Specific variants in the MLH1 gene region may drive DNA methylation, loss of protein expression, and MSI-H colorectal cancer. *PLoS One* 2010;**5**:e13314. doi:10.1371/journal.pone.0013314
- 9 Cunningham JM, Christensen ER, Tester DJ, *et al.* Hypermethylation of the hMLH1 promoter in colon cancer with microsatellite instability. *Cancer Res* 1998;**58**:3455–60.
- 10 Schönhaar K, Schledzewski K, Michel J, *et al.* Expression of stabilin-1 in M2 macrophages in human granulomatous disease and melanocytic lesions. *Int J Clin Exp Pathol* 2014;7:1625–34.
- 11 Kristjansson RP, Oddsson A, Helgason H, *et al.* Common and rare variants associating with serum levels of creatine kinase and lactate dehydrogenase. *Nat Commun* 2016;7:10572. doi:10.1038/ncomms10572
- 12 Baranwal S, Wang Y, Rathinam R, *et al.* Molecular characterization of the tumor-suppressive function of nischarin in breast cancer. *J Natl Cancer Inst* 2011;**103**:1513–28. doi:10.1093/jnci/djr350
- 13 Alahari SK. Nischarin inhibits Rac induced migration and invasion of epithelial cells by affecting signaling cascades involving PAK. *Exp Cell Res* 2003;**288**:415–24.
- 14 Jones MF, Hara T, Francis P, *et al.* The CDX1-microRNA-215 axis regulates colorectal cancer stem cell differentiation. *Proc Natl Acad Sci USA* 2015;**112**:E1550-8. doi:10.1073/pnas.1503370112
- 15 Guo R-J, Huang E, Ezaki T, *et al.* Cdx1 inhibits human colon cancer cell proliferation by reducing beta-catenin/T-cell factor transcriptional activity. *J Biol Chem* 2004;**279**:36865–75. doi:10.1074/jbc.M405213200
- 16 Huyghe JR, Bien SA, Harrison TA, et al. Discovery of common and rare genetic risk variants for colorectal cancer. Nat Genet

