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Supplementary Material 1-Materials and Methods 

1. Context 

As for numerous infectious diseases, several of the variables involved in the dynamic of the 

Covid-19 epidemic, although possibly obvious, are known to be quite difficult to observe: for 

diseases such as Covid-19, infectious people may not develop any clear symptoms, and 5 

susceptible people may be detected only once infected by the disease. Another compartment 

difficult to observe but commonly met in epidemic and surely involved in the Covid-19 epidemic 

is the compartment corresponding to exposed stage which relies to people having been infected 

but whom are not yet infectious themselves. Population may also be separated in classes 

depending on their age or social status to account for specific susceptibility due to it, or to model 10 

the transfer between different groups. It was found in particular for the Covid-19 disease that 

elder people were more susceptible to develop severe stages of the disease whereas severe stages 

were relatively rare among children whom may often be healthy carriers; It was also observed 

that health-care personal could constitute a specific class of people with higher susceptibility due 

to their direct exposure to the infectious people. The use of external compartments may also be 15 

useful to express the influence of social events that may strongly contribute to the epidemic, such 

as the travels associated to the New Year in China or sports and religious gatherings in France or 

Italy. Couplings to wild or domestic species may also play an important role, though, for the 

present epidemic, this coupling may probably have taken place at the earlier development of the 

epidemic only, and is no longer in progress. In some contexts, the anthropological dimension 20 

may also have an important influence on the epidemic (as it could be observed for other diseases 

such as Ebola Virus Disease), although few elements could be established clearly yet in this 

sense. The situation of the health systems may also play an important role in the monitoring of 
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the epidemic, both individually in its ability to deal with complex and severe cases, and 

collectively in its capacity to deal with a more or less large number of cases with various degrees 

of infection. Last but not least, the epidemic may also importantly depend on the policies and on 

the calendar of the measures taken at both government and local scales to eradicate the epidemic 

and on the practical application of these measures. 5 

Once the main variables potentially identified, the question of the governing equations can be 

another very hard question: how to formulate their dynamical couplings. Numerous model 

structures have been introduced to consider these quite varied situations. However, these 

formulations are all based on a priori structures. In other words, the processes and their 

mathematical formulations are assumed to be clearly known which is generally far to be the case, 10 

especially when a new disease is concerned. Moreover, once the model formulation has been 

chosen, a careful parameterization is required. When this parameterization cannot be performed 

numerically, either due to intrinsic limitations of the observations (inexistent observations of 

some compartments, poor quality and shortness of the observational dataset, etc.) parameters 

may have to be borrowed from other contexts or studies (e.g. parameters calibrated on Influenza 15 

applied to Covid-19) or chosen based on theoretical considerations (e.g. statistical hypothesis). In 

such conditions, simulations will be, at best, qualitative. If all the compartments of the model are 

observed, and data are of sufficiently good quality, a practical calibration may be performed 

numerically. Unfortunately, it is generally not the case because of the unobserved variables 

previously mentioned upper in the text. Moreover, under hypothetically ideal situations about the 20 

observations, even if all the variables can be observed, an adequate calibration cannot be reached 

if the governing equations were not chosen adequately. It is therefore necessary to cope with a 

cross-challenge: to find a model structure and parameterization adapted not only to the proper 
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dynamical behaviour but also to the observed data set, that is, in few words, adapted to the 

practical problem. 

Various methodologies have been developed to analyse data sets without strong a priori 

knowledge. Artificial Neural Networks, and in particular deep learning, have proven to be very 

powerful for the modelling in numerous domains. These may provide an alternative approach to 5 

the compartment models of pre-fixed structures and to individual based simulations. However, 

there skills are known to be highly dependent on the training samples and often require an 

important quantity of data which is rarely available in epidemiology; such data may even be 

especially scarce as far as a new disease is concerned. Moreover, these approaches generally lead 

to black bow models, that is, efficient predictive models which functioning cannot be assessed. 10 

Their ability can thus be very useful to perform forecasts, but relatively poor to understand the 

dynamical behaviours at work. 

