Supporting Information

Same-Day Simultaneous Diagnosis of Bacterial and Fungal Infections in Clinical Practice by Nanopore Targeted Sequencing

Ming Wang, ^{1#} Aisi Fu,^{2#} Ben Hu,² Gaigai Shen,² Ran Liu,² Wanxu Zhao,² Shupeng Jiang,¹ Xuan Cai,¹ Congrong Li,¹ Juan Li,¹ Qing Wu,¹ Kai Feng,¹ Jiashuang Gu,³ Jia Chen,² Mingyue Shu,² Binghong Zhang,⁴ Zixin Deng,^{2,5,6} Lilei Yu,⁷ Yan Li,^{*} Tiangang Liu,^{2,6 *}

¹ Department of Clinical Laboratory, Renmin Hospital of Wuhan University, Wuhan, 430060, China

² Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education and Wuhan University School of Pharmaceutical Sciences, Wuhan 430071, China

³ Wuhan Dgensee Clinical Laboratory Co., Ltd. Wuhan 430075, China

⁴ Department of Pediatrics, Renmin Hospital of Wuhan University, Wuhan, 430060, China

⁵ State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200030, China

⁶ Hubei Engineering Laboratory for Synthetic Microbiology, Wuhan Institute of

Biotechnology, Wuhan, 430075, China

⁷ Department of Internal Medicine, Renmin Hospital of Wuhan University, Wuhan,
430060, China

These authors contributed equally to this work.

Corresponding author:

Prof. Tiangang Liu. Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education and Wuhan University School of Pharmaceutical Sciences, Wuhan 430071, China. Email: liutg@whu.edu.cn. Tel: +86-27-68755086

Prof. Yan Li. Department of Clinical Laboratory, Renmin Hospital of Wuhan University, Wuhan, 430060, China Email: yanlitf1120@163.com. Tel: +86-27-88071553

Supporting Methods

NTS PRIMER DESIGN

All available and complete gene sequences of the 16S rRNA gene, ITS1/2, and rpoB of Mycobacterium spp. in GenBank (accessed January 2019) were downloaded, and artificial sequences (e.g., lab-derived, synthetic) along with sequence duplicates in reference sequences for each marker were manually removed. Then, ≤ 10 reference sequences in each species were randomly retained into collections, resulting in 3 databases for the 16s rRNA gene, ITS1/2 and rpoB, respectively. Multiple sequence alignment was performed using Clustal W (version 1.83) for each database individually and the variation rate of each base in the marker gene was used to calculate the conservative region and calculate the degeneracy of each base in full-length primer using an in-house pipeline. 27F/1492R (1) and ITS1/TIS4 (2) primers was selected as a "start primer" of the 16s rRNA gene and ITS1/2 for the following design, respectively. A serial of candidate primers in the conservative region around 50 base pairs of the start primer was calculated. Several "additional primers" for the marker gene were manually selected using the following metrics: 1) primer length: 18-30 bp; 2) melting temperature (Tm): 58-65°C, with a temperature difference of less than 3°C between start and additional primer; 4) GC content of primers: 40-60%; 5) ΔG (Gibbs free energy) of the last five resides of the primers at the 3' end: \geq -9 kcal/mol. The 27F/1492R or ITS1/4 primer and corresponding additional primers were mixed with the molar ratio of 3:1 to generate the final universal primer pairs. For *Mycobacterial rpoB*, an additional primer was designed as described above based on the previous MF/MR primer (3). The MF/MR primer and additional primers were mixed with the molar ratio of 3:1 to generate the final specific primer pairs.

To sequence different samples on a chip, all universal and specific primers were barcoded by adding 96 different barcode sequences to the 5' end. The barcode sequences were from the Nanopore PCR barcode kit EXP-PBC096 (Oxford Nanopore Technologies) and all primer oligos were synthesized by Genscript. All primers used in this study are listed in Table S1.

SAMPLE PROCESSING AND DNA EXTRACTION

All clinical specimens were sent to a clinical laboratory, and DNA was extracted within 6 h. Specific pretreatment procedures were performed. In brief, liquid specimens, such as cerebrospinal fluid (CSF) were centrifuged at 20,000 × g for 10 minutes. The supernatant was removed and 200 μ L of the specimen was retained for DNA extraction. Sputum samples were pre-treated with 4 M NaOH as described previously *(4)*. Swabs were vortexed in 1 mL of sterile saline and centrifuged at 20,000 × g for 10 minutes. The supernatant was removed and 200 μ L of saline was added for DNA extraction. Tissue samples were cut into small pieces using sterile scissors and homogenized. DNA was extracted from 200 μ L of pre-treated samples using the Sansure DNA Extraction Kit (Changsha, China) following the manufacturer's instructions.

