Prediction on Covid-19 epidemic for different countries: Focusing on South Asia under various precautionary measures

Abhijit Paul¹, Samrat Chatterjee^{1,*}, and Nandadulal Bairagi^{2,*}

¹Complex Analysis Group, Translational Health Science and Technology Institute, NCR Biotech Science Cluster, 3rd milestone, Faridabad-Gurgaon Expressway, Faridabad-121001, India

²Centre for Mathematical Biology and Ecology, Department of Mathematics, Jadavpur University, Kolkata-700032, India

*corresponding authors: nbairagi@yahoo.co.in (NB), samrat.chatterjee@thsti.res.in (SC)

Supplementary Information

In the current study, we have used the country-wise temporal data of confirmed, recovered and death cases till 2nd April, 2020. The data is freely available in GitHub repository[1], along with the feature layers of the dashboard, which are now included in the Esri Living Atla[2]. This is the data repository maintained by the Johns Hopkins University[1, 3]. Our proposed mathematical model of the overall dynamics of COVID-19 epidemic is represented by the following system of non-linear ordinary differential equation:-

$$\frac{dS}{dt} = -\frac{\beta SI}{1 + \alpha I},$$

$$\frac{dE}{dt} = \frac{\beta (1 - w)SI}{1 + \alpha I} - \gamma E,$$

$$\frac{dI}{dt} = \gamma E - \delta I - \mu I,$$

$$\frac{dR}{dt} = \delta I,$$

$$\frac{dD}{dt} = \mu I,$$
(1)

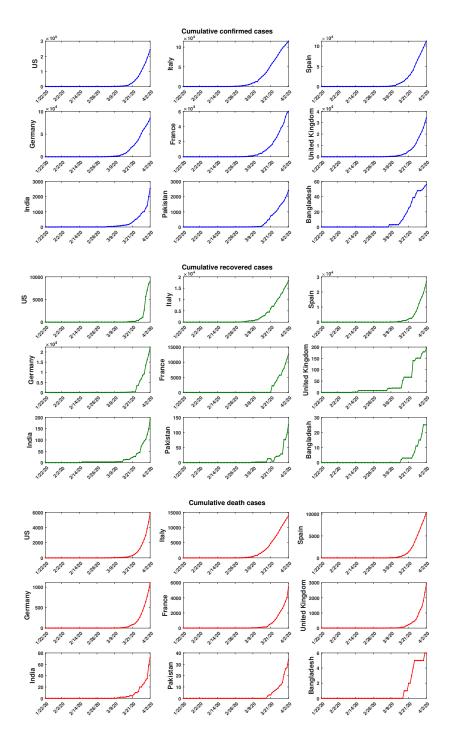


Figure 1: **Available data on COVID-19.** The data from the period of 22nd January, 2020 to 2nd April, 2020. (a) Confirmed cases, (b) Recovered cases, (c) Death cases.

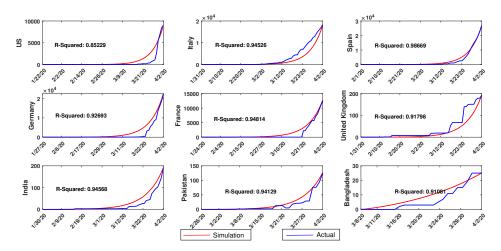


Figure 2: Cumulative recovered cases: Comparison of country-specific simulation results of our model (1) with the published data of recovered cases.

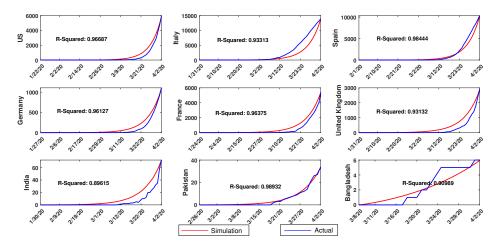


Figure 3: Cumulative death cases: Comparison of country-specific simulation results of our proposed model (1) with the published data for death cases. Bangladesh does not show a good curve fit due to lack of sufficient data.

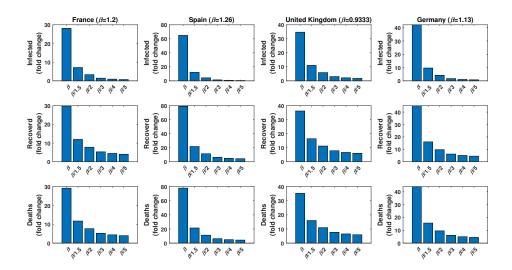


Figure 4: **Effect of parameter variation:** Estimated fold change in the number of infected, recovered and death cases for COVID-19 epidemic in Europe after one month for different values of β . The fold change on 3rd May was calculated on the basis of respective numbers of 2nd April 2020.

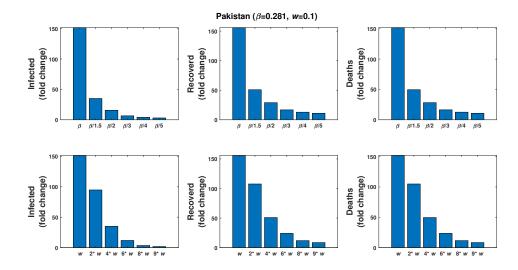


Figure 5: **Effect of parameter variation:** Estimated fold change in the number of infected, recovered and death cases for COVID-19 epidemic in Pakistan after one month for different values of β (upper row) and w (lower row). The fold change on 3rd May was calculated on the basis of respective numbers of 2nd April 2020.

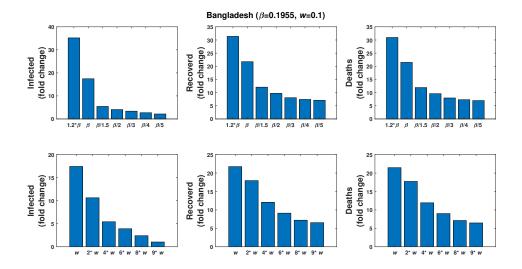


Figure 6: **Effect of parameter variation:** Estimated fold change in the number of infected, recovered and death cases for COVID-19 epidemic in Bangladesh after one month for different values of β (upper row) and w (lower row). The fold change on 3rd May was calculated on the basis of respective numbers of 2nd April 2020.

References

- [1] 2019 Novel Coronavirus COVID-19 (2019-nCoV) Data Repository by Johns Hopkins CSSE. https://github.com/CSSEGISandData/COVID-19
- [2] Dong, E., Du, H., & Gardner, L. (2020). An interactive web-based dashboard to track COVID-19 in real time. The Lancet Infectious Diseases.
- [3] John Hopkins University, "Coronavirus Map," John Hopkins University, 17 March 2020. [Online]. Available: https://coronavirus.jhu.edu/map.html.