 

2. Theoretical background 

2.1. Chaos theory 15 

The theory of nonlinear dynamical systems – or chaos theory – has its origins in the work of 

the French mathematician Henri Poincaré who was the first one to understand how a system can 

be both at the same time deterministic (i.e. the current state of a studied system at time t entirely 

determines its immediate future state at time t + δt) and unpredictable at long term. Chaos theory 

is very well designed to study real world dynamics because particularly well designed 20 

theoretically to study deterministic dynamics that are poorly predictable at long term (Statistical 

approaches may constitute an alternative to study instable dynamics, but unfortunately 

abandoning the deterministic part underlying the dynamical behaviour). Striking examples of 



 

5 

 

such deterministic but unpredictable behaviours could be reproduced numerically in the sixties 

by Edouard N. Lorenz [1] and Otto E. Rössler [2,3]. René Lozi [4] proved that chaotic 

behaviours could be produced up to the ultimate precision limits of computers. Contrarily to 

mathematical approaches – which aim is most often to obtain the analytic solutions from studied 

equations – chaos theory fosters the use of the phase space (or state space). This orientated space 5 

is particularly interesting because it enables a geometric representation of all the states of a 

dynamical system, independently of time which permits a qualitative representation of the 

dynamics. Usefully, when the original equations of a studied behaviour are unknown, this space 

can be reconstructed directly from observational time series. Furthermore, under appropriate 

conditions, even if several of the system original variables are unknown (or just unavailable), this 10 

phase space still can be reconstructed from a subset of observational time series, potentially a 

single one [5-7]. Finally, to extract a model from observational time series, observational 

variables should also enable a good observability of the original equations of the underlying 

dynamic [8,9]. 

The global modelling technique aims to obtain differential, discrete or delay models from 15 

observational time series. It takes its background from statistics and electronic [10,11]. Its 

differential form was introduced in the early 1990s [12] to obtain models from single time series. 

Although it has proven early to be applicable to theoretical and experimental time series [13], it 

is only in the 2000s that it could be applied to observational data from environmental conditions 

[14,15] and its applications to multiple time series from real environmental conditions is even 20 

more recent [16]. The interest to apply this approach can be multiple. It can be used to detect 

couplings between observational variables [17], to (re-)formulate these couplings algebraically 
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[18] and, potentially, to understand these couplings based on the reconstructed equations, by 

inference [16]. 

2.2 The global modelling technique 

In practice, applied to multiple time series, the approach consists in retrieving a set of 

differential equations in the form  nii xxxfx ,..,, 21 , with i = 1..n, where the dots denote the 5 

derivatives with respect to time. When variables are missing, for example if only one variable X1 

is available and defined such as  nxxhX ,,11   with h the measurement function, then, under 

proper observability conditions, the original system can be rewritten in the canonical form 

 111 ,,,   nn XXXFX   with XX 1 , XX 2 , XX 3 , etc. The original system based on 

variables  nxxx ,..,, 21  is then reformulated based on the set of variables  nXXX ,..,, 21 . If the 10 

original system of equations (1) is known, under appropriate conditions of observability [8], the 

canonical form (2) can be derived analytically by using the Lie derivatives 
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  recursively. The transformation from the original 

variables to the variables of the canonical system are thus given by  n

i

fi xxhLX ,,1

1  . 

2.3. Methodology 15 

The GPoM algorithm is used to model and analyse the data set presented in Section 2. The 

main goal of this algorithm is to obtain equations from observational time series. Therefore, it 

does not require a strong a priori knowledge about the formulation of the equations underlying 

the dynamics. In practice, to obtain a set of n equations from n observational time series, the 

following algorithm parameters are required: (1) The maximum polynomial degree q
max

, (2) the 20 

maximum integration time T 
max

 and (3) the maximum total parameters NP
max

 allowed for the 
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model.  For example, considering n = 3 observed variables and a quadratic form will lead to 2
m
 

possible formulations for each equation (with m = 10), that is 2
30

 potential models. The algorithm 

is based on the following stages: The first equations is initially considered with all its parameters, 

(1) a Gram-Schmidt procedure is used to estimate its parameters, (2) a leave-one out method is 

used to identify the less useful monomial (the one enabling the lower residual reduction), (3) this 5 

monomial is removed and the resulting formulation is kept as a potential equation. (4) Steps (1) 

to (3) are repeated until all the monomial are removed from the equation. Thanks to this 

procedure, the 2
m
 possible equations will be reduced to (m+1) potential formulations. The same 

stages (1) to (4) will be repeated for each equation, leading to (m+1)
n
 potential model 

formulations, that is here 11
3
 potential models in the present case. The number of model to be 10 

tested was thus reduced drastically. 