BIOINFORMATICS METHODOLOGY

Basecalling and quality assessment of sequencing data were performed using high accuracy mode in Guppy (v. 3.1.5). Sequencing reads with low quality (Q score < 7) and undesired length (length < 200nt or length >2000nt) were discarded. Porechop (v. 0.2.4) was used for adaptor trimming and barcode demultiplexing for retained reads. Reads of each sample were mapping against 16S rDNA/ITS reference database collected from NCBI FTP (<u>ftp://ftp.ncbi.nlm.nih.gov/refseq/TargetedLoci</u>) using

BLAST, and the taxonomy of each read was assigned according to the taxonomic information of mapped subject sequence. For the reads preliminarily assigned to the same species, a consensus sequence was generated using Medaka (v. 0.10.1). And then the consensus sequence was remapped to the 16S rDNA/ITS reference database, the assigned taxonomy (species level) was using as the final detection results of reads from the same genus of preliminary taxonomy assignment.(1)

Given the anticipated wide array of bacteria and the paucity of knowledge regarding the significance of low-level fungi, we aimed to maximize specificity for bacterial pathogens and to maximize sensitivity for fungal pathogens. The positive bacteria or fungi were determined if it met any of the following thresholds:

Bacteria out of critical list: mapped reads of microbes (species level) in sample >100 or mapped reads of microbes (species level) in sample is greater than that of any other microbes, and the ratio of mapped reads in sample and negative control >10. Fungi out of critical list: >20 reads at the species level or the relative abundance is higher than 50%. the ratio of mapped reads in sample and negative control > 10. Pathogen in critical list: >2 read mapped to pathogens at species level in critical list, such as MTB, *Nocardia*. spp. (5)

The bacteria/fungi in the Critical list are microorganisms that have been clinically known to be pathogenic. Microbes were described as potentially pathogenic or typically nonpathogenic have been investigated from the priori literature and clinical guidelines review, such as National Clinical Laboratory Procedures (Fourth Edition) and the Manual of Clinical Microbiology (Eleventh Edition). Unexplained bacteria: There are currently no microorganisms clearly defined in the guidelines, and the pathogenic potential and epidemiological relevance of such bacteria remains to be defined.

DETERMINATION OF PATHOGENS

5

Final reports were discussed with the clinical microbiology specialist with clinicians responsible for each case on an individual basis. The interpretation of culture or sequencing result is according to the type of specimens. In brief, for specimens from sterile setting, any clone found on the plate was defined as positive result and report to the clinicians after eliminating the possibility of contamination. For specimens from non-sterile setting, type and quantity of strains were both considered for judgement of positive result. Take BAL as an example. if the microbes grew >10⁴ CFU per mL or grew <10⁴ CFU/mL but were identified as a single gram-negative bacillus that was the only reportable pathogen. The following organisms, when identified, were reported as oral flora: coagulase-negative *Staphylococcus* spp., alpha-hemolytic *Streptococcus* spp., *Corynebacterium* spp., *Lactobacillus* spp., *Bacillus* spp. (other than *B. anthracis*), *Neisseria* spp., *Haemophilus* spp. (other than *Haemophilus influenzae*), *Eikenella* spp., *Capnocytophaga* spp., and yeast (other than *Cryptococcus* spp.).

Supporting Results

DESIGN OF NTS PRIMERS AND SEQUENCING LIBRARY PREPARTION

For the design of the universal primer, primers 27F/1492R (for bacterial 16s rRNA gene) (1) and ITS1/ITS4 (for fungal ITS1/2) (2) have been confirmed for identification of bacteria and fungi. Besides these two pairs of primers, we designed three "additional primers" (8F, 38F, and 1495R) for amplification of bacterial 16s rRNA gene and two "additional primers" (ITS1-2 and ITS4-2) for amplification of ITS1/2 to reduce the risk of amplification failure induced by the mismatch of primer, by multiple sequence alignment of each database and calculation of the variation rate of each base (Table S1).

