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S.1 Data

Health data

The Johns Hopkins University Center for Systems Science and Engineering (JHU-CSSE)

created and maintains a platform hosting worldwide coronavirus case and death count data at

the national and sub-national level that are updated in real time. For the US, these data are

provided by the US Centers for Disease Control and Prevention (CDC) and state goverment

at the county level. As of April 20, 2020, the CDC reports that COVID-19 testing is being

conducted at 97 public health laboratories across the US and territories. The CDC website

(1) says that COVID-19 deaths are identified using the International Statistical Classification

of Diseases and Related Health Problems (ICD) codes for cause of death recorded on death

certificates. The ICD-10 code indicating a COVID-19 related death is U07.1. The CDC

notes that deaths reported with this code “can include laboratory confirmed cases, as well

as cases without laboratory confirmation.” They also note that the data may be affected by

delays in reporting and by differential reporting practices across states (1).

Pollution data

We rely on modeled PM2.5 exposure estimates rather than monitored observations alone,

because air pollution monitors are sparsely distributed across the US, with a large majority

of counties not containing a monitor. Our primary PM2.5 modeled exposure estimates are

produced by van Donekelaar et al (2019) (2). They are created by fusing PM2.5 measures

from three different sources: ground-based monitors, GEOS-Chem chemical transport models

(CTM), and satellite observations. In short, CTM and satellite data are combined to estimate

a high-resolution PM2.5 surface across the whole US, then this surface is bias-corrected for

ground-monitor PM2.5 observations using a geographically-weighted regression. The cross-

validated R2 for these models in the US was reported to be 0.61, although the accuracy

varies across regions. For the primary analysis, the gridded data were aggregated to the
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county level using area-aggregation and then were averaged across the years 2000-2016. For

sensitivity analyses, we also considered the county-average PM2.5 on the year 2016 only,

created using an analogous procedure.

To assess the sensitivity of our results to the specific PM2.5 prediction model used to

generate exposure estimates, we also collect the estimated daily PM2.5 modeled exposure at

a high spatio-temporal resolution of 1 km × 1 km grid network across the whole US using

another well-validated ensemble-based prediction model (3). This model used ensemble

learning approaches to combine three machine learning models; a random forest regression,

a gradient boosting machine, and an artificial neural network. These machine learning

algorithms used more than 100 predictor variables from satellite data, land-use information,

weather variables, and output from chemical transport model simulations. We use the same

area-aggregation approach to aggregate the gridded data to the county level and then were

averaged across the years 2000-2016.

Potential Confounders

To adjust for confounding bias in the nationwide observational study, we use county

level variables from numerous public sources. Multiple socioeconomic and demographic

variables were collected from the 2000 and 2010 Census (https://www.census.gov), the

2005–2016 American Community Surveys (https://www.census.gov/programs-surveys/

acs/) and the 2009–2016 CDC Compressed Mortality File (https://www.cdc.gov/nchs/

data access/cmf.htm). Specifically, we collect the following 11 county level census vari-

ables: proportion of residents older than 65, proportion of residents 45-64, proportion of

residents 15-44, proportion of Hispanic residents, proportion of Black residents, median

household income, median home value, proportion of residents in poverty, proportion of

residents with a high school diploma, population density, and proportion of residents that

own their house. We also collect two county-level health risk factors: proportion of res-

idents obese and proportion of residents that are current smokers from the Robert Wood
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Johnson Foundation’s 2020 County Health Rankings (https://www.countyhealthrankings.

org/explore-health-rankings/rankings-data-documentation).

Certain features of the counties’ COVID-19 outbreaks and response and the accessibility

of health care may also confound the relationship between PM2.5 and COVID-19 mortality.

One particularly important feature is the county’s point on the epidemic curve at the time

of analysis. Although this feature is difficult to accurately measure, we approximate it using

time since first reported COVID-19 case. This information is also extracted from the JHU-

CSSE database (the same source used for the COVID-19 death counts). The database records

county-level case counts starting on March 22, 2020, meaning that our measure of time since

first COVID-19 case will be truncated by this date. Thus, the time since first COVID-19

case variable is formally defined as “days between April 22, 2020 and the later of March 22,