2019;51:76-87. doi:10.1038/s41588-018-0286-6

- 17 Truty MJ, Lomberk G, Fernandez-Zapico ME, *et al.* Silencing of the transforming growth factor-beta (TGFbeta) receptor II by Kruppel-like factor 14 underscores the importance of a negative feedback mechanism in TGFbeta signaling. *J Biol Chem* 2009;**284**:6291–300. doi:10.1074/jbc.M807791200
- 18 Small KS, Hedman AK, Grundberg E, *et al.* Identification of an imprinted master trans regulator at the KLF14 locus related to multiple metabolic phenotypes. *Nat Genet* 2011;**43**:561–4. doi:10.1038/ng.833
- 19 Small KS, Todorčević M, Civelek M, *et al.* Regulatory variants at KLF14 influence type 2 diabetes risk via a female-specific effect on adipocyte size and body composition. *Nat Genet* 2018;**50**:572–80. doi:10.1038/s41588-018-0088-x
- 20 Stacey SN, Sulem P, Masson G, *et al.* New common variants affecting susceptibility to basal cell carcinoma. *Nat Genet* 2009;**41**:909–14. doi:10.1038/ng.412
- 21 Wang S-J, Yu G, Jiang L, *et al.* p53-Dependent regulation of metabolic function through transcriptional activation of pantothenate kinase-1 gene. *Cell Cycle* 2013;**12**:753–61. doi:10.4161/cc.23597
- 22 Kanehira M, Katagiri T, Shimo A, *et al.* Oncogenic role of MPHOSPH1, a cancer-testis antigen specific to human bladder cancer. *Cancer Res* 2007;**67**:3276–85. doi:10.1158/0008-5472.CAN-06-3748
- 23 Bien SA, Su Y-R, Conti DV, *et al.* Genetic variant predictors of gene expression provide new insight into risk of colorectal cancer. *Hum Genet* 2019;**138**:307–26. doi:10.1007/s00439-019-01989-8
- 24 Favaro E, Bensaad K, Chong MG, *et al.* Glucose utilization via glycogen phosphorylase sustains proliferation and prevents premature senescence in cancer cells. *Cell Metab* 2012;**16**:751–64. doi:10.1016/j.cmet.2012.10.017
- 25 Kajiho H, Saito K, Tsujita K, *et al.* RIN3: a novel Rab5 GEF interacting with amphiphysin II involved in the early endocytic pathway. *J Cell Sci* 2003;**116**:4159–68. doi:10.1242/jcs.00718
- 26 Kajiho H, Sakurai K, Minoda T, *et al.* Characterization of RIN3 as a guanine nucleotide exchange factor for the Rab5 subfamily GTPase Rab31. *J Biol Chem* 2011;**286**:24364–73. doi:10.1074/jbc.M110.172445
- 27 Avram D, Califano D. The multifaceted roles of Bcl11b in thymic and peripheral T cells: impact on immune diseases. *J Immunol* 2014;**193**:2059–65. doi:10.4049/jimmunol.1400930
- 28 Punwani D, Zhang Y, Yu J, et al. Multisystem Anomalies in Severe Combined Immunodeficiency with Mutant BCL11B. N Engl J Med 2016;375:2165–76. doi:10.1056/NEJMoa1509164
- 29 Kadoch C, Hargreaves DC, Hodges C, *et al.* Proteomic and bioinformatic analysis of mammalian SWI/SNF complexes identifies extensive roles in human malignancy. *Nat Genet* 2013;**45**:592–601. doi:10.1038/ng.2628
- 30 Gutierrez A, Kentsis A, Sanda T, *et al.* The BCL11B tumor suppressor is mutated across the major molecular subtypes of T-cell acute lymphoblastic leukemia. *Blood* 2011;**118**:4169–73. doi:10.1182/blood-2010-11-318873
- 31 Neumann M, Vosberg S, Schlee C, *et al.* Mutational spectrum of adult T-ALL. *Oncotarget* 2015;**6**:2754–66. doi:10.18632/oncotarget.2218
- 32 Sakamaki A, Katsuragi Y, Otsuka K, et al. Bcl11b SWI/SNF-complex subunit modulates intestinal adenoma and regeneration

after γ-irradiation through Wnt/β-catenin pathway. Carcinogenesis 2015;36:622-31. doi:10.1093/carcin/bgv044

- 33 El Kasmi KC, Smith AM, Williams L, *et al.* Cutting edge: A transcriptional repressor and corepressor induced by the STAT3regulated anti-inflammatory signaling pathway. *J Immunol* 2007;**179**:7215–9. doi:10.4049/jimmunol.179.11.7215
- 34 Hemminki A, Tomlinson I, Markie D, *et al.* Localization of a susceptibility locus for Peutz-Jeghers syndrome to 19p using comparative genomic hybridization and targeted linkage analysis. *Nat Genet* 1997;**15**:87–90. doi:10.1038/ng0197-87
- 35 Hemminki A, Markie D, Tomlinson I, *et al.* A serine/threonine kinase gene defective in Peutz-Jeghers syndrome. *Nature* 1998;**391**:184–7. doi:10.1038/34432
- 36 Jung B, Staudacher JJ, Beauchamp D. Transforming Growth Factor β Superfamily Signaling in Development of Colorectal Cancer. *Gastroenterology* 2017;**152**:36–52. doi:10.1053/j.gastro.2016.10.015
- 37 Eikesdal HP, Becker LM, Teng Y, *et al.* BMP7 Signaling in TGFBR2-Deficient Stromal Cells Provokes Epithelial Carcinogenesis. *Mol Cancer Res* 2018;**16**:1568–78. doi:10.1158/1541-7786.MCR-18-0120
- 38 Motoyama K, Tanaka F, Kosaka Y, *et al.* Clinical significance of BMP7 in human colorectal cancer. *Ann Surg Oncol* 2008;**15**:1530–7. doi:10.1245/s10434-007-9746-4
- 39 Fontanil T, Mohamedi Y, Cobo T, *et al.* Novel associations within the tumor microenvironment: fibulins meet adamtss. *Front Oncol* 2019;**9**:796. doi:10.3389/fonc.2019.00796