For the design of the specific primer, the *rpoB* database of *Mycobacterium* spp. was constructed and analyzed according to the principle of universal primer. Genus-specific primer (MF/MR) targeted *rpoB* was used for the identification of *Mycobacterium* spp. *(3)*. Besides this pair of primers, we added another pair of primers(MF-2/MR-2) that can be targeted to increase sensitivity against *Mycobacterium* spp. and reduce the influence of unavoidable commensal microbiota in clinical samples (Table S1).

Although the nanopore sequencing platform can sequence DNA with different lengths in a single run, the shorter DNA fragments are more prone to be sequenced compared to the longer fragments. Moreover, the universal primer targeted all microbes in samples and required more sequencing data to detect all those microbes, especially for the relatively less abundant microbes, compared to specific marker gene. Therefore, according to our previous experience, in order to balance the data output of each marker, the PCR products of 16s rRNA gene (~ 1.5 kb), ITS1/2 (~ 400 - 800 bp), and *rpoB* (~ 400 bp) were pooled with the mass ratio of 10:3:1. Pooled products from the different samples were then mixed with equal mass and this mixed product was used for library preparation.

Category	Marker gene	Primer name	Primer sequence (5' to 3')	Primer source
		8F Barcode sequence-GGATCCAGACTTTGATYMTGG		This study
		27F Barcode sequence-AGRGTTYGATYMTGGCTCAG		Calus et al.(1)
	16s rRNA	38F	Barcode sequence-GGCTCAGRWYGAACGCTRG	This study
		1492R	Barcode sequence-RGYTACCTTGTTACGACTT	Calus et al.(1)
		1495R	Barcode sequence-TASRGYTACCTTGTTACGA	This study
universal	ITS1/2	ITS1	TCCGTAGGTGAACCTGCGG	Fujita et al.(2)
		ITS1-2	GTGAACCTGCGGAAGGATCAT	This study
primer		ITS4	TCCTCCGCTTATTGATATGC	Fujita et al.(2)
		ITS4-2	TATGCTTAAGTTCAGCGGGT	This study
		ITS1-barcode	Barcode sequence-TCCGTAGGTGAACCTGCGG	Fujita et al.(2)
		ITS1-2-barcode	Barcode sequence-GTGAACCTGCGGAAGGATCAT	This study
		ITS4-barcode	Barcode sequence-TCCTCCGCTTATTGATATGC	Fujita et al.(2)
		ITS4-2-barcode	Barcode sequence-TATGCTTAAGTTCAGCGGGT	This study
		MF	Barcode sequence-CGACCACTTCGGCAACCG	Kim et al.(3)
specific	un a D	MR	Barcode sequence-TCGATCGGGCACATCCGG	Kim et al.(3)
primer	rpoB	MF-2	Barcode sequence-GACGACATCGACCACTTCGG	This study
		MR-2	Barcode sequence-GGGTCTCGATCGGGCACAT	This study

Table S1. Primers used in this study

Respiratory system-well-recognized pathogens; critical pathogens were marked with *					
Bacteria Fungi Special pathogens					
Mycobacterium sp	Talaromyces sp	Mycoplasma sp			
Mycobacterium tuberculosis *	Talaromyces marneffei *	Mycoplasma pneumoniae *			
Nontuberculous mycobacterium *	Paracoccidiodes sp	Chlamydia sp			
Mycobacterium leprosy *	Paracoccidiodes brasiliensis *	Chlamydia pneumoniae *			
Bordetella sp	Coccidioide sp	Chlamydia trachomatis *			
Bordetella pertussis	Coccidioides immitis *	Chlamydia psittaci *			
Bordetella bronchiseptica	Sporotrichum sp	Borrelia sp			
Francis sp	Sporotrichum schenckii *	Borrelia vincenti *			
Francisella tularensis *	Histoplasma sp	Ureaplasma sp			
Listeria sp	Histoplasma capsulatum *	Ureaplasma urealyticum			
Listeria monocytogenes	Blastomyces sp	Ureaplasma parvum			
Yersinia sp	Blastomyces dermatitidis *				
Yersinia pestis *	Pneumocystis				
Legionella sp	Pneumocystis jiroveci *				
Legionella pneumophila *					
Respiratory system-opportunistic pathogens					
Bacteria	Fungi				
Staphylococcus sp	Candida sp				
Staphylococcus aureus	Candida albicans	Staphylococcus			
Staphylococcus saprophyticus	Candida parapsilosis				
Streptococcus sp	Candida glabrata				
Streptococcus pyogenes	Candida tropicalis				
Streptococcus pneumoniae	Candida krusei				
Streptococcus agalactiae	Cryptococcus sp				
Neisseria sp	Cryptococcus neoformans				
Neisseria meningitidis	Cryptococcus gattii				
Nocardia sp	Aspergillus sp				
Nocardia asteroides	Aspergillus fumigatus				
Nocardia brasiliensis	Aspergillus niger				
Rhodococcus sp	Aspergillus terreus				
Rhodococcus equi	Aspergillus flavus				
Moraxella sp	Aspergillus versicolor				
Moraxella catarrhalis	Fusarium sp				
Escherichia sp	Fusarium solani				
Escherichia coli	Fusarium oxysporum				
Escherichia fergusonii	Fusarium moniliforme				
Pseudomonas sp	Alternaria sp				
Pseudomonas aeruginosa	Alternaria infectoria				
Pseudomonas putida	Alternaria alternata				
Pseudomonas fluorescens	Scedosporium sp				

