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Section S1. COVID-19 Epidemic Model Structure and Parameters 

The model structure is diagrammed in Fig. S1 and described in the equations below. 
For each age and risk group, we build a separate set of compartments to model the 
transitions between the states: susceptible (​S​), exposed (​E​), symptomatic infectious (​I​Y​), 
asymptomatic infectious (​I​A​), symptomatic infectious that are hospitalized (​I​H​), recovered 
(​R​), and deceased (​D​). The symbols ​S, E, I​Y​, I​A​, I​H​, R​, and ​D​ denote the number of 
people in that state in the given age/risk group and the total size of the age/risk group is 

.  S IN =   + E + IY + IA +   H + R + D  
The model for individuals in age group ​a​ and risk group ​r​ is given by: 
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where ​A​ and ​K​ are all possible age and risk groups, are relative, ω , ωωA   Y   H  
infectiousness of the  compartments, respectively, 𝛽 is transmission rate,, I , EIA   Y    

is the mixing rate between age group ,  are the recovery  ϕa,i , i  A  a   ∈   , , γ  γA γY   H  
rates for the compartments, respectively, 𝜎 is the exposed rate, 𝜏 is the, I , IIA   Y   H  
symptomatic ratio, 𝜋 is the proportion of symptomatic individuals requiring 
hospitalization, 𝜂 is rate at which hospitalized cases enter the hospital following 
symptom onset, 𝜈 is mortality rate for hospitalized cases, and 𝜇 is rate at which terminal 
patients die.  
 
We model stochastic transitions between compartments using the 𝜏-leap method​[1,2] 
with key parameters given in Table S1. Assuming that the events at each time-step are 
independent and do not impact the underlying transition rates, the numbers of each type 
of event should follow Poisson distributions with means equal to the rate parameters. 
We thus simulate the model according to the following equations: 

−  Sa,r (t )+ 1 − Sa,r (t) = P 1  
 Ea,r (t )+ 1 − Ea,r (t) = P 1 − P 2  

IAa,r (t )+ 1 − IAa,r (t) = (1 )− τ P 2 − P 3  
PIYa,r (t )+ 1 − IYa,r (t) = τ 2 − P 4 − P 5  

IHa,r (t )+ 1 − IHa,r (t) = P 5 − P 6 − P 7  

https://www.codecogs.com/eqnedit.php?latex=%5Cfrac%7BdI%5EH_%7Ba%2Cr%7D%7D%7Bdt%7D%3D%5Cpi%20%5Ceta%20I%5EY_%7Ba%2Cr%7D%20-%20(1-%5Cnu)%5Cgamma%5EH%20I%5EH_%7Ba%2Cr%7D-%5Cnu%5Cmu%20I%5EH_%7Ba%2Cr%7D#0
https://paperpile.com/c/6ZDPHK/vtK4o+bwUoI


 Ra,r (t )+ 1 − Ra,r (t) = P 3 + P 4 + P 6  
 , Da,r (t )+ 1 − Da,r (t) = P 7  
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Fig S1. Compartmental model of COVID-19 transmission in a US city 

 

 
Each subgroup (defined by age and risk) is modeled with a separate set of compartments. Upon 
infection, susceptible individuals (​S​) progress to exposed (​E​) and then to either symptomatic 
infectious (​I​Y​) or asymptomatic infectious (​I​A​). All asymptomatic cases eventually progress to a 
recovered class where they remain protected from future infection (​R​); symptomatic cases are 
either hospitalized (​I​H​) or recover. Mortality (​D​) varies by age group and risk group and is 
assumed to be preceded by hospitalization.  

