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Supplementary Methods 

Metabolomic Profiling 

LC-MS/MS allows for the simultaneous detection of thousands of peaks, corresponding to 
individual ions with a unique mass to charge (m/z) ratio, retention time and fragmentation 
pattern, which can be used for chemical structural annotation [da Silva et al., 2018]. All 
solvents were of LCMS-grade and were purchased from Thermo Fisher Scientific (Waltham, 
MA, USA). 45 µL of the residual extracts of dried blood spots used for routine neonatal 
screening prepared through the NeoBaseTM Non-derivatized MSMS kit (PerkinElmer, MA, 
USA) were dried down under a gentle flow of nitrogen at room temperature in a 96-well plate. 
Prior to analysis the extracts were reconstituted in 45 µL of water. The LC-MS/MS platform 
consisted of a Thermo Scientific Q-Exactive Orbitrap mass spectrometer coupled to a Dionex 
Ultimate 3000 UPLC with a binary pump, column oven and Thermo CTC sampler (Thermo 
Fisher Scientific). Chromatographic separation was performed with an Acquity UPLC BEH 
C18 column (130 Å, 2.1 mm x 100 mm, 1.7 μm) preceded by a Acquity UPLC BEH C18 
VanGuard pre-column (130 Å, 2.1 mm x 5 mm, 1.7 µm) (Waters Corporation, Waltham, MA, 
USA).  
The mobile phase consisted of solvent A (99.9% water and 0.1% formic acid) and B (99.9% 
methanol and 0.1% formic acid). The gradient of the mobile phase was as follows: 0-1 min, 
100% solvent A at 0.3 ml/min; 1-9 min, from 100% solvent A to 100% solvent B (gradient 
ramp) at 0.3 ml/min. In between each sample the chromatographic column was washed using 
the following gradient: 10-10.3 min, from 0.3 ml/min to 0.5 ml/min 100% solvent B; 10.3-12 
min, 100% B at 0.5 ml/min; 12-12.5 min, from 0.5 ml/min to 0.3 ml/min 100% solvent B; 12.5-
13 min, from 100% solvent B to 100% solvent C (24.95% water, 24.95% methanol, 24.95% 
acetonitrile, 24.95% isopropanol, and 0.2% formic acid); 13-14 min, 100% solvent C; 14-14.5 
min, from 100% solvent C to 100% solvent A; 14.5-20 min, 100% solvent A. Samples were 
maintained at + 4 °C in the autosampler, 15 µL were loaded to the column with a flow rate of 
0.3 ml/min and a column temperature of 50 °C.  
Tandem mass spectrometric analysis was performed in positive ionization mode, with spray 
voltages +3.8 and -2.5 kV, capillary temperature 350 °C, sheath gas flow rate 32, auxiliary gas 
flow rate 8, and S-lens RF level 50. For full MS (MS1), the parameters were set as follows: 
microscans: 1, resolution: 70’000, AGC target: 1E6, maximum IT: 250 ms, number of scan 
ranges: 1, scan range from 87 to 1100 m/z and spectrum data type: profile. For dd-MS2 
(MS/MS), the parameters were set as follows: microscans: 1, resolution: 17’500, AGC target: 
1E5, maximum IT: 50 ms, loop count: 3, MSX count: 1, TopN: 3, isolation window: 1.5 m/z, 
isolation offset 0 m/z, scan range 200 to 2000 m/z, stepped NCE (17.5, 35, 52.5), spectrum 
data type: profile. For dd, the parameters were set as follows: minimum AGC target: 1E3, 
intensity threshold: 2E4, apex trigger: 2 to 4 s, charge exclusion: 2-8 and above 8, peptide 
match: off, exclude isotopes: on and dynamic exclusion: 25s. Diisooctyl phthalate (m/z 
391.2843) was used as lock mass. 
ThermoFisher .raw files were exported to the .mzML format using ProteoWizard’s MSConvert 
(version 3.0) [Kessner et al., 2008] and preprocessed using MZmine (version 2.40.1) [Pluskal 
et al., 2010]. Data was cropped, with chromatogram retention time from 0.5 to 10 min retained. 
Mass lists were created with MS1 intensity above 1E4 and MS2 intensity above 0 retained. 
The chromatogram was built through the ADAP chromatogram builder [Myers et al., 2017] by 
using the following parameters: minimum group size of scans: 3, group intensity threshold: 
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1E4, minimum highest intensity: 3E4, and m/z tolerance: 0.01 m/z or 10 ppm. The 
chromatogram was further deconvoluted using the MEDIAN m/z center calculation, m/z range 
for MS2 scan pairing: 0.01 Da and retention time range for MS2 scan pairing: 0.2 min. The 
wavelets (ADAP) algorithm was used for deconvolution with parameters set to: S/N threshold: 
20, S/N estimator: intensity window SN, minimum feature height: 30’000, coefficient/area 
threshold: 110, peak duration range: 0 to 2 and retention time wavelet range: 0 to 0.1. The 
peaks were deisotoped using the isotopic peak grouper function, with parameters set to: m/z 
tolerance: 0.01 m/z or 10 ppm, retention time tolerance: 0.1 min, maximum charge: 2, 
representative isotope: most intense. Peaks from all samples were aligned, by using the join 
aligner function with parameters set to, m/z tolerance: 0.01 m/z or 10 ppm, retention time 
tolerance: 0.5 min, weight for m/z: 75, weight for retention time: 25. Finally, two feature tables 
were exported in the .csv format. One feature table containing all extracted mass spectral 
features and another feature table filtered for mass spectral features with associated 
fragmentation spectra (MS2). Aggregated MS2 fragmentation spectra were exported in the 
.mgf format and submitted to feature-based mass spectral molecular networking through 
GNPS [Wang et al., 2016; Watrous et al., 2012; Nothias et al., 2019]. For statistical analysis, 
mass spectral features with a relative intensity less than 20 times the mean relative intensity 
of all blank samples were removed and feature intensities were normalized by the total ion 
current. Chemical structural relatedness of all mass spectral features was visualized within 
Cytoscape 3.7.2 [Shannon et al., 2003]. Raw and preprocessed mass spectrometry data, 
anonymized sample metadata as well as MZmine preprocessing parameter batch files are 
available upon request. 
 