Table S2. classification of microbes

Proteus sp	Scedosporium prolificans	
Proteus mirabilis	Scedosporium apiospermum	
Proteus vulgaris	Cladosporium sp	
Acinetobacter sp	Cladosporium axysporum	
Acinetobacter baumannii	Cladosporium cladosporioides	
Acinetobacter lwoffii	Curvularia sp	
Acinetobacter junii	Curvularia lunata	
Acinetobacter johnsonii	Rhizopus sp	
Klebsiella sp	Rhizopus arrhizus	
Klebsiella pneumoniae	Mucor sp	
Klebsiella oxytoca	Mucor circinelloides	
Klebsiella aerogenes	Cladophialophora sp	
Enterobacter sp	Cladophialophora bantiana	
Enterobacter cloacae	Cladophialophora carrionii	
Serratia sp		
Serratia marcescens		
Serratia liquefaciens		
Morganella sp		
Morganella morganii		
Stenotrophomonas sp		
Stenotrophomonas maltophilia		
Burkholderia sp		
Burkholderia cepacia		
Burkholderia lata		
Haemophilus sp		
Haemophilus haemolyticus		
Haemophilus influenzae		
Respiratory System-commensal bacteria		
Bacteria	Anaerobe	
Actinobacillus sp	Anaerococcus sp	
Actinobacillus rossii	Anaerococcus hydrogenalis	
Coagulase negative staphylococci	Peptostreptococcus sp	
Staphylococcus haemolyticus	Peptostreptococcus anaerobius	
Staphylococcus hominis	Bacteroides sp	
Corynebacterium sp	Bacteroides fragilis	
Corynebacterium striatum	Prevotella sp	
Bacillus sp	Prevotella melaninogenica	
Bacillus cereus	Finegoldia sp	
Streptococcus sp	Finegoldia magna	
Streptococcus mitis	Veillonella sp	
Neisseria sp	Veillonella parvula	
Neisseria flavescens	Rothia sp	

Granulicatella sp	Rothia mucilaginosa	
Granulicatella adiacens		
Abiotrophia sp		
Abiotrophia defectiva		
Moraxella sp		
Moraxella osloensis		
Haemophilus sp		
Haemophilus parainfluenzae		
Eikenella sp		
Eikenella corrodens		
Enterococcus sp		
Enterococcus faecalis		
Enterococcus faecium		
Capnocytophaga sp		
Capnocytophaga gingivalis		

urinary system well-recognized pathogens;		
critical pathogens were marked with *		
Bacteria	Fungi	Special pathogens
Brucella sp	Talaromyces sp	Chlamydia sp
Brucella suis *	Talaromyces marneffei *	Chlamydia trachomatis *
Haemophilus sp	Paracoccidiodes sp	Treponema sp
Haemophilus ducreyi	Paracoccidiodes brasiliensis *	Treponema pallidum *
Calymmatobacterium sp	Coccidioide sp	
Calymmatobacterium granulomatis	Coccidioides immitis *	
Neisseria sp	Sporotrichum sp	
Neisseria gonorrhoeae *	Sporotrichum schenckii *	
Legionella sp	Histoplasma sp	
Legionella pneumophila *	Histoplasma capsulatum *	
Mycobacterium sp	Blastomyces sp	
Mycobacterium tuberculosis *	Blastomyces dermatitidis *	
Nontuberculous mycobacterium *		
Mycobacterium leprosy *		
Burkholderia sp		
Burkholderia pseudomallei *		
Listeria sp		
Listeria monocytogenes		
Salmonella sp		
Shigella sp *		
urinary-system opportunistic pathogens		
Bacteria	Fungi	Special pathogens