2020 of the date of the first COVID-19 case reported in the county”. States also issued “stay-

at-home/shelter-in-place” orders in response to the outbreak at different times, which likely

affected infection rates and could also be associated with PM2.5. Thus, we also adjust our

models for state-level time since implementation of stay-at-home/shelter-in-place order, ob-

tained from COVID-19 US state policy database (www.tinyurl.com/statepolicies). Dur-

ing the course of COVID-19 outbreak, the availability of adequate hospital resources and of

testing resources likely influence COVID-19 outcomes and these may also be more widely

available in urban areas where PM2.5 is also higher. We collect county-level information on

number of hospital beds available in 2019 from Homeland Infrastructure Foundation-Level

Data (HIFLD) and state-level information on number of COVID-19 tests performed up to

April 22, 2020 from the COVID tracking project (https://covidtracking.com/).

Meteorological variables are commonly adjusted for when studying the health impacts of

air pollution. We obtain meteorological variables on maximum daily temperature and relative

humidity data on 4km x 4km gridded rasters from Gridmet via Google Earth Engine (https:

//developers.google.com/earth-engine/datasets/catalog/IDAHO EPSCOR GRIDMET). We

average daily temperature and relative humidity for the summer (June-September) and win-
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ter (December-February) period respectively across the period 2000-2016 and average across

grid rasters in each county. We adjust for all four of these weather variables in our main

models. The data used for this study are publicly available and sources are listed in Table

1 of the main manuscript.

S.2 Statistical Modeling

For our main and secondary analyses, we fit Negative Binomial regression models with

a state-specific random intercept (4; 5). All potential confounders are centered and scaled

prior to analysis. Letting E [·] denote an expected value, the main model takes the form

log(E[COVID-19 deaths]) = β0 + β1 PM2.5 + β2 population density + β3 percent

of the population ≥ 65 + β4 percent of the population 45-64 + β5 percent of the

population 15-44 + β6 percent living in poverty + β7 median household income +

β8 percent black + β9 percent hispanic + β10 percent of adults with less than a

high school education + β11 median house value + β12 percent of owner-occupied

housing + β13 percent obese + β14 percent smokers + β15 days since first case +

β16 days since stay at home order + β17 number of hospital beds + β18 average

summer temperature + β19 average summer relative humidity + β20 average winter

temperature + β21 average winter relative humidity + offset(log(population size))

+ random intercept(State)

We report the mortality rate ratios (MRR) and 95% CIs for PM2.5, corresponding to the

exponentiated parameter estimate (eβ̂1). The MRR can be interpreted as the multiplicative

increase in the COVID-19 death rate associated with a 1 µg/m3 increase in long-term average

PM2.5 exposure.
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Model Assumption Diagnostics

Poisson regression models are a common choice for modeling count data, but the Poisson

distribution is restrictive in that it assumes that the mean is equal to the variance. In our

setting, because most counties have experienced few or no COVID-19 deaths thus far, the

mean of our outcome data is small (µ = 14.84); however the variance is large due to the large

death counts in several outbreak epicenters (σ2 = 278.61). Among the counties with non-zero

deaths, the mean of our outcome data is still relative small (µ = 35.57); however the variance

is large (σ2 = 430.56). The dispersion parameter for the quasi-Poisson family is estimated

to be 20.87, which indicates substantial over-dispersion. Thus, the Poisson distributional

assumption is likely to be inappropriate. The negative binomial distribution provides more

flexibility by introducing an additional parameter that allows the count outcome variable

with variance larger than mean. This flexibility also better accounts for the large number

of zeros in our outcome, without requiring the use of zero-inflated models, which are more

complex and less interpretable.

To assess the model fit of the standard Negative Binomial regression model comparing to

a zero-inflated Negative Binomial regression model, we conduct an Vuong closeness test for

the goodness-of-fit (6). We found no statistically significant improvement of model fit for a

zero-inflated Negative Binomial regression model (P-Value = 0.22). The AIC of the standard

Negative Binomial regression model is even slightly lower (AIC= 9498.5 vs. 9499.0), which

suggests a better model fit.

Unmeasured Confounding Sensitivity Analysis

We conducted a sensitivity analysis to evaluate the robustness of our results to unmea-

sured confounding by calculating the E-value (7). The E-value for the point estimate of

interest (in our case the MRR) can be defined as the minimal strength of association, on

the risk ratio scale, that an unmeasured confounder would need to have with both the ex-

posure and outcome, conditional on the covariates already included in the model, to fully
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explain the observed association under the null. We calculated the E-values for our re-

ported MRRs per 1 µg/m3 increase of long-term exposure to PM2.5. The calculation of

E-values can be implemented through the E-value calculator by Mathur et al (8), available

at https://www.evalue-calculator.com/.