Statistical Analyses 

To predict gestational age from the neonatal metabolome, we adapted the tenfold cross-
validation (CV) implementation of the least absolute shrinkage and selection operator method 
(LASSO) from Wilmanski and collaborators (2019), using the Jupyter notebook publicly 
available at : 
https://github.com/PriceLab/ShannonMets/blob/master/FiguresNotebooks/LASSO_RIDGE_
METABOLOMICS_ANALYSIS.ipynb. This also included comparison to a Ridge regression to 
assess the performance of both models in predicting gestational age. Analysis was performed 
as described in Wilmanski and co-workers (2019), with all metabolites being standardized to 
mean 0 and unit variance before analysis and both LASSO and Ridge regression fitted with 
an intercept. Each penalized regression model was trained on 90% of the cohort with tenfold 
CV and the metabolome-predicted gestational age was predicted for the 10% of samples not 
used for model optimization. Repeating this process ten times results in a test set of 
metabolome-predicted gestational ages and ten different β-coefficients for each metabolite. 
The R2 was computed using the mean of all R2 of the ten out-of-sample predictions and 
Pearsons’ r was calculated through the observed gestational and metabolome-predicted 
gestational age of all samples. 
 
Hypergeometric testing was used to identify chemically structurally related molecular families 
overrepresented with metabolites correlating with gestational age. To this end, results from 
the univariate correlation analysis (Kendall’s Tau) were combined with the molecular network 
to extract molecular families significantly related with gestational age. Molecular families 
containing more metabolites significantly correlated (P value < 0.01 before FDR correction) 
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with gestational age than would be expected by chance were identified using a 
hypergeometric test parameterised by the total number of metabolites, the number of 
significantly correlated metabolites with gestational age and the size of the family of interest. 
A P value was obtained by computing the probability of observing the observed number of 
significant metabolites (or more) under the null assumption that families are formed by drawing 
metabolites uniformly without replacement. 

Metabolite Identification 
A mass spectral molecular network was created through the Global Natural Products Social 
Molecular Networking Platform (GNPS) [Wang et al., 2016] (http://gnps.ucsd.edu) using the 
feature-based molecular networking workflow [Nothias et al., 2019]. The data was filtered by 
removing all MS/MS fragment ions within +/- 17 Da of the precursor m/z. MS/MS spectra were 
window filtered by choosing only the top 6 fragment ions in the +/- 50Da window throughout 
the spectrum. The precursor ion mass tolerance was set to 0.02 Da and a MS/MS fragment 
ion tolerance of 0.02 Da. A network was then created where edges were filtered to have a 
cosine score above 0.7 and more than 4 matched peaks. Further, edges between two nodes 
were kept in the network if and only if each of the nodes appeared in each other’s respective 
top 10 most similar nodes. Finally, the maximum size of a molecular family was set to 100, 
and the lowest scoring edges were removed from molecular families until the molecular family 
size was below this threshold. The spectra in the network were then searched against the 
GNPS spectral libraries. The library spectra were filtered in the same manner as the input 
data. All matches kept between network spectra and library spectra were required to have a 
cosine score above 0.7 and at least 4 matched peaks. In Supplementary figures, “NAP-
Fusion” refers to annotations retrieved through the Network Annotation Propagation (NAP) 
workflow [da Silva et al., 2018], as part of MolNetEnhancer [Ernst et al., 2019]. 
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Supplementary Results 