Staphylococcus sp	Candida sp	Mycoplasma sp
Staphylococcus aureus	Candida albicans	Mycoplasma genitalium
Staphylococcus saprophyticus	Candida parapsilosis	Mycoplasma hominis
Streptococcus sp	Candida glabrata	Ureaplasma sp
Streptococcus pyogenes	Candida tropicalis	Ureaplasma urealyticum
Streptococcus pneumoniae	Candida krusei	Ureaplasma parvum
Streptococcus agalactiae	Cryptococcus sp	
Enterococcus sp	Cryptococcus neoformans	
Enterococcus faecalis	Cryptococcus gattii	
Enterococcus faecium	Trichosporon sp	
Corynebacterium sp	Trichosporon asahii	
Corynebacterium jeikeium	Aspergillus sp	
Corynebacterium urealyticum	Aspergillus fumigatus	
Campylobacter sp	Aspergillus niger	
Campylobacter ureolyticus	Aspergillus terreus	
Nocardia sp	Aspergillus flavus	
Nocardia asteroides	Aspergillus versicolor	
Nocardia brasiliensis		
Escherichia sp		
Escherichia coli		
Escherichia fergusonii		
Pseudomonas sp		
Pseudomonas aeruginosa		
Pseudomonas putida		
Pseudomonas fluorescens		
Proteus sp		
Proteus mirabilis		
Proteus vulgaris		
Acinetobacter sp		
Acinetobacter baumannii		
Acinetobacter lwoffii		
Acinetobacter junii		
Acinetobacter johnsonii		
Klebsiella sp		
Klebsiella pneumoniae		
Klebsiella oxytoca		
Klebsiella aerogenes		
Enterobacter sp		
Enterobacter cloacae		
Serratia sp		
Serratia marcescens		
Serratia liquefaciens		
Moraxella sp		

Anaerobe	
Lactobacillus sp	
Lactobacillus iners	
Bifidobacterium sp	
Bifidobacterium longum	
Anaerococcus sp	
Anaerococcus hydrogenalis	
Peptostreptococcus sp	
Peptostreptococcus anaerobius	
Bacteroides sp	
Bacteroides fragilis	
Prevotella sp	
Prevotella melaninogenica	
8	
Finegoldia sp	
Finegoldia sp	
	Lactobacillus spLactobacillus inersBifidobacterium spBifidobacterium longumAnaerococcus spAnaerococcus hydrogenalisPeptostreptococcus spPeptostreptococcus anaerobiusBacteroides spBacteroides fragilis

Note 1: the above list is only the common pathogens/commensal bacteria related to this site, and does not represent the whole detection scope of this test item. There are many pathogenic bacteria species in the genus of some bacteria, and only some bacteria species with the highest clinical isolation frequency are listed, such as *Acinetobacter* spp.

Note 2: "conditional pathogenic bacteria", "commensal bacteria colonize" is based on "National clinical laboratory operation rules" (fourth edition), "Manual of clinical microbiology" (11), "The clinical application of antibacterial drugs instruction manual "(2016 edition), "The bacterial and fungal smear microscopy and training results report specification expert consensus" (2017 edition) guidelines.

G4 · · · · · · · · · · · · · · · · · · ·	Density 1	Density 2	Density 3	Proportion in	
Strains in mock community	(CFU/mL)	(CFU/mL)	(CFU/mL)	community	
Moraxella catarrhalis	25	50	100	5%	
Acinetobacter baumannii	75	150	300	15%	
Staphylococcus aureus	150	300	600	30%	
Candida glabrata	25	50	100	5%	
Candida parapsilosis	75	150	300	15%	
Candida tropicalis	150	300	600	30%	
total	500	1000	2000		