For our main analysis, we found that for an unmeasured confounder U to fully account

for the estimated effects of the exposure E on the outcome Y , it would have to be associated

with both long-term PM2.5 exposure (E) and with mortality (Y ) by a risk ratio of at least

1.37-fold each, through pathways independent of all covariates already included in the model.

In other words, if we were to adjust for this U in our model, the estimated MRR for PM2.5

would be reduced to 1 (the null value). A 1.37 risk ratio means that U would need to meet

the following two criteria: 1) a 1-unit increase in U would need to lead to a 37% increase in

the risk of mortality (Y ); and 2) a 1-unit increase in U would need to be associated with a

37% increase in PM2.5 exposure levels.

S.3 Additional Analysis Results

The detailed results are presented in Table S1-S4 and Figure S1-S2.

Alternative PM2.5 Estimates

To evaluate the sensitivity of our results to the approach used to calculate long-term

pollution exposure measure, we repeat our analyses using four relevant sets of exposure

data. Using the modeled exposure estimates of van Donkelaar et al (2), we test the 17-

year average concentrations (2000-2016), i.e., the primary analysis results, and the one-year

average concentrations using the most recent available year (2016), and we refer to the

analyses using these exposures as P-1 and P-2, respectively. Using the modeled exposure

estimates of Di et al (2019) (3), we test the 17-year average concentrations (2000-2016) and

the one-year average concentrations using the most recent available year (2016), refered to
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as P-3 and P-4 respectively. In each analysis, we adjust for the set of potential confounders

described in the main text and in Section S1. The finding that long-term exposure to PM2.5 is

positively associated with increased COVID-19 mortality holds regardless of which pollution

data are used. When adjusted for the full confounder set, analyses using 17-year average

concentrations (2000-2016) (P-1 and P-3) give similar point estimates for PM2.5 and attain

statistical significance using different pollution data sources. We note the fact that one year

average estimates to PM2.5 exposure are less reliable than 17-year average. In particular, the

analysis results using P-2 and P-4 are less agreed with each other, i.e., P-2 is notably lower,

yet P-4 is notably higher. The analysis using single year exposure data P-2, in which though

shows positive associations between long-term exposure to PM2.5 and increased mortality for

COVID-19 yet remain statistical insignificance. Because the focus of our study is to assess

the cumulative chronic effect of long-term exposure to PM2.5, we use 17-year mean exposure

data in our main report.

Differing Confounder Sets

For each of these pollution data sources, we evaluate the model sensitivity to the set of

confounders adjusted for by individually omitting each of the following from the confounder

set: 1) days since first reported COVID-19 case; 2) number of hospital beds in the county; 3)

behavioral risk factors, i.e., population obesity rate and percent of population who are current

smokers; and 4) meteorological (weather) variables, i.e., summer and winter temperature and

relative humidity. We also conduct analyses adjusting for the following additional variables

(separately): 1) the total number of COVID-19 tests performed up to April 22, 2020 in each

state and 2) the estimated percentage of people with COVID-19 symptoms in each county.

Effect estimates are presented as mortality rate ratio (MRR) per 1 µg/m3 increase in annual

PM2.5.

We find consistent positive associations between long-term exposure to PM2.5 and in-

creased mortality for COVID-19 in these analyses, with MRR between 1.08 − 1.10 across
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P-1 models that adjust for different potential confounders (similar results for P-2, P-3, and

P-4). The removal of days since first reported COVID-19 case from the confounder set con-

sistently elevates the PM2.5 point estimates and increases the statistical significance. This

suggests that days since first reported COVID-19 case is a strong confounder, as it captures

the different stages on the epidemic curve of each county.

Assessing the Impact of Outbreak Size

To evaluate the possible impact of confounding bias due to epidemic outbreak sizes, which

are not accurately captured by current data, we conduct analyses 1) excluding counties in

New York metropolitan area where the major outbreak is happening 2) excluding counties

with less than 10 confirmed COVID-19 cases. In the analysis that excludes counties in

New York metropolitan area, we still find a statistically significant association between long-

term exposure to PM2.5 and increased mortality for COVID-19 with MRR 1.07 and 95%

confidence interval (1.01, 1.14) for P-1. In the analysis that excludes counties with less than

10 confirmed COVID-19 cases, we also find a positive association with increased mortality

of COVID-19 with magnitude of MRR 1.06 and 95% confidence interval (1.00, 1.13) for P-1.

