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Supplement 1 – Technical model description 
 
Introduction 
This document provides a technical description of the geographically stratified SEIR model used to 
predict the transmission dynamics of Covid-19 in a country or part of a country. The source code for 
the model in the form of the R package virsim is available onlinea under the CC BY-NC-ND 4.0 
license.b At the end of the document, Table S1.1 provides a complete overview of the parameter 
values used in the main analysis. The implications of these parameters (e.g. distributions of local 
population sizes) are visualized throughout the document as part of the technical description. 
 
Model description 
We describe the dynamics of Covid-19 transmission using a standard SEIR model for a closed 
population of size 𝑁, ignoring births and deaths. In terms of ordinary differential equations this can 
be described as: 
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𝑁 = 𝑆 + 𝐸 + 𝐼 + 𝑅 
 
Here, 𝜆 is the force infection, 𝛽 is the average contact rate in the population (including the average 
probability that transmission occurs during an average contact), 𝜌 is one over the average incubation 
time, and 𝛾 is one over the average duration of infectiousness, assuming exponentially distributed 
sojourn times. To relax assumptions about exponentially distributed durations and capture various 
other heterogeneities (more details below), we implemented the SEIR model in an individual-based 
framework in discrete time (one-day time steps). We assume that the durations of compartments 𝐸 

                                                             
a http://www.gitlab.com/luccoffeng/virsim 
b https://creativecommons.org/licenses/by-nc-nd/4.0/ 
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and 𝐼 each follow a Weibull distribution with mean 𝜈0  and 𝜈1 and shape 𝛼0 and 𝛼1 (Figure S1.1). 
Infection events (transitions from 𝑆 to 𝐼) are assumed to follow an exponential distribution, with the 
probability of an individual being infected on day 𝑡 defined as: 
 
Pr5,7→1 = 1 − exp	(−Δ𝑡 ∙ 𝜆5) 
 
Figure S1.1. Weibull distributions for duration of compartments 𝑬 and 𝑰. Duration of compartment 𝑬 was assumed to 
follow a Weibull distribution with mean 5.5 and shape 20. Duration of compartment 𝑰 was assumed to follow a Weibull 
distribution with mean 10 and shape 0.8. The red dashed line indicates the arithmetic mean durations; dashed black lines 
indicate the symmetric 95%-confidence intervals. 

 
 
To capture differential mixing of individuals in the same community (e.g. a town, ward or village) and 
administrative unit (e.g. a province), we distribute all 𝑁 individuals over 𝐾 superclusters that each 
consist of 𝑁E individuals. Within each supercluster, we further subdivide the 𝑁E individuals over 𝐽E 
clusters of 𝑁GE individuals. We allow for variation in cluster size 𝑁GE by distributing the population 
over all ∑ 𝐽EI  clusters using a multinomial distribution with cluster-specific probability weights drawn 
from a log-normal distribution with mean 0 and standard deviation 𝜎 (Figure S1.2). We assume that 
each supercluster contains the same number of clusters (i.e. unrelated to individual cluster sizes), so 
𝐽E = 𝐽, for all 𝑘 = 0,… , 𝐾. 
 
To capture heterogeneity in contact rates of individuals and potential assortative mixing of 
individuals with similar transmission-related behavior, we assign each individual a life-long weight 
𝑤OGE  which represents the individual’s contact rate relative to the population average contact rate 𝛽. 
We allow relative contact rates to vary between individuals according to a gamma distribution with 
equal shape and rate 𝛼 such that average relative contact rate is one (Figure S1.3). Relative contact 
rates capture inter-individual variation resulting from both contact frequency and the probability of 
transmission per contact. 
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Figure S1.2. Variation in cluster population size. The red dashed line indicates the arithmetic mean cluster population size 
(note that the horizontal axis is logarithmic); dashed black lines indicate the symmetric 95%-confidence interval. The 
histogram is based on ten thousand simulated cluster sizes with an expected size of one thousand population and 𝝈 =
𝟎.𝟗𝟓. 

 
 
 
Figure S1.3. Variation in individual relative contact rate. Relative contact rates are assumed to follow a gamma distribution 
with equal shape and rate (𝜶 = 𝟑. 𝟒) and mean one (red dashed line). Dashed black lines indicate the symmetric 95%-
confidence interval. 

 
 
Assortative mixing (i.e. differential mixing of individuals with more similar contact rates) is captured 
by drawing and assigning individual relative contact rates 𝑤OGE  as follows. First, after assigning 
individuals to clusters, for each individual 𝑖 we draw a random value 𝑥O  from the unit normal 
distribution 𝑁(0,1). Likewise, for each cluster 𝑗 we draw a random value 𝑥G~𝑁(0,1). For each 
individual 𝑖 in each cluster 𝑗 we then add up 𝑥OG = 𝑥O + 𝜗 ∙ 𝑥G, where 𝜗 is a parameter between 0 and 
1 representing the level of assortative mixing. We then determine the rank of each individual in the 
entire population based on their value 𝑥OG. Next, we draw 𝑁 values of 𝑤OGE~Γ(𝛼, 𝛼) and order these 
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(ascending or descending order does not matter). Then finally, we assign each individual the nth of 
the ordered values of 𝑤OGE , where n is the individual’s rank in terms of 𝑥OG (Figure S1.4). If 𝜗 = 0, 
there is no assortative mixing and cluster-level average contact rates are all 1 (± Monte Carlo 
sampling variation). If 𝜗 = 1, there is maximum assortative mixing such that individuals’ relative 
contact rates 𝑤OGE  within a cluster are extremely similar and the cluster-level average contact rates 
follow a gamma distribution Γ(𝛼, 𝛼). 
 