A detailed description of the algorithm can be found in [18] where it is shown that the GPoM 

algorithm is quite efficient to retrieve the compact formulations of the original systems: in most 

of the cases, all the terms of the obtained structure are indeed present in the original full 

formulation although some terms of secondary importance may be missing; fallacious detections 15 

are rare. It is also proven that polynomial approximations can be obtained from systems of 

nonpolynomial form. Note that obtaining a model from a stochastic signal is found to be quite 

improbable. 

 

3. Organization 20 

The analysis presented in the present sudy was performed in two steps. In the first step (A) 

the epidemic was considered at the China scale. The dynamic of the epidemic was modelled 

using the global modelling technique to investigate the couplings between three observed 
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variables made available by the Chinese authorities. In a second step (B) the analysis focuses on 

the number of confirmed cases considering the outbreak in seven provinces in China and two 

other countries (Japan and South Korea) where the epidemic has been sufficiently long to 

provide us with dynamical models of canonical form. The obtained models are then used to 

produce scenarios for fourteen countries where new focuses have broken out. Observational data 5 

are used to validate / invalidate the scenarios and to provide diagnostics and prognostics about 

the current and future evolution of the outbreaks. 

 

Supplementary Material 2-Data correction for country inter-comparison 

Two data sets were used to perform the analyses presented in this study: The data from the 10 

National Health Commission of the People’s Republic of China [19], and the data from the Johns 

Hudson University [20], both made available from 21 January 2020 to present (20 March 2020). 

The first data set was used to study the epidemic at the scale of China. A new methodology 

was used from 12 February 2020 (included) up to now to count the number of cases. From 12 

February 2020 on, persons having developed clinical symptoms of the Covid-19 were included 15 

([21] 13 February 2020), whereas only the cases identified by standard tests based on nucleic 

acid were counted before. This new methodology aims at providing a complementary picture of 

the epidemiological situation, enabling an earlier detection of infection cases and thus allowing 

earlier treatments so as to stopthe epidemic. This sudden compensation generated a strong 

artefact on the daily counts of confirmed cases and deaths on 12 and 13 of February 2020. To 20 

take into account these additional cases, this sudden contribution was redistributed among the 

earlier counts by using a multiplicative factor of 1.3 for the cumulated cases and 1.1 for the 

cumulated deaths on the corresponding period. 
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The data from the Johns Hudson University [20] were used when considering the epidemic at 

province scale in China, and in other countries. These data were last downloaded on 20 March 

2020. Two variables were considered: the daily cumulated number of confirmed cases CΣ (t) and 

deaths DΣ (t). A correction of multiplicative factors 1.4 and 1.1 was applied to the Hubei 

province to account for the counting methodology change already mentioned. Values were 5 

missing for numerous European countries (e.g. Italy, Spain, France, United Kingdom, 

Switzerland, Netherlands, Denmark and Norway) on 13
 
March 2020 due to a data harmonization 

at European scale. There were estimated by linear interpolation. The number of cumulated 

confirmed cases was not updated correctly on 15 March 2020 in France and UK, it was thus 

replaced similarly. 10 

Obvious differences can be observed between the countries when considering the 

relationship between the number of cumulated cases and the number of cumulated deaths (Fig. 

S1). This is obvious when considering the difference between China (in gray) and Italy (in red) 

(S1a). Several processes can contribute to a differential behaviour, which can result from 

differences in the distribution of the population in age, gender, social position, on capacity of the 15 

health system in the country, etc. However, since a detailed sampling of the population is 

generally impossible, specific protocols are generally used to sample the population. Large 

differences may thus result from the protocols used to sample the population. Since the 

application of this protocol may vary in time and geographically, depending on the situation 