 
 

 

 

 

 

 



Table S1.1. Initial conditions, school closures and social distancing policies 

Variable Settings 

Initial day of simulation 3/1/2020 

Initial infection number 
in locations 5 symptomatic cases in 18-49y age group 

Trigger to close school 3/14/2020 

Closure Duration Until start of 2020-2021 school year (8/17/20) 

ɑ: Reduction of 
non-household 
contacts (work and 
other) 

Five scenarios: [0, .25, 0.5, .75, 0.9]  

Age-specific and 
day-specific contact 
rates  

Home, work, other and school matrices provided in Tables S1.4-S1.7 
 
Normal weekday = home + work + other + school 
Normal weekend = home + other 
Normal weekday holiday = home + other  
Normal weekday during summer or winter break = home + work + other 
 
School closure weekday = home + (1-ɑ)*(work + other) 
School closure weekend = home + (1-ɑ)*(other) 
School closure weekday holiday =  home + (1-ɑ)*(other) 
School closure during summer or winter break = home + (1-ɑ)*(work + 
other) 

 
 

 

 

 

 

 

 



Table S1.2. Model parameters. Values given as five-element vectors are 
age-stratified with values corresponding to 0-4, 5-17, 18-49, 50-64, 65+ year age 
groups, respectively. 

Parameters 

Best guess - 
values (doubling 
time = 7.2 days) 

Best guess values 
(doubling time = 4 

days) Source 

R​0 2.2 2.2  Li et al. ​[3] 

: doubling timeδ   7.2 days 4 days Kraemer et al. ​[4] 

: transmission rate β   0.01622242 0.02599555 Fitted​a​ to obtain specified ​R​0 
given δ  

: recovery rate on γA  
asymptomatic 
compartment 

Equal to  γY   

: recovery rate on γY  
symptomatic 
non-treated 
compartment 

Triangular1
γY ~   (21.2, 2.6, 4.4)2 2  Verity et al. ​[5] 

: symptomatic τ  
proportion (%) 82.1 Mizumoto et al. ​[6] 

: exposed rate σ   Triangularσ
1 ~   (5.6, , .2)7 8  Lauer et al. ​[7] 

 ​P​: proportion of 
pre-symptomatic (%) 

 
12.6 Du et al. ​[8] 

: relative ωE  
infectiousness of 
infectious individuals 
in compartment E 

 

 ωE = 1−P

+ ω σP( η
Y HR

γY
1−Y HR) Y

  

: relative ωA  
infectiousness of 
infectious individuals 
in compartment I​A 

 
0.4653 Set to mean of  

IFR​: infected fatality 
ratio, age specific (%) 

 
Overall: [0.0016, 0.0049, 0.084, 1.000, 

3.371] 
Low risk: [0.00091668, 0.0021789, 

0.03388, 0.25197, 0.64402] 

Age adjusted from Verity et al. 
[5] 

https://paperpile.com/c/6ZDPHK/A5dQW
https://paperpile.com/c/6ZDPHK/VYqCy
https://paperpile.com/c/6ZDPHK/5yr3G
https://paperpile.com/c/6ZDPHK/DUIXp
https://paperpile.com/c/6ZDPHK/0b48n
https://paperpile.com/c/6ZDPHK/poQcf
http://www.texrendr.com/?eqn=%5Comega%5EE#0
https://paperpile.com/c/6ZDPHK/5yr3G


High risk: [0.009167, 0.02179, 0.33878, 
2.5197, 6.4402] 

YFR​: symptomatic 
fatality ratio, age 
specific (%) 

Overall: [0.001949, 0.006025, 0.10265, 
1.2182, 4.10657] 

Low risk: [0.0011165, 0.002654, 0.04126, 
0.3069, 0.78443] 

High risk: [0.01117, 0.02654, 0.4126, 
3.06903, 7.8443] 

FRY = 1−τ
IFR  

: high-riskh  
proportion, age 
specific (%) 

 
[8.2825, 14.1121, 16.5298, 32.9912, 

47.0568] 

Estimated using 2015-2016 
Behavioral Risk Factor 

Surveillance System (BRFSS) 
data with multilevel regression 

and poststratification using 
CDC’s list of conditions that may 

increase the risk of serious 
complications from influenza 

[9–11]  

: relative risk forrr  
high risk people 
compared to low risk 
in their age group 