The loss of statistical significance, however, is partially due to dramatically reduced sample

size (1692 counties only).

Differing Model Specifications

To evaluate the sensitivity to modeling choices (e.g., distributional assumptions or as-

sumptions of linearity), we conduct sensitivity analyses by 1) treating PM2.5 as a categorical

variable (categorized at empirical quintiles), 2) adjusting for population density under a

logarithm transformation rather than a categorical variable, 3) using a zero-inflated nega-

tive binomial mixed model, 4) using a fixed effect negative binomial model, 5) adjusting

for population size as a covariate, rather than as an offset. We also conducted stratified

analyses based on county urban/rural status. Counties’ classifications are obtained from
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the National Center for Health Statistics Urban-Rural Classification Scheme for Counties

(9), which assigns each US county to one of six urban-rural categories: Large central metro,

Large fringe metro, Medium metro, Small metro, Micropolitan, and Non-core. Based on

this, we create a two-level urban/rural variable, with Micropolitan and Non-core defined as

rural, and all other types defined as urban. We then conduct the main analysis separately

for urban counties and rural counties.

In the analysis that treats PM2.5 as a categorical variable, we found the magnitude of the

MRRs increases dramatically and monotonically as the quintile of PM2.5 exposures increases

for P-1. Similar results are found when using P-2, P-3, and P-4. Such findings suggest that

the assumption of a linear effect of PM2.5 on COVID-19 mortality rate is reasonable and that

there is no threshold for the effect of long-term exposure to PM2.5 on COVID-19 mortality.

In the analysis that adjusts for population density under a logarithm transformation, we

again find a statistically significant positive association with increased COVID-19 mortality

with MRR 1.08 for P-1. In the analysis that uses a negative binomial model accounting

for zero-inflation, we find very similar results as of our main analyses. In the analysis that

uses a fixed effect negative binomial model, we find a slightly reduced effect size compared

to our main analyses. In the analysis that adjusts for population size directly, rather than

as an offset, we find long-term exposure to PM2.5 is still significantly positively associated

with the number of COVID-19 deaths, although here the MRR refers to the increase in the

mortality count ratio of COVID-19 per unit increase of PM2.5, rather than the increase in

the mortality rate ratio.

The results of the urban/rural stratified analyses suggest an interesting pattern– the

positive association between PM2.5 and COVID-19 mortality appears to be approximately

the same in rural counties (MRR 1.06, 95% CI 0.95, 1.19) and in urban counties (MRR

1.06, 95% CI 0.98, 1.13) for P-1. This confirms that our results are not dominated only

by large urban areas where the most severe outbreaks have been reported (and often tend

to be highly polluted). While the results from the stratified analyses are not statistically
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significant, likely due to smaller sample sizes and lower power, the magnitude of the effect

sizes is large.

S.4 Code

We provide code for all analyses reported in the paper. The completed code can be found

on https://github.com/wxwx1993/PM COVID.

S.5 Figures
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Figure S1: COVID-19 mortality rate ratios (MRR) per 1 µg/m3 increase in PM2.5 and 95%
CI. The main analyses were adjusted for 20 socioeconomic, demographic, behavioral, climate,
and healthcare confounders. In addition to the main analysis, we fit models excluding
counties from NY metropolitan area, and excluding counties with < 10 confirmed cases. We
also conduct analyses omitting the following variables from the adjustment set: days since
first COVID-19 case (day since 1st case), smoking rate and obesity rate (BRFSS), seasonal
temperature and humidity variables (weather), and number of hospital beds. We conduct
analyses adjusting for two additional variables (separately): the total number of COVID-19
tests performed up to April 22, 2020 and the estimated percent of people with COVID-19
symptoms. We repeat our analyses using four relevant sets of exposure data (P-1, P-2, P-3
and P-4).
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Figure S2: COVID-19 mortality rate ratios (MRR) per empirical quintile increase in PM2.5

and 95% CI. The MRR can be interpreted as the percentage increase in the COVID-19 death
rate associated with each empirical quintile increase of long-term average PM2.5 compared
to the baseline quintile (Q1). We repeat our analyses using four relevant sets of exposure
data (P-1, P-2, P-3 and P-4).
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S.6 Tables

Table S1: Main, secondary and sensitivity analysis results for P-1, i.e., PM2.5 exposure
measured as the 17-year average concentration 2000-2016 by van Donekelaar et al (2019)
(2). Point estimates, 95 % confidence intervals, and p-values for the mortality rate ratio
(MRR) for PM2.5 .