Figure S1.4. Variation in the average relative contact rate per cluster due to assortative mixing (𝝑 = 𝟎.𝟒𝟓). 

 
 
To account for the impact of heterogeneity in individual contact rates, geographical mixing patterns, 
and potential assortative mixing on transmission, we define the force of infection 𝜆OGE acting on a 
susceptible individual 𝑖 in cluster 𝑗 in supercluster 𝑘 as: 
 

𝜆OGE = 𝜀OE𝑤OGE ∙ 𝛽 `(1 − 𝜃SC − 𝜃)
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ΛOGE = 𝜀OE𝑤OGE ∙ It𝐼OGEu 
 
𝜀OEv ~Beta(𝜇E ∙ 𝜏, [1 − 𝜇E] ∙ 𝜏) 
 

Here, It𝐼OGEu is an indicator function that returns 1 if individual 𝑖 in cluster 𝑗 in supercluster 𝑘 is in the 
compartment 𝐼 (i.e. infectious), and 0 otherwise. Interventions aimed at reducing contact rates (e.g. 
social distancing) are assumed to be implemented at the level of superclusters; their effect 𝜀OE on 
contact rates may vary between individuals, with its square following a Beta distribution with mean 𝜇 
and size 𝜏 (i.e. the sum of the distribution’s shape parameters). In case the reduction of contact rates 
is the same across and within all superclusters (𝜇E = 𝜇 and 𝜏 → ∞, such that 𝜀OE = √𝜇), the quantity 
𝜀OEv = 𝜇 represents the reduction in the overall contact rate 𝛽 (i.e. the quantity reported in the main 
manuscript). However, to capture the effect of implementing control in only part of the population 
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(i.e. when 𝜇E ≠ 𝜇), we define 𝜇E at the supercluster level. Changes in 𝜇E over time can be specified 
per supercluster, allowing the simulation of a geographically heterogeneous intervention. In case 𝜇E 
changes over time, individual reductions 𝜀OE in contact rates are assumed to change proportionally to 

�𝜇E, and to be stable over time otherwise (reflecting the individual’s inclination to adhere to 
control). Although not described above, the model also includes a mechanism that allows the user to 
specify which (random) fraction of the population will take up the intervention at each time point 
(default value 100%). For individuals who do not take up the intervention, we assume 𝜀OE = 1. 
 
Differential mixing of populations in clusters and superclusters is captured by mixing weights for 
population-level transmission (𝜃), supercluster-level transmission (𝜃SC), and cluster-level 
transmission (1 − 𝜃SC − 𝜃). Isolation of a supercluster for control of transmission is simulated by 
multiplying a supercluster’s contribution and exposure to population-wide transmission by 𝜑 (range 
0–1).  
 
In absence of variation in individual contact rates (i.e. 𝑤OGE = 1) and in case of homogeneous mixing 
of the population (𝜃 = 1, and 𝜃SC = 0) and uniform implementation of (and adherence to) control 
measures (i.e. 𝜀OE = √𝜇), the above equation for 𝜆OGE can be reduced to the original formulation of 
the force of infection in a simple SEIR model: 
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Table S1.1. Overview of parameter values used in the main analysis. 

Parameter Description Value(s) 

𝜈0  Average incubation time. 5.5 days 

𝛼0 Shape of Weibull distribution for incubation 
time. 

20, such that the 95%-CI = 4.7–6.0 days 

𝜈1 Average duration of infectiousness. 10 days 

𝛼1 Shape of Weibull distribution for duration of 
infectiousness. 

0.8, such that the 95%-CI = 0.1–45 days 

𝑁 Total population size. 10 million 

𝐾 Number of superclusters. 10 

𝐽 Number of clusters per supercluster. 10 thousand 

𝜎 Standard deviation of cluster-level sampling 
weights for the multinomial distribution of 
clusters population sizes. 

0.95, such that 95% of the clusters are 
inhabited by 100–4000 individuals, and 
0.2% of cluster harbor >10 thousand 
individuals 

𝛽 Overall contact rate. 0.1717, such that the initial exponential 
growth of the epidemic is equal to one 
predicted by a homogeneous model with 
𝛽 = 0.25, 𝜈0 = 5.5, and 𝜈1 = 10 (𝑅� =
2.5) 

𝛼 Shape and rate of gamma distribution for 
variation in individual relative contact rates 
(relative to overall contact rate 𝛽). 

3.4, such that the 2.5th and 97.5th 
percentiles of the distribution of relative 
contact rates differ by a factor 10. 

𝜗 Level of assortative mixing (range 0–1). 0.45, such that the 2.5th and 97.5th 
percentiles of the distribution of average 
relative contact rate in each cluster differ 
by a factor 4 

𝜃SC, 𝜃 Weights for transmission coming from 
superclusters and the general population, 
respectively. The derived weight for 
transmission coming within cluster is 1 −
𝜃SC − 𝜃. 

0.05, 0.05 

𝜇 The relative level to which transmission is 
reduced on average in supercluster 𝑘. 

0.25 for intensive control, 1 otherwise 

𝜏 Size of the Beta distribution for inter-
individual variation in the effect of contact-
related interventions 

∞ 

𝜑 Multiplier for the contribution and exposure 
of a supercluster to population-level 
transmission in case of isolation. 

0.5 in case of isolation of the supercluster, 
1 otherwise 

 