Table S3. Construction of Mock community

Table S4. standard strains tested by NTS individually

Species	Identification capacity
Enterococcus hirae	Identified correctly at genus level
Acinetobacter pittii	Identified correctly at genus level
Achromobacter xylosoxidans	Identified correctly at genus level
Citrobacter freundii	Identified correctly at genus level
Veillonella parvula	Identified correctly at species level
Streptococcus salivarius	Identified correctly at species level
Streptococcus pyogenes	Identified correctly at species level
Streptococcus pneumoniae	Identified correctly at species level
Streptococcus constellatus	Identified correctly at species level
Streptococcus agalactiae	Identified correctly at species level
Stenotrophomonas maltophilia	Identified correctly at species level
Staphylococcus epidermidis	Identified correctly at species level
Staphylococcus capitis	Identified correctly at species level
Staphylococcus aureus	Identified correctly at species level
Salmonella enterica	Identified correctly at species level
Pseudomonas stutzeri	Identified correctly at species level
Pseudomonas aeruginosa	Identified correctly at species level
Neisseria gonorrhoeae	Identified correctly at species level
Aycobacterium smegmatis	Identified correctly at species level
Aycobacterium abscessus	Identified correctly at species level
Moraxella nonliquefaciens	Identified correctly at species level
Aoraxella catarrhalis	Identified correctly at species level
Iaemophilus influenzae	Identified correctly at species level
Gardnerella vaginalis	Identified correctly at species level
Tinegoldia magna	Identified correctly at species level
Enterococcus faecium	Identified correctly at species level
Enterococcus faecalis	Identified correctly at species level
Enterococcus aviu	Identified correctly at species level
Corynebacterium urealyticum	Identified correctly at species level
Corynebacterium pseudodiphtheriticum	Identified correctly at species level
Corynebacterium jeikeium	Identified correctly at species level
Bacteroides vulgatus	Identified correctly at species level
Bacteroides fragilis	Identified correctly at species level
Aeromonas hydrophila	Identified correctly at species level
Aeromonas caviae	Identified correctly at species level
Acinetobacter lwoffii	Identified correctly at species level
Acinetobacter baumannii	Identified correctly at species level
Aspergillus terreus	Identified correctly at species level
Aspergillus niger	Identified correctly at species level
Cryptococcus neoformans	Identified correctly at species level
[Candida] glabrata	Identified correctly at species level
Candida parapsilosis	Identified correctly at species level

Streptococcus oralis	Identified correctly at species level
Proteus vulgaris	Identified correctly at species level
Nocardia farcinica	Identified correctly at species level
Neisseria meningitidis	Identified correctly at species level
Candida albicans	Identified correctly at species level
Aspergillus fumigatus	Identified correctly at species level
Klebsiella pneumoniae	Identified correctly at species level
Escherichia coli	Identified correctly at species level

	Moraxella	Acinetobacter	Staphylococcus	[Candida]	Candida	Candida
	catarrhalis	baumannii	aureus	glabrata	parapsilosis	tropicalis
Statistics by re	eads					
CFU/mL	25	75	150	25	75	150
replicate 1	406	284	182	24	603	145
replicate 2	179	159	78	7915	1710	604
replicate 3	304	239	111	16577	2986	1491
replicate 4	1096	647	280	14890	2876	582
replicate 5	1090	762	291	13378	2018	401
replicate 6	1409	1003	459	16377	4035	2190
replicate 7	913	814	390	16386	3394	1070
replicate 8	190	161	39	16848	2266	930
replicate 9	163	114	44	13527	2146	802
replicate 10	731	573	371	12291	2154	279
replicate 11	465	371	202	12310	2329	474
replicate 12	1249	1104	741	8481	976	411
Statistics by R	PM (Reads per mill	ions mapped reads)				
CFU/mL	25	75	150	25	75	150
replicate 1	165511.6	115776.6	74194.9	9783.9	245821.4	59111.3
replicate 2	15288.7	13580.5	6662.1	676033.5	146054.0	51588.7
replicate 3	12947.7	10179.3	4727.6	706035.2	127177.5	63503.6
replicate 4	47536.4	28062.1	12144.3	645818.9	124739.8	25242.9
replicate 5	53028.5	37071.3	14157.1	650839.2	98175.6	19508.6
replicate 6	48806.7	34743.2	15899.4	567286.7	139769.3	75859.9
replicate 7	34677.9	30917.7	14813.1	622379.2	128912.2	40641.1
replicate 8	8759.0	7422.1	1797.9	776691.9	104462.5	42872.9
replicate 9	9112.3	6373.0	2459.7	756205.3	119968.7	44834.5
replicate 10	39373.0	30862.9	19982.8	662016.6	116018.5	15027.5
replicate 11	26362.0	21032.9	11451.9	697885.4	132037.0	26872.3
replicate 12	75504.8	66739.2	44795.1	512695.0	59001.3	24845.8