(saturation in capacity of the health services, limiting stocks of tests, conditions delaying the 20 

tests, etc.), it may be difficult to use these original protocols to extrapolate the results at a 

province or country scale. For this reason, linear regressions were used to inter-calibrate the 

observations. 
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The Italian and the Iranian data set were calibrated taking the growing period of Chinese data 

set as reference, and assuming that the number of deaths was suitable without correction. The 

correction factor for the number of cumulated cases was estimated to be of 2.45±0.05 for Italy 

and 1.45±0.05 for Iran (see Fig. S1a). Although the Chinese reference appears quite well adapted 

when considering very large values of cumulated cases and deaths, its ability to provide a proper 5 

reference for small cumulated counts, that is, at the earlier development of the outbreak, appears 

quite poor. Indeed, the increase of deaths at the earlier development of the outbreak appears 

twice quicker in comparison to the increase of infection at the earlier period of the record, 

revealing a clear deficit of infection detection. Assuming that this relationship should have 

remained linear and constant, the number of early undetected cases can be estimated around 10 

1000 to 2000 cases. 

For this reason, the other data sets were calibrated taking the Italian data as direct reference 

and following the same methodology. Curves before and after calibration are shown in Figures 

S1b and S1c, respectively. Corresponding coefficients are provided in Table S1. 

The calculation of the time derivatives is required to apply the global modelling technique. 15 

The daily time series were thus re-sampled at the hourly time step using cubic splines. This 

process has proven to be a very efficient procedure for the phase space reconstruction and for the 

global modelling [21]. The computation of the derivatives was then applied using a Savitzky-

Golai filter with a ±4 data points (corresponding to ±4 hours). The successive derivatives 

obtained from the original time series CΣ (t), s(t) and DΣ (t), will be noted Ck (t), sk (t) and Dk (t), 20 

respectively, with k the derivation degree. 
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Supplementary Material 3-Dynamical regime 

Applying a small parameterization change to model M (Eq. 1 in main text), a phase non-

coherent regime is reached, that is, a behaviour in which several pseudo-frequency are involved. 

This regime is characterized by much more unpredictable behaviour as it can be observed in 

Figure S2. After the 15-day transient, the three trajectories diverge much quicker than what was 5 

observed in Figure 2 (main text). 

 

Supplementary Material 4-Case Fatality Rate 

Model M (see Eq. 1 in the main text) was used to estimate the Case Fatality Rate (CFR) 

of Covid-19. This model was integrated numerically from 21 February 2020 (DoY 52) to 6 10 

September 2020 (DoY 250). The cumulated number of cases CΣ(t) and deaths DΣ(t) were directly 

deduced from the daily estimates C1(t) and D1(t) (see Fig. S3). The case fatality rate is then 

directly deduced considering a 5 day delay between the two variables.  The analysis shows that 

the CFR converges to 1.30-1.35 depending on the integration length (from 100 to 230 days). 

Changing the dynamical regime was found to be marginal. This value higher in comparison to 15 

previous estimates ([22] 5 March 2020), but more than twice smaller that the estimates directly 

deduced from the Chinese data sets from Wuhan suburb to China scale 3.97-4.94 (see Table S2). 
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Supplementary Material 5-Canonical models 

The global modelling technique was used in the present analysis considering two model 

general structures. The first structure was used to retrieve the couplings between variables CΣ (t), 

s(t) and DΣ(t) (see Eq. (1) in the main text). 

For the other analyses, a structure of canonical form (see Suppl. Mat. 1) was used to 5 

retrieve a multidimensional model from single time series. The algebraic structures and phase 

portraits of the models used to perform scenarios are presented hereafter. The following model 

functions were obtained, for the Hubei province 
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which projection (CΣ, C1) of the phase portraits is given in Figure S4a, with initial conditions 

(617.0938896, 146.4350011, 116.6699932); For the Zhejiang: 
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which projection (CΣ, C1) of the phase portraits is given in Figure S4b with initial conditions 

(26.039364, 14.6265229, –1.089333); For the Henan: 
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which projection (CΣ, C1) of the phase portraits is given in Figure S4c with initial conditions 

(2.6233721, 0.3184398, 3.27712507); For the Jiangxi: 

 5 
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which projection (CΣ, C1) of the phase portraits is given in Figure S4d with initial conditions 

(9.93751978, 14.1311195, 1.9752268239); For the Guangdong: 

 10 
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which projection (CΣ, C1) of the phase portraits is given in Figure S4e with initial conditions 

(15.36734533, 8.0091208674, 5.6142410724); For the Anhui: 

 15 
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which projection (CΣ, C1) of the phase portraits is given in Figure S4f with initial conditions 

(7.3752626332, 1.9460686395, 1.8400134404); For the Heilongjiang: 

 

 

,634811700106038360199249600178976610

5580012900540036801332887024900507503280

70270433517079384060941545216004560

2

1

2

2

1

211221ngHeilongjia

ΣΣ

ΣΣ

Σ

 C.C C.