Analysis N Counties MRR (CI) P-Value

Main analysis 3087 1.08(1.02, 1.15) 0.01
Omit number of hospital beds 3087 1.08(1.02, 1.15) 0.01
Omit behavioral 3087 1.08(1.02, 1.15) 0.01
Omit weather 3087 1.08(1.02, 1.14) 0.00
Omit days since first case 3087 1.10(1.04, 1.17) 0.00
Exclude counties in New York Metropolitan 3060 1.07(1.01, 1.14) 0.02
Exclude counties with <10 confirmed cases 1692 1.06(1.00, 1.13) 0.06
Rural counties 1940 1.06(0.95, 1.19) 0.27
Urban counties 1147 1.06(0.98, 1.13) 0.12
Categorize PM into quintiles 3087

Q1 (0-5.79 µg/m3) 1.00
Q2 (5.79-8.06µg/m3) 1.07(0.79, 1.47) 0.65
Q3 (8.06-9.54µg/m3) 1.40(0.98, 2.01) 0.06
Q4 (9.54-10.74µg/m3) 1.96(1.31, 2.91) 0.00
Q5 (10.74+µg/m3) 1.90(1.24, 2.92) 0.00

Add number tested 3087 1.08(1.02, 1.15) 0.01
Add percent with COVID symptoms 3087 1.08(1.02, 1.15) 0.01
Adjust log(population density) as covariate 3087 1.08(1.01, 1.15) 0.02
Adjust log(population) as covariate 3087 1.12(1.05, 1.19) 0.00
Adjust population as covariate 3087 1.17(1.09, 1.25) 0.00
Zero inflated Negative Binomial model 3087 1.08(1.02, 1.15) 0.01
Fixed effects Negative Binomial model 3087 1.06(1.00, 1.13) 0.06

1. Five boroughs of New York City are considered as one county aligning with COVID-19 statistics.

2. ”Rural” represents ”Micropolitan” and ”Non-core” counties defined by 2013 NCHS Urban-Rural

Classification Scheme.
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Table S2: Main, secondary and sensitivity analysis results for P-2, i.e., PM2.5 exposure mea-
sured as 2016 average by van Donekelaar et al (2019) (2). Point estimates, 95 % confidence
intervals, and p-values for the mortality rate ratio (MRR) for PM2.5 .

Analysis N counties MRR (CI) P-Value

Main analysis 3087 1.05(0.98, 1.12) 0.20
Omit number of hospital beds 3087 1.05(0.97, 1.12) 0.22
Omit behavioral 3087 1.05(0.98, 1.12) 0.20
Omit weather 3087 1.06(1.00, 1.13) 0.05
Omit days since first case 3087 1.06(0.99, 1.14) 0.08
Exclude counties in New York Metropolitan 3060 1.06(0.99, 1.13) 0.11
Exclude counties with <10 confirmed cases 1692 1.03(0.96, 1.11) 0.39
Rural counties 1940 1.05(0.92, 1.19) 0.49
Urban counties 1147 1.04(0.96, 1.12) 0.37
Categorize PM into quintiles 3087

Q1 (0-4.11µg/m3) 1.00
Q2 (4.11-5.62µg/m3) 1.01(0.74, 1.37) 0.95
Q3 (5.62-6.83µg/m3) 1.29(0.92, 1.83) 0.14
Q4 (6.83-7.85µg/m3) 1.38(0.95, 2.01) 0.09
Q5 (7.85+µg/m3) 1.43(0.96, 2.14) 0.08

Add number tested 3087 1.05(0.98, 1.12) 0.21
Add percent with COVID symptoms 3087 1.05(0.98, 1.12) 0.20
Adjust log(population density) as covariate 3087 1.04(0.96, 1.11) 0.35
Adjust log(population) as covariate 3087 1.09(1.01, 1.17) 0.02
Adjust population as covariate 3087 1.14(1.06, 1.23) 0.00
Zero inflated Negative Binomial model 3087 1.05(0.98, 1.12) 0.20
Fixed effects Negative Binomial model 3087 1.02(0.95, 1.09) 0.60

15



Table S3: Main, secondary and sensitivity analysis results for P-3, i.e., PM2.5 exposure
measured as the 17-year average concentrations 2000-2016 by Di et al (2019) (3). Point
estimates, 95 % confidence intervals, and p-values for the mortality rate ratio (MRR) for
PM2.5 .