LASSO regression 
Ride regression has a tendency to perform better for datasets, where predictor variables are 
highly collinear and a large number of small effects is distributed across the predictor variables 
[Wilmanski et al., 2019; Tibshirani, 1996]. As for Wilmanski and collaborators (2019), the 
LASSO model outperformed Ridge regression for our dataset. An average of 21% of variance 
could be explained by gestational age using Ridge regression with tenfold CV, when 
compared to 37% using LASSO regression with tenfold CV. This indicates that blood 
metabolites predicting gestational age in the cohort are largely independent [Wilmanski et al., 
2019]. Indeed, when assessing collinearity among the 93 metabolites selected by the LASSO 
model, only 52 out of the 8556 metabolite-metabolite comparisons were found to be highly 
collinear (|r| > 0.80). 
 
 

Supplementary Discussion 
 
We observed that structural analogues of mannitol and cellobiose are increased in preterm 
infants (Supplementary Data 3). Mannitol is a surprising finding as it is not absorbed through 
the gut and is thus not a common sugar molecule found in blood. Cellobiose is a degradation 
product of cellulose, which can not be metabolized by humans [Satouchi et al., 1998]. Thus 
we speculate that the mass spectral feature observed here is a close structural analogue of 
cellobiose, such as other glucose dimers that is a result of peritoneal nutrient solution which 
has previously been observed in the blood of preterm neonates [Chace et al., 2010]. Spectral 
mirror plots of both sugar molecules are available in Supplementary Data 2.  
 
Carnitines and bile acids may be produced endogenously or absorbed through diet. Microbes 
are known to have a profound effect on carnitine as well as bile acid metabolism. When 
reaching the gut, microbes may chemically structurally modify products of bile and carnitine 
metabolism. Microbially modified carnitines and bile acids may re-enter blood circulation 
through the gut and in more recent years have shown to play an important role in 
gastrointestinal and metabolic diseases [Lloyd-Price et al., 2019; Meadows and Wargo, 2015; 
Singh et al., 2019]. Here, we found that most blood carnitine structural analogues were 
correlated positively with gestational age (17 out of 21, Supplementary Figure 6, 
Supplementary Data 3). This finding corroborates with previous targeted metabolite analyses 
in preterm newborns [Sanches-Pintos et al., 2016]. Neonates have reduced endogenous 
carnitine biosynthesis and rely on placental transfer, which occurs mainly during the third 
trimester [Sanches-Pintos et al., 2016; Meadows and Wargo, 2015]. Multiple studies have 
reported beneficial effects of carnitine on metabolic health via stimulation of glucose oxidation, 
including protection against insulin-resistance and myocardial ischemia injury [Ussher et al., 
2013]. More recent studies have also highlighted microbiome-associated carnitine structural 
analogues with anti-inflammatory properties [Lloyd-Price et al., 2019; Morton et al., 2019]. 
Dietary L-carnitine on the other hand may serve as a source of gut microbiota-derived 
trimethylamine N-oxide (TMAO), which has been associated with increased cardiovascular 
risk [Meadows and Wargo, 2015; Wang et al., 2011]. Primary bile acids are metabolized to 
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unconjugated and secondary bile acids by microbes in the gut through deconjugation and 
dehydroxylation reactions, respectively [Singh et al., 2019]. Here we found that a majority of 
the chemically structurally annotated bile acids are primary and correlate negatively with 
gestational age. This finding is in agreement with previous studies reporting over 90% of all 
bile acids found in neonatal serum as primary [Zöhrer et al., 2016]. Few chemical structural 
analogues of secondary bile acids in the blood of neonates might be reflective of the 
immaturity of the colonic microbiome [Groer et al., 2014; Zöhrer et al., 2016]. Overall serum 
bile acid levels were previously found to be higher in preterm neonates born before 29 weeks 
of gestation [Zöhrer et al., 2016], which is in agreement with our finding that a majority of bile 
acids detected here correlate negatively with gestational age. Carnitines as well as bile acids 
form a wide variety of chemical structural analogues, challenging chemical structural 
annotation through MS/MS fragmentation patterns, with chemically structurally different 
molecules exhibiting close similarities in mass spectral fragmentation patterns. Thus chemical 
structural annotation could in most cases only be performed at the level of putatively 
characterized compound classes, corresponding to a level 3 metabolite annotation according 
to the Metabolomics Standard Initiative’s reporting standards [Sumner et al., 2007]. Further 
studies would be needed to verify chemical structural annotation and results described here 
should be interpreted with care. 
 
