Metabolic shift underlies recovery in reversible infantile respiratory chain deficiency

Denisa Hathazi^{1*} Helen Griffin^{2*}, Matthew J. Jennings^{1*}, Michele Giunta^{2*}, Christopher Powell^{3,}, Sarah F. Pearce^{3,4}, Benjamin Munro¹, Wei Wei^{1,3}, Veronika Boczonadi², Joanna Poulton⁵, Angela Pyle², Claudia Calabrese^{1,3} Aurora Gomez-Duran^{1,3}, Ulrike Schara⁶, Robert D.S. Pitceathly⁷, Michael G. Hanna⁷, Kairit Joost⁸, Ana Cotta⁹, Julia Filardi Paim⁹, Monica Machado Navarro¹⁰, Jennifer Duff², Andre Mattmann¹¹, Kristine Chapman¹¹, Serenella Servidei¹², Johanna Uusimaa¹³, Andreas Roos^{,6,14}, Vamsi Mootha¹⁵, Michio Hirano¹⁶, Mar Tulinius¹⁷, Manta Giri¹⁸, Eric P. Hoffmann¹⁸, Hanns Lochmüller¹⁹, Salvatore DiMauro¹⁶, Michal Minczuk³, Patrick F. Chinnery^{1,3}, Juliane S. Müller^{1*}, Rita Horvath^{1*}

¹Department of Clinical Neurosciences, School of Clinical Medicine, University of Cambridge, Cambridge, UK;

²Wellcome Centre for Mitochondrial Research, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK;

³MRC Mitochondrial Biology Unit, Cambridge Biomedical Campus, Cambridge, UK;

⁴Karolinska Institute, University of Stockholm, Sweden:

⁵Nuffield Department of Obstetrics & Gynaecology, University of Oxford, Oxford, UK;

⁶Pediatric Neurology, University of Essen, Essen, Germany;

⁷MRC Centre for Neuromuscular Diseases, UCL Queen Square Institute of Neurology and National Hospital for Neurology and Neurosurgery, London, UK;

⁸Centre of Allergology and Immunology, East-Tallinn Central Hospital, Tallinn, Estonia;

⁹Departments of Pathology and ¹⁰Pediatrics, Neuromuscular Unit, SARAH Network of Rehabilitation Hospitals, Belo Horizonte, Brazil;

¹¹Dept of Pathology and Laboratory Medicine SPH, St. Paul's Hospital, Vancouver, Canada;

¹³PEDEGO Research Unit/Pediatric Neurology, Medical Research Center Oulu, Oulu University Hospital and University of Oulu, Oulu, Finland;

¹⁴Leibniz Institute for Analytical Sciences (ISAS), Dortmund, Germany;

¹⁵Howard Hughes Medical Institute and Harvard Medical School, Boston, US;

¹⁶Department of Neurology, Columbia University Medical Center, New York, NY, USA;

¹⁷Department of Pediatrics, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden;

¹⁸School of Pharmacy and Pharmaceutical Sciences, Binghampton University, New York, US; ¹⁹Department of Neuropediatrics and Muscle Disorders, Medical Center – University of Freiburg, Faculty of Medicine, Freiburg, Germany;

²⁰Centro Nacional de Análisis Genómico (CNAG-CRG), Center for Genomic Regulation, Barcelona Institute of Science and Technology (BIST), Barcelona, Catalonia, Spain; Children's Hospital of Eastern Ontario Research Institute, University of Ottawa, Ottawa, Canada and Division of Neurology, Department of Medicine, The Ottawa Hospital, Ottawa, Canada

Supplementary Figure 1.

Pedigrees of the 19 RIRCD families. The * symbol indicates the individuals where DNA analysis was performed.

Supplementary Figure 2.

Exome mtDNA read depth and mtDNA haplogroups in the families homoplasmic for

m.14674T>C.

Supplementary Figure 3.

(A) Western of total cell lysate of HEK293T cells (+/+) and *PDE12* knock-out cells (-/-) and -/cells expressing WT *PDE12*, p.Glu351Ala (catalytic mutant), Δ 16 (coding for *PDE12* lacking 16 first aa), Δ 23 mutants (coding for *PDE12* lacking 23 first aa), and p.Arg23Trp *PDE12* cDNA. B-actin was used as loading control. (B) Radioactive MPAT assay for 16S mt-rRNA extracted from HEK293T (+/+), *PDE12* knock-out cells (-/-), and for *PDE12*-/- cells expressing WT *PDE12*, p.Glu351Ala, Δ 16, Δ 23 mutants and p.Arg23Trp *PDE12* cDNA for 24 hr. Experiments and cell lines as described in (Pearce et al., 2017). (C) Immunofluorescence to confirm mitochondrial localisation of the p.Arg23Trp *PDE12* variant in human cells. TOM20, translocator of the outer mitochondrial membrane 20. Scale bar = 20 µm.

Supplementary Figure 4.

Scatter/boxplot shows the significant difference between mean per group damaging allele counts (RIRCD affected vs. unaffected vs. 1044x 1000 Genomes control exomes) in the genes *EARS2, TRMU, QRSL1, GOT2, GLS, MSS51* and m.14674T>C.

Supplementary Figure 5.

Aminoacylation assay of mt-tRNA^{Glu} and mt-tRNA^{Gln} in fibroblasts carrying digenic mutations in mtDNA (m.14674T>C) and in *EARS2* (p.Arg516Gln) (F7/1M, F7/2M), carrying only m.14674T>C (F7/5F, F7/7F) and healthy controls. The cells were cultures in low (low aa) and high amino acid (aa) concentrations. There is no relevant difference in the aminoacylation of fibroblasts of patients with digenic mutations, carriers of m.14674T>C and healthy controls.

