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Appendix A Stochastic simulation

We consider a stochastic epidemiological model across a country with population P that
consists of the sub-populations, S (susceptible), I (undocumented infected), A (con-
firmed active), R (confirmed recovered), D (confirmed death), and Ru (undocumented
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recovered). Individuals from these sub-populations interact according to the events

E1 : S + I

α0+
α

1 + U(A,R,D)n
−−−−−−−−−−−−−−−→ 2I,

E2 : I
γ→ A,

E3 : A
β→ R,

E4 : A
δ→ D,

E5 : I
ηβ→ Ru,

where U(A,R,D) is the utility function of observables, and model parameters related to
the event rates are α0 > 0, α > 0, n ≥ 0, γ > 0, β > 0, γ > 0, δ > 0, and η > 0. Let
Xt = [St, It, At, Rt, Dt, R

u
t ]T be the state vector of sub-population counts at time t > 0,

and assume a well-mixed population of size P .
Conditional on the state Xt, the waiting time to the next occurrence of event Ej is

assumed to be exponentially distributed with rate parameter hj(Xt), where hj(Xt) is the
hazard function for Ej. The hazard functions can be interpreted as the instantaneous
rate of events conditional on the current state. The hazard functions of our model are:

h1(Xt) =

(
α0 +

α

1 + U(At, Rt, Dt)n

)
StIt
P

,

h2(Xt) = γIt,

h3(Xt) = βAt,

h4(Xt) = δDt,

h5(Xt) = ηβIt.

Should event j occur, the state vector is updated by adding the state change vector νj. For
our model we have, ν1 = [−1, 1, 0, 0, 0, 0]T, ν2 = [0,−1, 1, 0, 0, 0]T, ν3 = [0, 0,−1, 1, 0, 0]T,
ν4 = [0, 0,−1, 0, 1, 0]T, and ν5 = [0,−1, 0, 0, 0, 1]T. The resulting stochastic process,
{Xt}t≥0, is a discrete-state, continuous-time Markov process that can be described by

Xt = X0 +
5∑
j=1

Yj (λj(t)) νj,

where X0 is the initial state vector, νj is the state change that occurs under event j,
and Yj (λj(t)) is a non-homogeneous Poisson process for event j with time-dependent

rate λj(t) =
∫ t
0
hj(Xs)ds. While exact realisations of this process can be generated using

event-based simulation, this is prohibitive within an approximate Bayesian computational
setting. Therefore, we apply a first order approximation to the integral over the interval
[t, t+ τ) to obtain the tau-leaping approximation [3],

Xt+τ = Xt +
5∑
j=1

Yj (hj(Xt)τ) νj +O(τ),

where Yj (hj(Xt)τ) ∼ Poisson (hj(Xt)τ) counts the number of times event j occurs in
the interval [t, t + τ). For our simulations we use τ = 1/2 (days), and initial condition
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X0 = [P −κA0− (A0 +R0 +D0), κA0, A0, R0, D0, 0], where A0, R0 and D0 come from the
Johns Hopkins University COVID-19 data.

The novelty of our model is the inclusion of the utility function in the transmission
process. This enable complex nonlinear dynamics arising form continuous changes in com-
munity responses over time, without explicit modelling of specific intervention dynamics.
As a result, we are able to analyse the overall effect of interventions and community
responses across diverse regions.
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Appendix B Approximate Bayesian computation

We apply Bayesian inference to quantify uncertainty in the model parameters θ =
[α0, α, β, γ, δ, η, n, κ] for country i using Johns Hopkins University data Di. Again, we
omit the country index i for notational convenience. Since the full model state vector
is only partially observable, the exact likelihood is intractable. We apply approximate
Bayesian computation (ABC), that samples from an approximation to the posterior for
each country,

p(θ | D) ≈ p(θ | ρ(D,Ds) ≤ ε) ∝ P(ρ(D,Ds) ≤ ε | θ)p(θ),

where D is the COVID-19 data for the country of interest, Ds ∼ s(· | θ) is simulated data,
ρ(D,Ds) is a discrepancy metric, ε is the discrepancy threshold and p(θ) is the prior. For
our implementation, we apply the discrepancy metric,

ρ(D,Ds) =

(
Td∑
t=1

(At − At,s)2 + (Rt −Rt,s)
2 + (Dt −Dt,s)

2

)1/2

where D = [{At, Rt, Dt}t≥0] is the data and Ds = [{At,s, Rt,s, Dt,s}t≥0] is simulated data.
We apply a sequential Monte Carlo scheme to move an initial set of Np samples from

the prior through a sequence of ABC approximations defined by a decreasing sequence of
T discrepancy thresholds, ε1 > ε2 > · · · > εT = ε. Our particular implementation (Algo-
rithm 1), based on the work of Drovandi and Pettit [2], adaptively selects the acceptance
thresholds and utilises MCMC steps using tuned Gaussian random walk proposals for
the move steps.
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Algorithm 1 Adaptive SMC sampler for approxmate Bayesian computation