Gut microbiota have also been shown to play an important role in the catabolism of amino 
acids and phosphatidylcholine. For example, imidazole propionate, found to correlate 
negatively with gestational age, is a microbially-produced histidine catabolite [Koh et al., 
2018]. Similarly, phenylacetylglutamine, a product of microbial metabolism of glutamine, was 
found to correlate negatively with gestational age [Bogiatzi et al., 2018]. Gut microbiota were 
recently shown to also play an important role in tryptophan metabolism [Dehhaghi et al., 2019; 
Roager et al., 2018]. Here we found that kynurenic acid, a catabolite of tryptophan metabolism 
correlates negatively with gestational age. Gut microbiota were also shown to be implicated 
in phosphatidylcholine catabolism. Here, we found that a phosphatidylcholine with m/z 
440.2773 correlated negatively with gestational age, whereas betaine, a possible catabolite 
of dietary phosphatidylcholine correlated positively with gestational age. Gut microbiota were 
shown to be directly involved in phosphatidylcholine catabolism to TMAO, however our mass 
spectral method did not capture TMAO (m/z below 80) (Figure 2)  [Wang et al., 2011].  
 
Polyamines such as spermine and spermidine, here found to correlate negatively with 
gestational age, were shown to play an important role in fetal development and in regulating 
intestinal epithelial integrity by modulating the expression of various growth-related genes 
[Hussain et al., 2017; Timmons et al., 2012]. Besides being synthesized by the host or 
imported from the diet, polyamines may also be produced by intestinal microflora [Hussain et 
al., 2017].  
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Supplementary Table 1. Distribution of study cohort by sex, gestational age, age at 
sampling, multiplicity and mother’s age. Prematurity categories were adapted from Wilson 
and collaborators (2016).  
 

 N (%) 

Sex 

Male 86 (58.1) 

Female 62 (41.9) 

Age at sampling 

2 days 69 (46.6) 

3 days 79 (53.4) 

Multiple births 

No 143 (96.6) 

Yes 5 (3.4) 

Age of mothers 

<20 years 0 

20-24 years 14 (9.5) 

25-29 years 47 (31.8) 

30-34 years 52 (35.1) 

35-39 years 28 (18.9) 

≥ 40 years 7 (4.7) 

Gestational age (prematurity category) 

 N (%) [mean birth weight; birth weight range] 

28 weeks (very preterm) 10 (6.8) [1200; 850-1995] 

29 weeks (very preterm) 10 (6.8) [2037.89; 840-3916] 



Ernst et al., Gestational-age-dependent development of the neonatal metabolome, Supplementary Information                8 

30 weeks (very preterm) 8 (5.4) [1725.5; 1020.32] 

31 weeks (very preterm) 10 (6.8) [1598.0; 920, 1961] 

32 weeks (very preterm) 10 (6.8) [1974.22; 1310, 3196] 

33 weeks (near term) 10 (6.8) [1935.70; 1109, 2592] 

34 weeks (near term) 10 (6.8) [24332.20; 1615, 3685] 

35 weeks (near term) 10 (6.8) [2550.10; 1580, 3240] 

36 weeks (near term) 10 (6.8) [2850.2; 2590, 3190] 

37 weeks (term) 10 (6.8) [2960.2; 1940, 3620] 

38 weeks (term) 10 (6.8) [3417.70; 3078, 4345] 

39 weeks (term) 10 (6.8) [3486.20; 2730, 4260] 

40 weeks (term) 10 (6.8) [3932.50; 3180, 4820] 

41 weeks (late term) 10 (6.8) [3883.50; 2940, 4360] 