CC.C.+C.

CC.+C. C.,C,CCF







(Eq. S7) 

 5 

which projection (CΣ, C1) of the phase portraits is given in Figure S4g with initial conditions 

(2.9464454755, 1.8801103178, 0.80343957214); And for South Korea: 
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 10 

which projection (CΣ, C1) of the phase portraits is given in Figure S4h with initial conditions 

(1.1440650785, 1.0713288594, 0.53117662272). 

The comparison between models and observations are shown in Figures S4i-j for 

cumulative cases SΣ and S4k-l for daily new cases S1. Basic statistics for model validation are 

presented in Tables S3 and S4 for SΣ and S1, respectively. 15 

 

Supplementary Material 6-Italy Covid-19 model 

Taking into account the last data made available today 26 March 2020 from the Johns 

Hopkins University (i.e. time series up to 25 March 2020), a canonical model could also be 

obtained for Italy. Note that, as for the other models, no strong a priori structure was used to 20 
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constrain the model: it was entirely derived from the observational time series, without strong 

hypotheses. In other words, it is not just a calibration: the dynamic is not assumed to be known. 

This is an important element to have in mind since such a general polynomial structure can 

generate a huge diversity of dynamics, such as: highly dissipative chaotic dynamics (e.g. the 

Lorenz-1963 [1] and Rössler-76 [2] systems), weakly dissipative dynamics (cereal crops attractor 5 

[15]), but also SEIR epidemiological models, quasiperiodic and periodic behaviours, among 

which, numerous of them can be derived analytically [23]. Moreover, contrarily to most of the 

modelling approaches commonly used, the chaos based approach here used is also independent 

to the initial conditions: the equations obtained here are deduced from the observed data set but 

are not specific to the observed initial conditions. 10 

For the first time since the beginning of the outbreak in Italy, a numerically integrable 

model was obtained. Simulations are shown in Figure S7. These simulations suggest that the 

maximum of the epidemic has now been reached and the ending stages can now be estimated for 

the Italian outbreak. Although new clusters cannot be excluded yet, obtaining such a model 

clearly shows that the main current focuses of Covid-19 in Italy are now stabilizing. Among the 15 

four models, models MI1 and MI2 can only marginally reproduce the oscillations observed in the 

original data set and are thus very likely to oversimplify the dynamic. Models MI3 and MI4 

appears more reliable. Based on their simulations, it is estimated that the cumulative number of 

cases may reach 243-263 thousand cases (98-106 thousands before correction). Based on this 

model, the ending stages can also be estimated. Still based on models MI3 and MI4, the stage 20 

corresponding to a level of ~10 new cases per day is estimated between day of year 130 and 144. 
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Supplementary Material 7-Comparative analysis 

Various modelling approaches have been developed to formulate scenarios with the aim 

to provide well-grounded arguments for decision making. In particular, for the present Covid-19 

pandemic, an Agent Based model initially developed to support pandemic influenza planning, 

was used to provide a comparison of suppression versus mitigation strategies under real 5 

pandemic situation [24]. Such models can simulate the behaviours at various scales, both in time 

and space and was applied to the UK and the US. Such type of model can include numerous 

variables and enable realistic simulations. In practice, such models require the identification of 

the main active agents, and the formulation – at the agents scale – of the main processes at work 

in the propagation of the disease. These obvious interests will also have some specific 10 

limitations. In particular, the main agents and agent properties described in the model will have 

to be known, sufficient to provide a complete description of the situation (up to a certain degree 

of approximation), valid in their formulation, and properly calibrated. Each of these points may 

meet important difficulties. Essential agents may not always be known (e.g. for the present 

pandemic: the original source of the contamination, the case-0 of each outbreak, the main 15 

vectors, etc.), rough approximations may have to be used to represent the complexity of the 