 Table S5. Sequencing reads of six pathogens in mock community

Patient ID	Count	GeneXpert	T-SPOT	Acid-fast stair
Pt-1202, Pt-286, Pt-1203, Pt-1195,	4	Pos	Pos	Pos
Pt-1200, Pt-162, Pt-1196	3	Pos	Pos	Neg
Pt-1185	1	Pos	Pos	NA
Pt-1127	1	Pos	Neg	NA
Pt-1199, Pt-1122	2	Pos	NA	Pos
Pt-1206, Pt-1205, Pt-1204, Pt-1201, Pt-110, Pt-	15	Pos	NA	Neg
538, Pt-639, Pt-1191, Pt-1192, Pt-1190, Pt-1189,				
Pt-1123, Pt-1124, Pt-1125, Pt-1186				
Pt-1198	1	Pos	NA	NA
Pt-1194	1	NA	Pos	Pos
Pt-1197, Pt-690, Pt-1193, Pt-1188	4	NA	NA	Neg
Pt-1187	1	NA	NA	NA
Pt-1126	1	NA	Neg	Neg
Concordance with NTS		100%	81.8%	26.7% (8/30)
		(27/27)	(9/11)	

Table S6. Concordance of MTB detected by NTS and other diagnosis methods

Abbreviation: NTS, nanopore targeted sequencing; NA, not available. Pos, Positive; Neg, Negative.

Table S7. Pathogen detected in samples with no clone growth after 72 hours

Patient No.	Sample No.	Diagnosis	NTS result		
Pt-108	Sp. 163	Central nervous system infection	Staphylococcus lugdunensis, Acinetobacter junii		
Pt-1178	Sp. 1233	Encephalitis	Enterococcus faecium, Nocardioides terrigena		
Pt-18	Sp. 34	Central nervous system infection	Streptococcus gordonii, Prevotella melaninogenica		
Pt-182	Sp. 237	Encephalitis	Anaerococcus lactolyticus, Aspergillus fumigatus		
Pt-20	Sp. 39	Pulmonary infection	Candida albicans		
Pt-234	Sp. 289	Meningitis	Rhodosporidiobolus fluvialis		
Pt-405	Sp. 460	Obstructive hydrocephalus	Aspergillus pseudoglaucus		
Pt-43	Sp. 90	Communicating hydrocephalus	Cladosporium colombiae		
Pt-540	Sp. 595	Upper respiratory tract infection	Acinetobacter junii		
Pt-717	Sp. 772	Suppurative meningitis	Corynebacterium striatum, Escherichia coli		
Pt-818	Sp. 873	Central nervous system infection	Erwinia aphidicola		
Pt-984	Sp-1039	Epilepsy	Candida membranifaciens		

Pathogen detected in samples with no clone growth after 72 hours from department of neurology

Pathogen detected in samples with no clone growth after 72 hours from department of respiration

Patient No.	Sample No.	Diagnosis NTS result	
Pt-1125	Sp. 1180	Pulmonary infection	Mycobacterium tuberculosis
Pt-1127	Sp. 1182	Tuberculosis	Mycobacterium tuberculosis
Pt-1179	Sp. 1234	Pulmonary infection	Nocardia pyrenoides
Pt-1189	Sp. 1244	Pulmonary infection	Mycobacterium tuberculosis
Pt-1198	Sp. 1253	Pulmonary infection	Mycobacterium tuberculosis, Cryptococcus neoformans
Pt-1200	Sp. 1255	Aortic arteriosclerosis	Mycobacterium tuberculosis, Escherichia coli

Pt-1202	Sp. 1257	Pulmonary infection	Mycobacterium tuberculosis
Pt-1207	Sp. 1262	Community Acquired Pneumonia, Severe	Legionella pneumophila, Candida albicans
Pt-1224	Sp. 1279	Emphysema	Aspergillus flavus
Pt-286	Sp. 341	Pulmonary infection	Mycobacterium tuberculosis, Pseudomonas alcaliphila
Pt-293	Sp. 348	Pulmonary infection	Escherichia coli, Acinetobacter baumannii. Candida tropicalis, Cryptococcus neoformans
Pt-538	Sp. 593	Bilateral pulmonary infection	Mycobacterium tuberculosis
Pt-553	Sp. 608	Pulmonary infection	Haemophilus influenzae
Pt-584	Sp. 639	Pulmonary infection	Tropheryma whipplei
Pt-670	Sp. 725	Community acquired pneumonia, severe	Escherichia coli
Pt-677	Sp. 732	Community acquired pneumonia	Mycoplasma pneumoniae
Pt-724	Sp. 779	Pulmonary infection	Staphylococcus aureus, Escherichia coli, Pseudomonas aeruginosa, Candida albicans
Pt-928	Sp. 983	Severe pneumonia	Haemophilus influenzae