Supplementary Table 1. Mitochondrial haplogroups and digenic nuclear variants in affected RIRCD family members.

Fomily		Deletienshin	Nuclear Risk Variants			
гапшу	Haplogroup	Relationship	Gene	Protein	Genotype	
F1	n. d.	Proband TRMU p.Ala10Ser		0/1		
F2	H36	Proband	EARS2	p.A88Glu	0/1	
		Mother of F2/1	EARS2	p.Ala88Glu	0/1	
F3	n. d.	Uncle of F3/2 <u>TRMU</u> p.Tyr301Cy		p.Tyr301Cy	0/1	
F4	H7b2	Proband	TRMU p.Ala10Ser		0/1	
F5	V7a1	Drohand	EARS2	p.Gly110Ser*	0/1	
		FIODAIIU	TRMU	p.Ala10Ser	0/1	
	H+152	Sibling of F7/2 EARS2 p.Arg516Gln*		p.Arg516Gln*	0/1	
F7		Sibling of F7/1 EARS2 p.Arg516GIn*		0/1		
		Uncle of F7/1-2 GOT2 p.Gly188Ser		0/1		
F8	U5b2a1a+16311	Proband TRMU p.Ala10Ser		p.Ala10Ser	0/1	
F9	U5b2a1a+16311	Proband TRMU p.Ala10Ser		p.Ala10Ser	0/1	
F10	U5b2a1a+16311	Proband	TRMU	p.Ala10Ser	0/1	
		Mother of F8/1	EARS2	p.Gln199Arg	0/1	
F11	U4a1b	Proband	QRSL1	p.Val229Gly	0/1	
F12	L3d1d	Proband	EARS2	p.Arg120Trp	0/1	
F13	\/2.01	Proband	TRMU	p.Ala10Ser	0/1	
	VSal	Mother of F13/1	r of F13/1 GOT2 p.Gly188Ser		0/1	
F14	H2a1	Sister of F14/1	TRMU p.Ala10Ser		0/1	
E15	E2a	Sister of F15/1	GOT2	p.Lys364Glu	0/1	
FID		Mother of F15/1	GOT2	p.Lys364Glu	0/1	
F17	W1	Proband	GOT2	p.Gly188Ser	0/1	
F18	V3a1	Proband	MSS51	p.Val393AspfsTer60	0/1	
F19	K1a2	Proband	GLS	p.Ala432Ser	0/1	

*known pathogenic, autosomal recessive mutation

Supplementary Table 2. Number of exome variants at each stage of filtering in total and for

affected and unaffected individuals in RIRCD families with homoplasmic m.14674T>C.

Type of Variant	Total Number of Variants	Affected Only* (n=18)	Unaffected Only* (n=12)
Total Variants	4,907,159	1,847,621	1,106,024
Total Protein Altering	42,473	14,885	5,725
Conserved (2+)	15,775	6,051	2,344
Predicted Damaging (5+)	13,816	5,458	2,163
Conserved (2+), Damaging (5+)	10,991	4,340	1,705
Conserved (2+), Damaging (5+), Known Domain	5,013	2,022	779
Conserved, Damaging, Known Domain OR Splicing, Stop-Loss/Gain, Frameshift	6,998	2,698	1,067

Supplementary Table 3. Details of digenic nuclear variants in affected RIRCD

patients homoplasmic for m.14674T>C.

Gene	Variant	Patient/ Family	ExAC	gnomAD	ExAC homozy gous	CADD Score	Protein function
EARS2	p.Arg120Trp	2/1	6.57x10⁻⁵	2.79x10⁻⁵	0	29.4	tRNA synthetase of mt-tRNA ^{Glu}
	p.Gln199Arg	1/1	1.66x10⁻⁵	1.4x10⁻⁵	0	8.1	
	p.Ala88Glu	2/1	1.66x10 ⁻³	1.15x10 ⁻³	0	23.6	
	p.Gly110Ser*	1/1	3.66x10 ⁻⁴	2.09x10 ⁻⁴	0	34	
	p.Gly224Ser*	1/1	1.20x10 ⁻³	3.38x10 ⁻³	4	28.3	
	p.Arg516Gln*	2/1	3.31x10⁻⁵	9.07x10 ⁻⁵	0	34	
TRMU	p.Ala10Ser	9/8	0.197	9.69x10 ⁻²	303	29.6	thiomodification of mt-tRNA ^{Glu}
	p.Tyr301Cys	1/1	6.7x10 ⁻⁴	4.17x10 ⁻⁴	0	25.5	
GOT2	p.Gly188Ser	3/3	0.064	6.04x10 ⁻²	309	24.6	mitochondrial glutamate- oxaloacetate transaminase
	p.Lys364Glu	2/2	7.25x10 ⁻⁴	7.42x10 ⁻⁴	0	21.9	
MSS51	p.Val393Aspfs Ter60	1/1	0.002	1.51x10 ⁻³	0	- frame shift	muscle specific MTCOI translational activator
QRSL1	p.Val229Gly	1/1	0.001	1.29x10 ⁻³	0	25.8	tRNA synthetase of mt-tRNA ^{Glu} and mt-tRNA ^{Gln}
GLS	p.Ala432Ser	1/1	0.001	1.67x10 ⁻³	1	25.9	glutaminase: converts glutamine to glutamate

Supplementary data

Differentially expressed genes and proteins in muscle biopsies of RIRCD patients (uploaded separately).