situation (for numeric reasons, linear assumptions may have to be fostered, retroactions may be 

avoided or defined with an extreme caution), data may be missing to calibrate such complicated 

models (many variables at work, even if under linear approximation, mostly) and numerous 

assumptions may be required (e.g. locations where the contacts between the agents can take 20 

place, parameterization of the infection distance, incubation period, level of infectiousness 

depending on the agent status, inter-country propagation growth rate, etc.). Finally, the large 

number of agents and variables involved in this type of model will also require a high 
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computation cost, which may lead to delay the reaction, and to make the simulation potentially 

less understandable, and their interpretation possibly more subjective. 

The approach used in the present study takes the opposite point of view. Instead of 

assuming the agents (or the variables) and the processes at work to be known, its aim is to extract 

the governing equations from the observations, without any strong a priori hypotheses. Its 5 

advantages and drawbacks may thus completely differ and it may thus potentially offer an 

independent validation while leading to useful discussion otherwise. 

The global modelling technique has never been used under operational conditions: the 

model for the Bombay plague was obtained one century after the Bombay epidemic took place, 

and the model for the West Africa outbreak of Ebola Virus Disease, although obtained during the 10 

outbreak was published after the outbreak was over. It is thus the first time that this technique is 

investigated to test its potential for decision making. To do so, the global modelling approach is 

not used simply as a modelling approach but to perform inter comparisons between primary 

clusters in Chinese provinces and various countries in Asia and Europe. As it is presently, it 

cannot be used to establish specific scenarios but to identify the most relevant scenarios among 15 

the situations already experienced in other focuses. In other words, it does not have the same 

potential as the other approaches, but it may potentially bring information that other approaches 

cannot have. 

 

 20 
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Fig. S1. Relation between Cumulative cases and cumulated deaths 
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Figure S1: Relation between Cumulative cases CΣ and cumulated deaths DΣ for Hubei and 16 

countries on their full range of values (a) and on selected ranges (b-c). Dashed lines and plain 

lines refer to uncorrected and corrected cumulated cases, respectively. 
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Fig. S2. Observed and modelled time series under phase non-coherent regime 
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Figure S2: Same as Figure 2 (in the main text) but with a slight parameter change of one 

monomial, that is +0.154574 s1D1 instead of +0.15204 s1D1. The regime becomes even more 

chaotic: the topological structure of the updated chaotic attractor involves several foldings 

instead of a single one before, following the same characteristics as the Rössler-1976 chaotic 

system[2]. A more detailed topological analysis remains to be performed. 5 
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Fig. S3. Case Fatality Rate 
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Figure S3: Cumulated cases (left panel), cumulated deaths (middle panel) and Case Fatality Rate 

(right panel) deduced from model M (Eq. 1 in the main text). Two simulations are provided, one 

based on a phase-coherent chaotic regime (black), another one based on a phase-non coherent 

chaotic regime (blue). 
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Fig. S4. Canonical models validation 
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Figure S4: Canonical models validation. Original (in colour) and modeled (in black) phase 

portraits in (CΣ, C1) projection for Hubei (a), Zhejiang (b), Henan (c), Jiangxi (d), Gouangdong 

(e), Anhui (f) and South Korea (h). Scatter plots – modelled ĈΣ versus observed CΣ
obs

 in (i-j) and 

modelled Ĉ1 versus observed C1
obs

 in (k-l). For more details, see Suppl. Mat. 5. 
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Fig. S5. Empirical scenarios simulations (variable C1) 
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Figure S5: Epidemic curves C1(t) resulting from the scenarios for fourteen countries based on the 

models obtained from seven Chinese provinces and South Korea. For each model, an ensemble 

of five simulations was run starting from the observational initial conditions (black circle) 7 

March (DoY 69) to 11 March (DoY 72) 2020. Correction factors used to make the country inter 

comparison are provided in Suppl. Mat. 2. The Chinese data set is used as reference. 5 

Observations are in black. 
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Fig. S6. Epidemic curves and control 
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Figure S6: Epidemic curves C1(t) for Hubei province in China and fourteen countries in Asia and 