1: Initialise Na = aNp, N` = Np −Na

2: for j ∈ [1, 2, . . . , Np] do
3: Sample prior, θ∗ ∼ p(·) and simulate model, Ds ∼ s(· | θ∗);
4: Set ρj ← ρ(D,Ds);
5: end for
6: repeat
7: Sort particles {(θj, ρj)}Np

j=1, such that ρj ≤ ρj+1 for all j ∈ [1, 2, . . . , Np − 1];

8: Remove particles {(θj, ρj)}Np

j=N`+1 an set ε← ρN`
;

9: Resample particles {θj}Np

j=N`+1 from {(θj)}N`
j=1 with replacement;

10: Estimate Σ̂ of {θj}Np

j=1 and adapt proposal kernel q(u | v) = φ
(
u; v, (2.38/8)Σ̂

)
;

11: Set pacc ← 0;
12: for j ∈ [N` + 1, N` + 2, . . . , Np] do
13: for k ∈ [1, 2, . . . , Rtrial] do
14: Generate proposal, θ∗ ∼ q(· | θj) and sample u ∼ U(0, 1);

15: if u ≤ min

(
1,
p(θ∗)q(θj | θ∗)
p(θj)q(θ∗ | θj)

)
then

16: Simulate model Ds ∼ s(· | θ∗);
17: if ρ(Di,Ds) ≤ ε then
18: Set θj ← θ∗, ρj ← ρ(Di,Ds), and pacc ← pacc + (RtrialNa)

−1;
19: end if
20: end if
21: end for
22: end for
23: Set R← log c/ log(1− pacc);
24: for j ∈ [N` + 1, N` + 2, . . . , Np] do
25: for k ∈ [1, 2, . . . , R−Rtrial] do
26: Generate proposal, θ∗ ∼ q(· | θj) and sample u ∼ U(0, 1);

27: if u ≤ min

(
1,
p(θ∗)q(θj | θ∗)
p(θj)q(θ∗ | θj)

)
then

28: Simulate model Ds ∼ s(· | θ∗);
29: if ρ(Di,Ds) ≤ ε then
30: Set θj ← θ∗, ρj ← ρ(Di,Ds), and pacc ← pacc + (RNa)

−1;
31: end if
32: end if
33: end for
34: end for
35: until pacc < pmin
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Appendix C Estimation of R0 and Re

Here, we derive the form of the basic reproductive number, R0, for our model under the
assumption of a mean-field approximation. The basic reproduction number after regula-
tion (denoted Re), takes the same form but evaluates the utility function for observables
at the end of the time series. We follow the method of Diekmann et al. [1]. That is,
we linearize the infectious subsystem, compute the next generation matrix, and find the
dominant eigenvalue about the fully susceptible population state.

The linearized mean-field infectious subsystem is (See Diekmann et al. [1]),

dI

dt
= (α0 +

α

1 + un
)I − (γ + ηβ)I,

dA

dt
= γI − (β + δ)A,

where u is a prescribed constant representing regulatory strength. For computing R0,
u = 0 whereas for Re we set u = CT . The Jacobian matrix is decomposed into the
transmission matrix,

T =

[
α0 + α

1+un
0

0 0

]
and the transition matrix

Σ =

[
−(γ + ηβ) 0

γ −(β + δ)

]
.

The next generation matrix is prescribed by K = −TΣ−1, that is,

K = −

[
α0 +

α

1 + un
0

0 0

] − 1

γ + ηβ
0

− γ

(γ + ηβ)(β + δ)
− 1

β + δ

 =

α0 + α
1+un

γ + ηβ
0

0 0

 .

Since det(K) = 0 we haveR0 = trace(K). Therefore, R0 =
α0 + α

γ + ηβ
, andRe =

α0 + α
1+Cn

T

γ + ηβ
where CT is the cumulative number of confirmed cases at the end of the data time series.
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Appendix D Marginal posterior comparisons

This section includes box-plots for comparison of posterior distributions across countries
for each model parameter for the two time periods 22 January–31 March 2020 (Fig. 1–4)
and 22 January–13 April 2020 (Fig. 5–8). For reference, Table 1 provides the ISO-3166
alpha3 codes for each country.

