Supplementary Materials:

Case 1: Regardless of the state of the system, there is a flow of rate $\lambda \pi_T$ into the outbreak state. Thus, the time to outbreak is exponentially distributed with the rate $\lambda \pi_T$. Case 2: There is always a zero probability of outbreak.

5 Case 3: The flow rate to the start of the outbreak is $\lambda \pi_T$ when the system is not full, and $\lambda \pi_{NT}$ when it is full. Hence, the probability that an outbreak has occurred at time *t* is given by

$$p(t) = 1 - \exp\left(-\lambda \left[\left(t - s(t)\right) \pi_T + s(t) \pi_{NT} \right] \right),$$

where s(t) is the amount of time that the system has spent at full capacity by time t. The benefit of tracing lies in both reducing λ and in reducing s(t). To see why limiting λ cannot stop an outbreak, note that the probability that an outbreak starts satisfies $p(t) \ge$

 $1 - \exp(-\lambda t \pi_t)$. Thus, the risk from Case 1 is a lower bound, and the findings from Case 1 applies to that lower bound.

Case 4: In a system with *n* serving stations without truncation, the value $\lambda = \mu n$ is a critical value for the system. When $\lambda < \mu n$, the system is subcritical and has a steady state distribution. With $\lambda > \mu n$, there is no steady state distribution system, and the process will eventually exceed any finite value with probability 1. Since our model has a truncated system, the results are less extreme, but the simulation shows that the results still change dramatically in the region around $\lambda = \mu n$.

15