42 weeks (late term) 10 (6.8) [3913.80; 2986, 4760] 
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Supplementary Figure 1: Global mass spectral molecular network of neonatal dried blood 
spots with varying gestational ages. a. Molecular network colored by chemical classification 
scores. A chemical classification score of 1 means that all nodes within a given molecular 
family had at least one in silico chemical structural hit [Ernst et al., 2019] b. Molecular 
network colored by putative chemical superclasses retrieved through the MolNetEnhancer 
workflow and ClassyFire [Ernst et al., 2019; Djoumbou et al., 2016]. Each node in the 
network represents a mass spectral feature, which we here use as a proxy for a metabolite. 
Connected nodes represent high tandem mass spectral similarity, implying high chemical 
structural similarity.  
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Supplementary Figure 2: Box plots for number of mass spectral features stratified across 
different gestational ages. The mean number of mass spectral features was found to 
correlate significantly with gestational age (Kendall’s Tau = -0.2, P < 0.05). 
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Supplementary Figure 3: Box plots for Shannon diversity stratified across different 
prematurity categories. No significant differences were found across mean Shannon 
diversities per prematurity category (Kruskal-Wallis, P = 0.15).  



Ernst et al., Gestational-age-dependent development of the neonatal metabolome, Supplementary Information                12 

 

 
Supplementary Figure 4: Global mass spectral molecular network with metabolites 
significantly correlating with gestational age highlighted (Kendall’s Tau, false-discovery-rate-
adjusted P < 0.05). Out of 6053 mass spectral features, 744 were found to correlate 
significantly with gestational age. Each node in the network represents a mass spectral 
feature, which we here use as a proxy for a metabolite. Connected nodes represent high 
tandem mass spectral similarity, implying high chemical structural similarity.  
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Supplementary Figure 5: Molecular family significantly overrepresented in metabolites 
correlating with gestational age (P < 0.01) putatively annotated as bile acids using a 
combination of metabolome mining tools through the MolNetEnhancer workflow. Nodes with 
bold black borders indicate GNPS spectral library hits with a cosine score > 0.7. For more 
details on annotated motifs, visit ms2lda.org. 
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Supplementary Figure 6: Molecular family significantly overrepresented in metabolites 
correlating with gestational age (P < 0.01) putatively annotated as carnitines using a 
combination of metabolome mining tools through the MolNetEnhancer workflow. Nodes with 
bold black borders indicate GNPS spectral library hits with a cosine score > 0.7. For more 
details on annotated motifs, visit ms2lda.org. 
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Supplementary Figure 7: Molecular family significantly overrepresented in metabolites 
correlating with gestational age (P < 0.01) putatively annotated as nucleotides using a 
combination of metabolome mining tools through the MolNetEnhancer workflow. Nodes with 
bold black borders indicate GNPS spectral library hits with a cosine score > 0.7. For more 
details on annotated motifs, visit ms2lda.org. 
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Supplementary Figure 8: Molecular family significantly overrepresented in metabolites 
correlating with gestational age (P < 0.01) putatively annotated as polyamines using a 
combination of metabolome mining tools through the MolNetEnhancer workflow. Nodes with 
bold black borders indicate GNPS spectral library hits with a cosine score > 0.7. For more 
details on annotated motifs, visit ms2lda.org. 
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Supplementary Figure 9: Molecular family significantly overrepresented in metabolites 
correlating with gestational age (P < 0.01) putatively annotated as chlorhexidine and 
penicillamine disulfide related metabolites using a combination of metabolome mining tools 
through the MolNetEnhancer workflow. Nodes with bold black borders indicate GNPS 
spectral library hits with a cosine score > 0.7. For more details on annotated motifs, visit 
ms2lda.org. 
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Supplementary Data 
 
Supplementary Data 1: Box plots of forty chemically structurally annotated compounds 
through GNPS library matching including amino acids, bile acids, nucleotides, peptides, 
polyamines, antibiotics, sugars and treatment related compounds such as caffeine 
correlating significantly with gestational age (false-discovery-rate-adjusted P < 0.05). 
 
Supplementary Data 2: Spectral mirror plots of forty chemically structurally annotated 
compounds through GNPS library matching including amino acids, bile acids, nucleotides, 
peptides, polyamines, antibiotics, sugars and treatment related compounds such as caffeine 
correlating significantly with gestational age (false-discovery-rate-adjusted P < 0.05). Data 
were extracted automatically using the metabolomics USI tool (http://metabolomics-
usi.ucsd.edu/) and mirror plots produced in Python 3.7. using the spectrum_utils package 
[Wout, 2020]. 
 
Supplementary Data 3: Relationship of 100 putatively annotated metabolites with gut 
maturation, health and microbiome. 
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