Analysis N counties MRR (CI) P-Value

Main analysis 3087 1.12(1.05, 1.19) 0.00
Omit number of hospital beds 3087 1.12(1.05, 1.19) 0.00
Omit behavioral 3087 1.12(1.05, 1.19) 0.00
Omit weather 3113 1.10(1.05, 1.16) 0.00
Omit days since first case 3087 1.15(1.08, 1.22) 0.00
Exclude counties in New York Metropolitan 3060 1.13(1.06, 1.20) 0.00
Exclude counties with <10 confirmed cases 1692 1.10(1.03, 1.17) 0.00
Rural counties 1940 1.15(1.03, 1.27) 0.01
Urban counties 1147 1.07(0.99, 1.15) 0.07
Categorize PM into quintiles 3087

Q1 (0-6.76µg/m3) 1.00
Q2 (6.76-9.2µg/m3) 1.51(1.08, 2.11) 0.02
Q3 (9.2-10.45µg/m3) 1.71(1.17, 2.50) 0.01
Q4 (10.45-11.49µg/m3) 1.93(1.30, 2.87) 0.00
Q5 (11.49+µg/m3) 1.97(1.30, 2.98) 0.00

Add number tested 3087 1.12(1.05, 1.19) 0.00
Add precent with COVID symptoms 3087 1.12(1.06, 1.19) 0.00
Adjust log(population density) as covariate 3087 1.12(1.05, 1.19) 0.00
Adjust log(population) as covariate 3087 1.14(1.08, 1.21) 0.00
Adjust population as covariate 3087 1.15(1.14, 1.16) 0.00
Zero inflated Negative Binomial model 3087 1.12(1.05, 1.19) 0.00
Fixed effects Negative Binomial model 3087 1.11(1.04, 1.18) 0.00
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Table S4: Main, secondary and sensitivity analysis results for P-4, i.e., PM2.5 exposure
measured as 2016 average by Di et al (2019) (3). Point estimates, 95 % confidence intervals,
and p-values for the mortality rate ratio (MRR) for PM2.5 .

Analysis N counties MRR (CI) P-Value

Main analysis 3087 1.17(1.08, 1.27) 0.00
Omit number of hospital beds 3087 1.17(1.07, 1.27) 0.00
Omit behavioral 3087 1.17(1.08, 1.27) 0.00
Omit weather 3113 1.14(1.06, 1.22) 0.00
Omit days since first case 3087 1.21(1.11, 1.31) 0.00
Exclude counties in New York Metropolitan 3060 1.19(1.09, 1.29) 0.00
Exclude counties with <10 confirmed cases 1692 1.16(1.06, 1.26) 0.00
Rural counties 1940 1.22(1.05, 1.42) 0.01
Urban counties 1147 1.14(1.03, 1.26) 0.01
Categorize PM into quintiles 3087

Q1 (0-4.9µg/m3) 1.00
Q2 (4.9-6.5µg/m3) 1.54(1.12, 2.11) 0.01
Q3 (6.5-7.41µg/m3) 1.71(1.19, 2.45) 0.00
Q4 (7.41-8.09µg/m3) 2.14(1.48, 3.11) 0.00
Q5 (8.09+µg/m3) 2.15(1.46, 3.17) 0.00

Add number tested 3087 1.17(1.08, 1.27) 0.00
Add percent with COVID symptoms 3087 1.17(1.08, 1.27) 0.00
Adjust log(population density) as covariate 3087 1.16(1.07, 1.27) 0.00
Adjust log(population) as covariate 3087 1.20(1.10, 1.30) 0.00
Adjust population as covariate 3087 1.20(1.10, 1.31) 0.00
Zero inflated Negative Binomial model 3087 1.17(1.08, 1.27) 0.00
Fixed effects Negative Binomial model 3087 1.15(1.06, 1.25) 0.00
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