 
10 Assumption 

School calendars  Austin Independent School District 
calendar (2019-2020, 2020-2021) ​[12]  

a​The parameter  is fitted through constrained trust-region optimization in SciPy/Python ​[13]​. Given a β  
value of , a deterministic simulation is run based on central values for each parameter, from which we β  
can compute the implied . We (1) track the daily number of new cases (both symptomatic and R0 (β)  I t  
asymptomatic) during the exponential growth portion of the epidemic, (2) compute the log of the number 
of new cases:  and (3) use least squares to fit a line to this curve: . Weog  yt = l (I )t og ⋅t  log l (I )t  = y0 + g  
then estimate the reproduction number  of the simulation for that specific value of  as R0 (β)  β  

 1 where is the generation time given by . The optimizing function runs until⋅g  R0 (β) = Γ + Γ Γ = δ(R −1)0
log og (2) l  

the resulting value of  does not get closer to the target value. R0 (β)   
 
 

 

 

 

 

https://paperpile.com/c/6ZDPHK/7NpML+ITW9M+exXNv
https://paperpile.com/c/6ZDPHK/vKCtV
https://paperpile.com/c/6ZDPHK/hm5Ys


Table S1.3. Hospitalization parameters 

Parameters Value Source 

: recovery rate in γH  
hospitalized 
compartment 

 
0.0869565 

11.5 day-average from 
admission to discharge ​[14] 

YHR​: symptomatic 
case hospitalization 
rate (%) 

 
Overall: [ 0.04872107, 0.04872107, 

3.28757227, 11.33739519, 17.73306336] 
Low risk: [0.0279, 0.0215, 1.3215, 2.8563, 

3.3873] 
High risk: [ 0.2791, 0.2146, 13.2154, 

28.5634, 33.8733] 

Age adjusted from Verity et al. 
[5] 

: rate of π  
symptomatic 
individuals go to 
hospital, 
age-specific 

 
π = γ ·Y HRY

η+(γ −η)Y HRY   

: rate fromη  
symptom onset to 
hospitalized 

 
0.1695 

5.9 day average from symptom 
onset to hospital admission 

Tindale et al. ​[15] 

: rate fromμ  
hospitalized to death 

 
0.0892857 

11.2 day-average from 
admission to death ​[14] 

HFR​: hospitalized 
fatality ratio, age 
specific (%) 

[4, 12.365, 3.122, 10.745, 23.158] FRH = IFR
Y HR(1−τ)  

: death rate on ν  
hospitalized 
individuals, age 
specific 

[0.0390, 0.1208, 0.0304, 0.1049, 0.2269] ν = γ HFRH

μ+(γ −μ)HFRH  

ICU​: proportion 
hospitalized people 
in ICU 

[0.15, 0.20, 0.15, 0.20, 0.15] 
CDC COVID-19 planning 
scenarios (based on US 

seasonal flu data) 

Vent​: proportion of 
individuals in ICU 
needing ventilation 

[0.35, 0.3, 0.45, 0.5, 0.45] 
CDC planning scenarios 

 (based on US seasonal flu 
data) 

https://paperpile.com/c/6ZDPHK/fHPOg
https://paperpile.com/c/6ZDPHK/5yr3G
https://paperpile.com/c/6ZDPHK/Ch5Sj
https://paperpile.com/c/6ZDPHK/fHPOg


: duration ofdICU  
stay in ICU 8 days 

Assumption, computed as 
average of hospital stay and 

ventilation durations 

: duration ofdV  
ventilation 5 days CDC COVID-19 planning 

scenarios 

: healthcareCS  H  
capacity 

Hospital bed: 4299 
ICU bed: 755 

Ventilator: 755 

Estimates provided by each of 
the region's hospital systems 
and aggregated by regional 

public health leaders  

 

 

Table S1.4. Home contact matrix (daily number contacts by age group at home) 

 0-4y 5-17y 18-49y 50-64y 65y+ 

0-4y 0.5 0.9 2.0 0.1 0.0 

5-17y 0.2 1.7 1.9 0.2 0.0 

18-49y 0.2 0.9 1.7 0.2 0.0 

50-64y 0.2 0.7 1.2 1.0 0.1 

65y+ 0.1 0.7 1.0 0.3 0.6 

 
 
 
Table S1.5. School contact matrix (daily number contacts by age group at school) 