Table 1: Lookup table of Country names by ISO-3166 alpha3 codes

Country Code Country Name Country Code Country Name
AFG Afghanistan JPN Japan
ALB Albania KAZ Kazakhstan
AND Andorra KHM Cambodia
ARE United Arab Emirates KOR South Korea
ARG Argentina KWT Kuwait
ARM Armenia LBN Lebanon
AUS Australia LKA Sri Lanka
AUT Austria LTU Lithuania
AZE Azerbaijan LUX Luxembourg
BEL Belgium LVA Latvia
BFA Burkina Faso MAR Morocco
BGR Bangladesh MDA Moldova
BHR Bahrain MEX Mexico
BIH Bosnia and Herzegovina MKD North Macedonia
BRA Brazil MLT Malta
BRN Brunei MUS Mauritius
CAN Canada MYS Malaysia
CHE Switzerland NGA Nigeria
CHL Chile NLD Netherlands
CHN China NOR Norway
CIV Cote d’Ivoire NZL New Zealand
CMR Camaroon OMN Oman
COL Columbia PAK Pakistan
CRI Costa Rica PAN Panama
CUB Cuba PER Peru
CYP Cyprus PHL Philippines
CZE Czechia POL Poland
DEU Germany PRT Portugal
DNK Denmark PSE Palestine
DOM Dominican Republic QAT Qatar
DZA Algeria ROU Romania
ECU Ecuador RUS Russia
EGY Egypt SAU Saudi Arabia
ESP Spain SEN Senegal
EST Estonia SGP Singapore
FIN Finland SMR San Marino
FRA France SRB Serbia
GBR United Kingdom SVK Slovakia
GHA Ghana SVN Slovenia
GRC Greece SWE Sweden
HND Honduras THA Thailand
HRV Croatia TUN Tunisia
HUN Hungary TUR Turkey
IDN Indonesia TWN Taiwan
IND India UKR Ukraine
IRL Republic of Ireland URY Uruguay
IRN Iran USA United States
IRQ Iraq UZB Uzbekistan
ISL Iceland VEN Venezuela
ISR Israel VNM Vietnam
ITA Italy ZAF South Africa
JOR Jordan
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Figure 1: Box plots comparing marginal posterior distributions by country over the period
22 January–31 March 2020 for transmission rate parameters α0 (left) and α (right).
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Figure 2: Box plots comparing marginal posterior distributions by country over the period
22 January–31 March 2020 for case recovery rate parameter β (left) and case death rate
δ (right).
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Figure 3: Box plots comparing marginal posterior distributions by country over the
period 22 January–31 March 2020 for initial infected scale parameter κ (left) and relative
recovery rate η (right).
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Figure 4: Box plots comparing marginal posterior distributions by country over the period
22 January–31 March 2020 for identification rate γ (left) and regulatory parameter n
(right).
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Figure 5: Box plots comparing marginal posterior distributions by country over the period
22 January–13 April 2020 for transmission rate parameters α0 (left) and α (right).
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Figure 6: Box plots comparing marginal posterior distributions by country over the period
22 January–13 April 2020 for case recovery rate parameter β (left) and case death rate δ
(right).
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Figure 7: Box plots comparing marginal posterior distributions by country over the period
22 January–13 April 2020 for initial infected scale parameter κ (left) and relative recovery
rate η (right).
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Figure 8: Box plots comparing marginal posterior distributions by country over the period
22 January–13 April 2020 for identification rate γ (left) and regulatory parameter n
(right).
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Appendix E Alternative utility functions

The results within the main text are based on the utility function U(At, Rt, Dt) = At +
Rt +Dt. That is transmission rate regulation is dependent on cumulative confirmed case
counts only. Other utility functions could be considered in a straightforward manner.
For illustration, we considered the possibility of a community being significantly more
sensitive to death counts by using the utility function U(At, Rt, Dt) = Dt. Point estimates
of regulatory parameters are provided in Fig. 9. It can be seen that under this scenario
the posterior predictive fitness was poor for many countries (See examples in Fig. 10). We
conclude that utility based on confirmed cases is more realistic, however, more general
forms could be considered by introducing region specific weighting parameters.

Figure 9: Pairwise scatter plots of point estimates of each assessed country (blue points,
with lines to indicate 95% CI) for the key parameters related to the management of an
COVID-19 outbreak up to 13 April 2020 using the death only utility function: regulatory
parameter n; detection rate γ; and the relative initial undocumented cases κ. (A) n versus
γ; (B) κ versus γ; and (C) κ versus n. The top ten countries for confirmed case counts
are highlighted (red) along with countries that have managed to control the outbreak are
highlighted (green). Labels identify the country by ISO-3166 alpha-3 code.

Figure 10: Examples of poor fits typical of the model when using the death only utility
function. We conclude that the cumulative case utility function is a more appropriate
specification for the global response pattern.
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