
Supplementary Materials: 

Case 1: Regardless of the state of the system, there is a flow of rate 𝜆𝜋!  into the outbreak 

state. Thus, the time to outbreak is exponentially distributed with the rate 𝜆𝜋!.  

Case 2: There is always a zero probability of outbreak. 

Case 3: The flow rate to the start of the outbreak is 𝜆𝜋!  when the system is not full, and 𝜆𝜋"!  5 

when it is full. Hence, the probability that an outbreak has occurred at time 𝑡 is given by  

𝑝(𝑡) = 1 − exp-−𝜆.-𝑡 − 𝑠(𝑡)0𝜋! + 𝑠(𝑡)𝜋"!20, 

where 𝑠(𝑡) is the amount of time that the system has spent at full capacity by time 𝑡. The 

benefit of tracing lies in both reducing 𝜆 and in reducing 𝑠(𝑡). To see why limiting 𝜆 cannot stop 

an outbreak, note that the probability that an outbreak starts satisfies 𝑝(𝑡) ≥10 

1 − exp(−λtπ#) .	Thus, the risk from Case 1 is a lower bound, and the findings from Case 1 

applies to that lower bound. 

Case 4: In a system with 𝑛 serving stations without truncation, the value 𝜆 = 𝜇𝑛 is a critical 

value for the system. When 𝜆 < 𝜇𝑛, the system is subcritical and has a steady state distribution. 

With 𝜆 > 𝜇𝑛, there is no steady state distribution system, and the process will eventually 15 

exceed any finite value with probability 1. Since our model has a truncated system, the results 

are less extreme, but the simulation shows that the results still change dramatically in the 

region around 𝜆 = 𝜇𝑛. 

 