 0-4y 5-17y 18-49y 50-64y 65y+ 

0-4y 1.0 0.5 0.4 0.1 0.0 

5-17y 0.2 3.7 0.9 0.1 0.0 

18-49y 0.0 0.7 0.8 0.0 0.0 

50-64y 0.1 0.8 0.5 0.1 0.0 

65y+ 0.0 0.0 0.1 0.0 0.0 

 
 
 



Table S1.6. Work contact matrix (daily number contacts by age group at work) 

 0-4y 5-17y 18-49y 50-64y 65y+ 

0-4y 0.0 0.0 0.0 0.0 0.0 

5-17y 0.0 0.1 0.4 0.0 0.0 

18-49y 0.0 0.2 4.5 0.8 0.0 

50-64y 0.0 0.1 2.8 0.9 0.0 

65y+ 0.0 0.0 0.1 0.0 0.0 

 
 
Table S1.7. Others contact matrix (daily number contacts by age group at other 
locations) 

 0-4y 5-17y 18-49y 50-64y 65y+ 

0-4y 0.7 0.7 1.8 0.6 0.3 

5-17y 0.2 2.6 2.1 0.4 0.2 

18-49y 0.1 0.7 3.3 0.6 0.2 

50-64y 0.1 0.3 2.2 1.1 0.4 

65y+ 0.0 0.2 1.3 0.8 0.6 

 
 
 
 

 

 

 

 

 

 



Section S2. Estimation of age-stratified proportion of population at high-risk for 
COVID-19 complications 

We estimate age-specific proportions of the population at high risk of complications from 
COVID-19 based on data for Austin, TX and Round-Rock, TX from the CDC’s 500 cities 
project (Fig. S2) ​[16]​. We assume that high risk conditions for COVID-19 are the same 
as those specified for influenza by the CDC ​[9]​. The CDC’s 500 cities project provides 
city-specific estimates of prevalence for several of these conditions among adults.​[17] 
The estimates were obtained from the 2015-2016 Behavioral Risk Factor Surveillance 
System (BRFSS) data using a small-area estimation methodology called multi-level 
regression and poststratification ​[10,11]​. It links geocoded health surveys to high spatial 
resolution population demographic and socioeconomic data ​[11]​. 

Estimating high-risk proportions for adults​. ​To estimate the proportion of adults at high             
risk for complications, we use the CDC’s 500 cities data, as well as data on the                
prevalence of HIV/AIDS, obesity and pregnancy among adults (Table S2.1). 

The CDC 500 cities dataset includes the prevalence of each condition on its own, rather 
than the prevalence of multiple conditions (e.g., dyads or triads). Thus, we use separate 
co-morbidity estimates to determine overlap. Reference about chronic conditions ​[18] 
gives US estimates for the proportion of the adult population with 0, 1 or 2+ chronic 
conditions, per age group. Using this and the 500 cities data we can estimate the 
proportion of the population  in each age group in each city with ​at least one chronicpHR  
condition​ listed in the CDC 500 cities data (Table S2.1) putting them at high-risk for flu 
complications.  

HIV​: We use the data from table 20a in CDC HIV surveillance report ​[19]​ to estimate the 
population in each risk group living with HIV in the US (last column, 2015 data). 
Assuming independence between HIV and other chronic conditions, we increase the 
proportion of the population at high-risk for influenza to account for individuals with HIV 
but no other underlying conditions.  

Morbid obesity​: A BMI over 40kg/m​2 ​indicates morbid obesity and is considered high risk 
for influenza. The 500 Cities Project reports the prevalence of obese people in each city 
with BMI over 30kg/m​2​ (not necessarily morbid obesity). We use the data from table 1 in 
Sturm and Hattori ​[20]​ to estimate the proportion of people with BMI>30 that actually 
have BMI>40 (across the US); we then apply this to the 500 Cities obesity data to 
estimate the proportion of people who are morbidly obese in each city. Table 1 of 
Morgan et al. ​[21]​ suggests that  51.2% of morbidly obese adults have at least one other 
high risk chronic condition, and update our high-risk population estimates accordingly to 
account for overlap. 