Table S8. Evaluation the impact of NTS results on antibiotic modification

	Culture	NTS Result	clinical	Initial Antibiotics	Antibiotic Change	Proporti
	Result	itib itesuit	Diagnosis	initia ministrates	intibilitie chunge	on
Change; targeted antibiotics	Staphylococcus aureus	Staphylococcus aureus; Candida albicans	Pulmonary infection	Cefazoxime Sodium, Azithromycin	Meropenem, Teicoplanin	
	Acinetobacter baumannii	Acinetobacter baumannii; Pseudomonas aeruginosa; Streptococcus mitis; Candida tropicalis	Severe pneumonia	Cefazoxime Sodium, Etilmicin, Meropenem	Ceftazidime, Meropenem	
	Oral normal bacteria	Low abundance of Aspergillus fumigatus	Pulmonary infection	Meropenem, Linezolid, Levofloxacin, Ceftazidime, Imipenem, Gentamicin, Foliconazole	Moxifloxacin, Meroxicillin Sulbactam Sodium, Cefazoxime Sodium, Cefotiam Voriconazole Amphotericin B	
	Oral normal bacteria; No fungus was detected	Aspergillus fumigatus; Enterococcus faecium; Corynebacterium striatum;	Acute exacerbatio n of chronic obstructive pulmonary disease complicate d with lower respiratory tract infection	Methylprednisolone sodium succinate voriconazole	Voriconazole, Amphotericin B	7/33 (21.2%)
	Oral normal bacteria	Acinetobacter baumannii; Candida parasilosis; Streptococcus mitis	Community Acquired Pneumonia, Severe	Ceftazidime, levofloxacin, cefoperazone and sulbactam sodium	Linezolid, Vancomycin,Voricona zole	
	Oral normal bacteria	Haemophilus influenzae; High abundance of Aspergillus	Invasive pulmonary aspergillosi s	Levofloxacin, Cefoperazone- sulbactam, Ceftazidime	Moxifloxacin, Ceftazidime, Fluconazole,	

		fumigatus; Streptococcus mitis			Azithromycin,Voricon azole	
	Acinetobacter baumannii	Acinetobacter baumannii; Streptococcus pneumoniae	Severe pneumonia	Ceftazidime, Meropenem, Amipenem	Cefoperazone- sulbactam,Minocycin	
Unchange;	The selection of antimicrobial agents did not change and the antimicrobial spectrum covered the detected					12/33
Covered	bacteria.					(36.4%)
Changed;	The selection of antimicrobial agents has varied and the antimicrobial spectrum covering the detected					10/33
covered	bacteria					(30.3%)
No antibiotic pre- administratio n	Mycobacterium tuberculosis was detected and transferred to specialized hospital for treatment.					2/33 (6%)
Others	The patient asked to be discharged from hospital without follow-up medication.				2/33 (6%)	

Reference

- 1. Calus ST, Ijaz UZ, Pinto AJ. Nanoampli-seq: A workflow for amplicon sequencing for mixed microbial communities on the nanopore sequencing platform. GigaScience 2018;7.
- Fujita SI, Senda Y, Nakaguchi S, Hashimoto T. Multiplex pcr using internal transcribed spacer 1 and 2 regions for rapid detection and identification of yeast strains. J Clin Microbiol 2001;39:3617-22.
- Kim BJ, Lee SH, Lyu MA, Kim SJ, Bai GH, Chae GT, et al. Identification of mycobacterial species by comparative sequence analysis of the rna polymerase gene (rpob). J Clin Microbiol 1999;37:1714-20.
- 4. Colman RE, Anderson J, Lemmer D, Lehmkuhl E, Georghiou SB, Heaton H, et al. Rapid drug susceptibility testing of drug-resistant mycobacterium tuberculosis isolates directly from clinical samples by use of amplicon sequencing: A proof-of-concept study. J Clin Microbiol 2016;54:2058-67.
- Miao Q, Ma Y, Wang Q, Pan J, Zhang Y, Jin W, et al. Microbiological diagnostic performance of metagenomic next-generation sequencing when applied to clinical practice. Clin Infect Dis 2018;67:S231-S40.