10

15

Supplementary Materials:
Case 1: Regardless of the state of the system, there is a flow of rate Am; into the outbreak
state. Thus, the time to outbreak is exponentially distributed with the rate Am;.
Case 2: There is always a zero probability of outbreak.
Case 3: The flow rate to the start of the outbreak is A when the system is not full, and Amyr
when it is full. Hence, the probability that an outbreak has occurred at time t is given by

p(t) =1- exp(—A[(t — s(t))nT + S(t)T[NTD,
where s(t) is the amount of time that the system has spent at full capacity by time t. The
benefit of tracing lies in both reducing A and in reducing s(t). To see why limiting A cannot stop
an outbreak, note that the probability that an outbreak starts satisfies p(t) >
1 — exp(—Atm,) . Thus, the risk from Case 1 is a lower bound, and the findings from Case 1
applies to that lower bound.
Case 4: In a system with n serving stations without truncation, the value A = un is a critical
value for the system. When A < un, the system is subcritical and has a steady state distribution.
With A > un, there is no steady state distribution system, and the process will eventually
exceed any finite value with probability 1. Since our model has a truncated system, the results
are less extreme, but the simulation shows that the results still change dramatically in the

region around A = un.