Pregnancy​: We separately estimate the number of pregnant women in each age group 
and each city, following the methodology in CDC reproductive health report ​[22]​. We 
assume independence between any of the high-risk factors and pregnancy, and further 
assume that half the population are women. 

https://paperpile.com/c/6ZDPHK/d0SA5
https://paperpile.com/c/6ZDPHK/7NpML
https://paperpile.com/c/6ZDPHK/tZbu4
https://paperpile.com/c/6ZDPHK/ITW9M+exXNv
https://paperpile.com/c/6ZDPHK/exXNv
https://paperpile.com/c/6ZDPHK/2TOsO
https://paperpile.com/c/6ZDPHK/LcYgI
https://paperpile.com/c/6ZDPHK/Rz566
https://paperpile.com/c/6ZDPHK/OPbgL
https://paperpile.com/c/6ZDPHK/Z1LKh


Estimating high-risk proportions for children​. ​Since the 500 Cities Project only reports 
data for adults 18 years and older, we take a different approach to estimating the 
proportion of children at high risk for severe influenza. The two most prevalent risk 
factors for children are asthma and obesity; we also account for childhood diabetes, HIV 
and cancer. 

From Miller et al. ​[23]​, we obtain national estimates of chronic conditions in children. For 
asthma, we assume that variation among cities will be similar for children and adults. 
Thus, we use the relative prevalence of asthma in adults to scale our estimates for 
children in each city. The prevalence of HIV and cancer in children are taken from CDC 
HIV surveillance report ​[19]​ and cancer research report ​[24]​, respectively. 

We first estimate the proportion of children having either asthma, diabetes, cancer or 
HIV (assuming no overlap in these conditions). We estimate city-level morbid obesity in 
children using the estimated morbid obesity in adults multiplied by a national constant 
ratio for each age group estimated from Hales et al. ​[25]​, this ratio represents the 
prevalence in morbid obesity in children given the one observed in adults. From Morgan 
et al. ​[21]​, we estimate that 25% of morbidly obese children have another high-risk 
condition and adjust our final estimates accordingly. 

Resulting estimates​. We compare our estimates for the Austin-Round Rock 
Metropolitan Area to published national-level estimates ​[26]​ of the proportion of each 
age group with underlying high risk conditions (Table S2.2). The biggest difference is 
observed in older adults, with Austin having a lower proportion at risk for complications 
for COVID-19 than the national average; for 25-39 year-old the high risk proportion is 
slightly higher than the national average.  

 

 

 

 

 

 

 

 

 

https://paperpile.com/c/6ZDPHK/1pFG5
https://paperpile.com/c/6ZDPHK/LcYgI
https://paperpile.com/c/6ZDPHK/nWpbt
https://paperpile.com/c/6ZDPHK/17kmU
https://paperpile.com/c/6ZDPHK/OPbgL
https://paperpile.com/c/6ZDPHK/Iet11


Fig S2. Demographic and risk composition of the Austin-Round Rock 
population 

 

Bars indicate age-specific population sizes, separated by low risk, high risk, and pregnant. High 
risk is defined as individuals with cancer, chronic kidney disease, COPD, heart disease, stroke, 
asthma, diabetes, HIV/AIDS, and morbid obesity, as estimated from the CDC 500 Cities 
Project ​[16]​, reported HIV prevalence ​[19]​ and reported morbid obesity prevalence ​[20,21]​, 
corrected for multiple conditions. The population of pregnant women is derived using the 
CDC’s method combining fertility, abortion and fetal loss rates ​[27–29]​. 
 

 

Table S2.1. High-risk conditions for influenza and data sources for prevalence 
estimation 

Condition Data source 

Cancer (except skin) CDC 500 cities ​[16] 

Chronic kidney disease CDC 500 cities ​[16] 

COPD CDC 500 cities ​[16] 

Coronary heart disease CDC 500 cities ​[16] 

Stroke CDC 500 cities ​[16] 