Europe. Period with most stringent measures taken by the authorities are shadowed; the level of 

enforcement of nationwide lockdown varies between countries: from strict state control (yellow) 

to advice given to citizen and volunteer basis (blue). 
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Fig. S7. Observed and modelled Covid-19 outbreak in italy 
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Figure S7: Observed (black line) and Modelled (color lines) cumulative counts of infectious 

cases CΣ(t) (top panel), and daily new cases C1(t) (bottom panel). The four simulations 

correspond to models MI1 (orange), MI2 (red), MI3 (green), MI4 (purple) of increasing complexity 

(7 to 10 terms in the polynomial function). Mode details are provided in Suppl. Mat. 6. Dates 

corresponding to C1
max

/100 (approximately 130 new cases per day) are denoted by dashed lines, 5 

and respectively correspond to day of year 109, 107, 124 and 115. A more detailed information 

is provided in Table S5. 
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Table S1. Correction coefficients 

 

Country China United 

Kingdom 

Italy Iran Spain Netherlands France Japan 

Coeff. 1. 2.5±0.2 2.48±0.05 2.25±0.05 1.7±0.1 1.7±0.2 1.3±0.2 2.1±0.5 

 Belgium Sweden Switzerland South 

Korea 

Germany Denmark Austria Norway 

 0.7±0.2 0.7±0.2 0.6±0.2 0.6±0.1 0.5±0.2 0.5±0.2 0.4±0.2 0.4±0.2 

 

Table S1: Correction coefficients (n.u.) applied to the cumulated cases, country by country. The 5 

China data set is taken as reference. Coefficients vary from 2.5 in United Kingdom to 0.4 in 

Austria and Norway. Coefficients greater than one suggest a deficit of sampling in comparison to 

China whereas coefficients lower than one reveal an improved sampling. Assuming that the 

sampling performed by Norway is not biased would mean that all the estimates, in the analysis, 

should be multiplied by 2.5. 10 
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Table S2. Case fatality rate and mortality 

 

 

 Population 

(in million) 

Total confirmed 

cases 

Total deaths Case Fatality 

Rate (in %) 

Mortality Rate 

 in ‰  

China 1427.65 81032 3217 3.97 0.00225 

Hubei 59.17 67798 3099 4.57 0.0524 

Wuhan suburb 11.08 50003 2469 4.94 0.2228 

 5 

Table S2: Case fatality rate and mortality rate resulting from Covid-19 epidemic at China, Hubei 

and Wuhan suburb scales and estimated on 21 March 2020 (one relatively small part of infected 

people ~1000 has not recovered yet). 
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Table S3. Model validation for cumulative cases 

 

CΣ Hubei Zhejiang Henan Jiangxi Gouangdong Anhui Heilongjiang South 

Korea 

A 0.985 0.997 0.994 0.977 0.989 0.989 1.029 1.007 

B 2151. –1.778 0.6271 22.494 7.6090 10.06 –40.25 –8.272 

R2 0.999 0.997 0.999 0.999 0.999 0.999 0.989 0.999 

p-value <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 

 

Table S3: Statistics for the validation of the canonical models based on the cumulated number of 5 

infection CΣ. 
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Table S4. Model validation for daily new cases 

 

C1 Hubei Zhejiang Henan Jiangxi Gouangdong Anhui Heilongjiang South 

Korea 

A 0.9466 0.801 0.908 0.830 0.978 0.976 0.755 0.906 

B 101.3 4.788 1.514 4.104 0.232 0.449 3.807 24.73 

R2 0.923 0.837 0.919 0.844 0.950 0.943 0.721 0.901 

p-value <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 

 

Table S4: Statistics for the validation of the canonical models based on the daily number of new 5 

infection C1. 
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Table S5. Ending stages 

 

Models Stage date (in Day of year)    max

C   

 C1 = 130 C1 = 100 C1 = 10 C1 <1  Corrected Uncorrected 

MI1 109 111 121 131  233000 94000 

MI2 107 109 118 127  230000 92000 

MI3 124 126 144 162  263000 106000 

MI4 115 117 131 145  243000 98000 

 

Table S5: Ending stages (in Day of year) estimated with the four Italian models for various 5 

values of daily new cases C1. Estimated maximum cumulative counts of infectious cases max

C ; 

both corrected and uncorrected values are provided to make the comparison with the official 

results easier. 
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