Asthma CDC 500 cities ​[16] 

https://paperpile.com/c/6ZDPHK/d0SA5
https://paperpile.com/c/6ZDPHK/LcYgI
https://paperpile.com/c/6ZDPHK/Rz566+OPbgL
https://paperpile.com/c/6ZDPHK/q6r7Q+sWC0k+stw3l
https://paperpile.com/c/6ZDPHK/d0SA5
https://paperpile.com/c/6ZDPHK/d0SA5
https://paperpile.com/c/6ZDPHK/d0SA5
https://paperpile.com/c/6ZDPHK/d0SA5
https://paperpile.com/c/6ZDPHK/d0SA5
https://paperpile.com/c/6ZDPHK/d0SA5


Diabetes CDC 500 cities ​[16] 

HIV/AIDS CDC HIV Surveillance report ​[19] 

Obesity CDC 500 cities complemented with Sturm and Hattori​[20]​ and 
Morgan et al. ​[21] 

Pregnancy National Vital Statistics Reports ​[27]​ and abortion data ​[28] 

 

Table S2.2. Comparison between published national estimates and Austin-Round 
Rock MSA estimates of the percent of the population at high-risk of 
influenza/COVID-19 complications 

  
Age Group 

National 
estimates​[25] 

Austin 
(excluding 
pregnancy) 

Pregnant women 
(proportion of age 

group) 

0 to 6 months NA 6.8 - 

6 months to 4 years 6.8 7.4 - 

5 to 9 years 11.7 11.6 - 

10 to 14 years 11.7 13.0 - 

15 to 19 years 11.8 13.3 1.7 

20 to 24 years 12.4 10.3 5.1 

25 to 34 years 15.7 13.5 7.8 

35 to 39 years 15.7 17.0 5.1 

40 to 44 years 15.7 17.4 1.2 

45 to 49 years 15.7 17.7 - 

50 to 54 years 30.6 29.6 - 

55 to 60 years 30.6 29.5 - 

60 to 64 years 30.6 29.3 - 

65 to 69 years 47.0 42.2 - 

70 to 74 years 47.0 42.2 - 

75 years and older 47.0 42.2 - 

 

https://paperpile.com/c/6ZDPHK/d0SA5
https://paperpile.com/c/6ZDPHK/LcYgI
https://paperpile.com/c/6ZDPHK/Rz566
https://paperpile.com/c/6ZDPHK/OPbgL
https://paperpile.com/c/6ZDPHK/q6r7Q
https://paperpile.com/c/6ZDPHK/sWC0k
https://paperpile.com/c/6ZDPHK/17kmU


Section S3. Sensitivity analysis with respect to healthcare durations 

With the assumption that the healthcare system is likely to perform less effectively 
under the highly stressed condition, patient discharge may take longer in the surge 
setting. As sensitivity analysis, we analyzed longer duration hospital, ICU and ventilator 
treatment (Table S3.1). The results are summarized in Tables S3.2 and S3.3 and Fig. 
S3.  

 

Table S3.1. Updated Hospitalization Parameters. All values were modified based 
on discussions with Austin-Round Rock Medical authorities regarding worst case 
surge scenarios. 

Parameters Original 
Updated for sensitivity 

analysis Details 

: recovery rate in 
hospitalized 
compartment  

0.0869565 0.07142857 
14 day average 
from admission 
to discharge.  

: rate from 
hospitalized to 
death 

0.0892857 0.07142857 
14 day average 
from admission 

to death 

Vent​: proportion of 
individuals in ICU 
needing ventilation 

[0.35, 0.3, 0.45, 0.5, 0.45] [0.67, 0.67, 0.67, 0.67, 0.67]  
 

: duration ofdICU  
stay in ICU 8 days 14 days  

: duration ofdV  
ventilation 5 days 10 days  

 
 
 

 

 

 

 

http://www.texrendr.com/?eqn=%5Cgamma%5EH#0


Table S3.2. Longer treatment surge scenario: estimated cumulative COVID-19 
cases, healthcare requirements and deaths. ​T​he values are medians across 100 
stochastic simulations for the Austin-Round Rock MSA from March 1 through 
August 17, 2020 based on the parameters given in Table S3.1.  

Outcomes 
No 

measures 
School 
closure 

School closure + 
50% social 
distancing 

School closure + 
75% social 
distancing 

School closure + 
90% social 
distancing 

Hospitalizations  87,851 86,744 62,241 19,376 3,041 

ICU  14,713 1,4528 10,451 3,257 512 

Ventilators 9,808 9,685 6,967 2,171 342 

 
 
 
 
Table S3.3. Longer treatment surge scenario: estimated peak COVID-19 
healthcare demands. The values are medians across 100 stochastic simulations 
for the Austin-Round Rock MSA from March 1 through August 17, 2020 based on 
the parameters given in Table S3.1.  

Outcomes 
No 

measures 
School 
closure 

School closure + 
50% social 
distancing 

School closure + 
75% social 
distancing 

School closure + 
90% social 
distancing 

Hospitalizations 21,152 20,308 14,893 7,238  1,152 

ICU 3,556 3,410 2,498 1,217 195 

Ventilators 1,693 1,624 1,189 579 93 

 
 
 

 

 

 

 

 



Fig S3. Longer treatment surge scenario: projected COVID-19 healthcare demand 
and cumulative deaths in the Austin-Round Rock MSA from March 1 to August 
17, 2020 

 
Graphs show simulation results across multiple levels of social distancing, assuming ​R​0​=2.2 
with a four-day epidemic doubling time.​ ​Extensive social distancing is expected to substantially 
reduce the burden of COVID-19 (A) hospitalizations, (B) patients requiring ICU care, (C) 
patients requiring mechanical ventilation and (D) mortality. The red lines project COVID-19 
transmission assuming no interventions under the parameters given in Table S1. The blue lines 
show increasing levels of social distancing interventions, from light to dark: school closures plus 
social distancing interventions that reduce non-household contacts by either 0%, 50%, 75% or 
90%. Lines and shading indicate the median and inner 95% range of values across 100 
stochastic simulations. Gray shaded region indicates estimated surge capacity for COVID-19 
patients in the Austin-Round Rock MSA as of March 28, 2020, which is calculated based on 
80% of the total 4299 hospital beds and 90% of the total 755 ICU beds and 755 mechanical 
ventilators.  
 
 

 

 

 

 



Section S4. Impact of two-week and four-week delays in implementation of social 
distancing interventions 

Our base scenarios assume that social distancing measures are implemented on March 
14 or May 14, 2020. We also modeled intermediate delays of two weeks (March 28) and 
four weeks (April 11). Even two-week delays undermine the efficacy of the interventions 
with respect to reducing healthcare demand below local capacity (Fig. S4 and Table 
S4). 

 

Fig S4. Delayed implementation of social distancing measures: projected 
COVID-19 ICU requirements in the Austin-Round Rock MSA from March 14 to 
August 17, 2020 

 
Graphs show simulation results for school closures with (A) 75% reduction in non-household 
contacts and (B) 90% reduction in non-household contacts, assuming ​R​0​=2.2 with a four-day 
epidemic doubling time.​ ​The red lines project COVID-19 transmission assuming no interventions 
under the parameters given in Table S1. The other lines colors indicate different delays in the 
timing of intervention: blue, green, yellow and black correspond to March 14, March 28, April 11, 
and May 14, 2020, respectively.  Lines and shading indicate the median and inner 95% range of 
values across 100 stochastic simulations. Gray shaded region indicates estimated surge 
capacity for COVID-19 patients in the Austin-Round Rock MSA as of March 28, 2020, which is 
calculated based on 90% of the total 755 ICU beds.  
 
 
 

 

 

 

 



Table S4. Date when COVID-19 healthcare requirements exceed capacity based 
on implementation date for school closures with 75% or 90% social distancing. 
Each value is a median across 100 stochastic simulations for the Austin-Round 
Rock MSA prior to August 17, 2020, based on the parameters given in Table S1. 

 
Outcomes 

School closure + 
 75% social distancing 

School closure +  
90% social distancing 

March 14 
start 

March 28 
start 

April 11  
start 

March 14 
start 

March 28 
start 

April 11  
start 

Hospitalizations August 1 July 7 June 15 Not exceed August 12 July 4 

ICU Aug 15 July 18 June 26 Not exceed Not exceed July 21 
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